
Scientific Data Analysis using MapReduce

MapReduce Workshop
May 16, 2012

Yung Ryn (Elisha) Choe, Ph.D.

Sandia National Laboratories, Livermore, CA

Joint work with
Craig Ulmer, Greg Bayer1, Shyamali Mukherjee, Diana Roe,

Janine Bennett

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

1Now at Pulse - Alphonso Labs

SAND2012-4071P

Background

• Post-processing in exascale computing is a significant challenge
– Massively-parallel scientific simulations: 10s to 100s of TBs of data
– Post processing requires out-of-core data processing algorithms

• Data-Intensive Computing: Systems for simplifying large data work
– Industry: Significant progress in parallel DBs and cloud computing

• Can we leverage these technologies to improve our workflows?

Data-Intensive Computing

• Databases, Data Warehouses, Dataflow Engines, NoSQL

• Key idea: Make life easier by separating API from implementation
– Developers: write algorithms, Architects: handle reliability/performance

• Yahoo’s Hadoop: Combination of MapReduce and Framework

M

R
R
R
RM

M
M
M
M

1

2

3

4

5

6

M
M

M

M
R

RR

R
M
M

5

1

2

3

1 6

4

3

MapReduce Implementation

2

MapReduce Abstraction

Input OutputMap ReduceSort

1 Hardware Technologies for High-Performance
Data-Intensive Computing, IEEE Computer, 2008.

1

Sandia’s Research Direction

• Understand and leverage existing frameworks
– Adapt SNL-relevant analysis codes to different platforms
– Explore hardware/software/economic/security/political tradeoffs
– Enhance with HPC technologies
– Do these platforms make analysis easier?

• Funding: ASC, LDRD, CSRF

• Sandia’s connectivity
– LLNL, LBNL, MITRE, Wisconsin-Madison
– Government agencies
– Bay Area Hadoop Users + Companies

• Work with peers towards formation of useful government cloud
– CIO + DOE Cloud Audit Reports

• Scientific Computing users
– Need to embed data analysis in storage systems
– Two scientific data analysis algorithms using MapReduce

• Mesh Analysis on DWAs
– Data Warehouse Appliances (DWAs) have been proven effective

for data mining and informatics
– Very few examples in scientific computing
– MapReduce: Hadoop, Others: Netezza, XtremeData, LexisNexis

• Combustion Data Analysis
– Turbulent Kinetic Energy (TKE)
– Autocorrelation calculation

Outline

• Advanced Simulation and Computing (ASC) - Sandia

• Simulating properties of complex systems
• Mechanical, Thermal, Electrical

• Mesh-based analysis
– Unstructured meshes
– Non-uniform elements

• Massive datasets
– Significant variable data

• In-memory, single machine analysis infeasible
– Need for out-of-core post-processing analysis tools
– Example: ParaView

Scientific Simulation

A 100M element simulation can generate many terabytes of data.

Tables Rows/Bytes

Structural
Data

Element 100 Million
3.2GB

Vertex 100 – 800 Million
2.4GB – 19.2GB

Variable
Data

Element 20 Billion
2.5TB

Vertex 20 – 160 Billion
2.5TB – 20TB

• DW appliances
– Mid-to-large volume data warehouse market

• Terabyte to Petabyte range
– Large number of parallel storage devices
– Near-storage processing, via programming interface

• SQL-based

• Dataflow-based (other data-parallel languages)

Data Warehouse Appliances (DWAs)

• Traditional approach of moving data to the user’s analysis code is
infeasible
– Increased Dataset Sizes
– Constant disk and network speeds
– Capability computing consolidation

• Must provided processing within storage system

• DWA’s have been successfully used to solve informatics
problems

• Intent of this work:
– Gain insight into tradeoffs involved in using DWAs to analyze

scientific datasets

An Early Evaluation

Evaluation Platforms

Hadoop MapReduce

HDFS (Hadoop
Distributed File System)

• High throughput
• Fault‐tolerant

– Replicated data
– Automatic failover

• Complexity abstracted

Map/Reduce
• Automatic parallelization

– Partitions Input Data
– Schedules Execution
– Handles Machine Failures
– Manages Communication
– No deadlocks, race conditions

11

SNL Hadoop Cluster History

Decline Cluster
Purpose: Research
40 Nodes

Dual Core, Dual 40GB Disks
GigE + InfiniBand
January 2009

80 1TB SATA2 disks
Revamped installation
June 2009

Nebula Cluster
Purpose: Production
70 Nodes, 0.5PB

Intel I7 Quad-Core,
12GB Memory
4x 2TB Disks
GigE

July 2010

Mini Clusters
Recline: Temporary replacement for Decline

~20 small nodes from Reapp, GigE

Ion: Low-power, cluster
8 Atom/Ion (35W) nodes
GigE

Buzz Cluster
Purpose: Research
10 I/O Nodes
30 Diskless Nodes

6x HDD, 2x SSD
GigE/10GigE/DDR IB
ATI 4890 GPU

December 2010

Netezza: Parallel Database

PowerPC FPGAGigE

1GB DRAM SPU

PowerPC FPGAGigE

1GB DRAM SPU

PowerPC FPGAGigE

1GB DRAM SPU

Login Node
GigE

The Netezza system utilizes multiple snippet-
processing units (SPUs) to process data in parallel

• Netezza Performance Server 10050
• Half-rack system
• 54 active SPUs
• 5 terabytes of database space
• Built-in PC with dual AMD Opteron
processors functions as head node and
access point for the database
• Users connect to the database
remotely through ODBC connections

Data Warehouse Appliances (DWAs)
• SQL-based DWAs: Netezza and XtremeData

• Dataflow-base: LexisNexis Data Analytics Supercomputer (DAS)

• Hadoop MapReduce: Local cluster and Amazon EC2

Application Experiments

• Goal: Measure volume of gas exceeding
threshold

• Mesh schema
– Static element data stored separately from

variable data

• Marching cubes style approach
– Sums contribution of each element to total

volume

• Very Parallel

Threshold Volume

• Structural and Variable Data representation

Threshold Volume - Data

• Load and Stage static data with Join

• Volume Calculation
– Join with dynamic data (8 joins per element)
– Filter on node variable-based threshold
– Calculate volume of a single element
– Sum volume locally, then globally

• Netezza and XtremeData
– 2nd version of join: 4 joins for each tetrahedron x 6 (tetrahedra)

• LexisNexis
– Enterprise Control Language (ECL)
– Use built-in JOIN, ROLLUP, PROJECT and SUM operators

Threshold Volume - Implementation

3 3 2 3

11

Threshold Volume

Performance: Hadoop Cluster

• 32 node hadoop clusters with different node types

Threshold Volume

Performance: Data Warehouse Appliances

• Phase 1: Extremely parallel

• Phase 2: O(n2) – All to all distance calculation
– Chose not to use bounding-box filter (test extreme case)

Element Pairing

• Goal: Simulate realistic fractures
• Two separate meshes
• Central challenge: auto-generate list of

element pairs pressed against each other
closest

• Phase 1: Generate all faces of mesh then
eliminate interior faces

• Phase 2: Find the closest faces

• Load and Stage static data
– Join static data

• Phase 1: Filter for surface faces of each mesh
– Join with dynamic data
– Compare vertices of each hexahedron in sorted order

• Hadoop: Distribute surface faces of mesh 2 using Distributed Cache

• Phase 2: O(n2) – All to all distance calculation
– SQL-based: “Group By”
– Hadoop: Map-join, in memory streaming comparison, iterative approach
– LexisNexis: PROJECT and DENORMALIZE operators
– Chose not to use bounding-box filter (test extreme case)

• Select min distance pair for each element of mesh 1

Element Pairing - Implementation

Element Pairing

Performance: Data Warehouse Appliances
26,605

• Hadoop
– Distributed Cache, Combiners, Binary Seek, explicitly moving

calculation into memory helped
– Highly tunable and Job startup cost is high

• Netezza
– Proprietary commands: “Generate statistics” helped but less portable,

UDF debugging difficult, Floating-point limitations (Mustang)
– SQL portable but less control

• All Platforms
– Performance optimization was non-trivial
– Final phase (NxM calculation) was dominant

Lessons Learned

Mesh Analysis
• Ported mesh analysis algorithms to multiple platforms

– Traditional SQL Parallel Database: Netezza, XtremeData
– “NoSQL” Platforms: LexisNexis DAS, Hadoop (Local + Amazon)
– Unique Sandia Research: Breadth study, 4 languages, 9 platforms

Point 1: Hadoop provides competitive choice
Point 2: Algorithms may be difficult to express
Point 3: Refactoring required for performance

1 Scientific Data Analysis on Data-Parallel Platforms, SAND 2010
2 Exploring Data Warehouse Appliances for Mesh

Analysis Applications, Digital Media at Scale 2010

1

2

Nebula Cluster

• New Hadoop Cluster ‐ $150K Multi‐Customer
− 2 Racks / 70 1U nodes: 280 cores + 280 disk drives
− 560 TB Total Raw Disk Capacity (~0.5 PB)
− 876 GB Total RAM

Cluster Test Date Nodes Cores Data Size Time Normalized to
Yahoo Cluster*

Recline July 2010 18 18 100GB 3807 sec 0.28x

Nebula July 2010 65 260 100GB 346 sec 0.84x – 1.68x

Nebula July 2010 65 260 1TB 3390 sec 0.87x – 1.75x

Yahoo May 2008 910 7280 1TB 208 sec 1x

• Performance Comparison – Hadoop Terasort Benchmark

* Performance normalized by # nodes – # cores. 100GB runs compared via runtime x 10.

• Motivation for Hadoop / Nebula
− Fault Tolerant, TB‐Scale Analysis on Commodity Hardware
− Best Suited to Algorithms that are IO‐Limited

(instead of CPU‐Limited or Communication‐ Limited)

Combustion Data Analysis

Combustion Simulation Data

• Jet in Cross Flow Vector Data
– JICF square-jet simulation by R. Grout, A. Gruber, and J.H. Chen
– S3D code run on Jaguar and produced 100+TB datasets at ORNL
– CRF researchers use in situ analysis to obtain early results
– Collaborators provided access to data in cloud resource

• Data File Format
– Time-varying 3-dimensional grid of vectors
– Three files for each time step, <u, v, w> coordinates of velocity vector at

each point in domain
– Binary file with x varying the fastest then y then z
– The dimension of the data: 1408 by 1080 by 1100 (21 time steps)
– Total 400 GB of data
– Dataset generators were also used for scaling experiments

Turbulent Kinetic Energy (TKE)

Turbulent Kinetic Energy (TKE)

• Developed MapReduce implementation
– First Implementation (Orig): Groups data by point (sort)
– Calculate total TKE for each point in parallel
– Second (optimized) Implementation: Groups by buffer

0

100

200

300

400

500

600

700

800

512 B 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB Orig

To
ta
l R

un
 T
im

e
(s
ec
)

Buffer Size

TKE Run Time

6.3 GB

50 GB

393 GB

5818

Basic Descriptive Statistics

• Integrated Hadoop with VTK statistics package

• VTK: Visualization Toolkit

• VTK Descriptive Stats Library calculates:
– Learn: cardinality, min, max, mean, centered M2, M3, M4

– Derive: variance, standard deviation, skewness, kurtosis, sum

• Performance comparison study
– C++ implementation of basic statistics
– VTK C++ Library
– Hadoop Java integration with VTK
– Hadoop Pipes C++ Implementation
– Hadoop Pipes C++ using VTK

• Compatible with any Hadoop-based cloud

Basic Descriptive Statistics

• Using Hadoop Pipes C++ support shown efficient

Basic Descriptive Statistics

• Using Hadoop Streaming in Python and VTK
– Using binary (typedbytes) input file format
– Small cluster with MPI/NFS and Baseline (local disk) comparisons
– Distributed Files System (e.g. GlusterFS or Ceph) comparison on going

0
200
400
600
800

1000
1200
1400
1600
1800

400MB 1600MB 3200MB 6400MB

To
ta
l R

un
 T
im

e
(s
ec
)

Total Input Data Size

VTK Descriptive Stats ‐ 4 node cluster

MPI C++ Hadoop Python Streaming

0

100

200

300

400

500

600

700

6GB 13GB 19GB 26GB 32GB 38GB 45GB 51GB 58GB 64GB

To
ta
l R

un
 T
im

e
(s
ec
)

Total Input Data Size

VTK Descriptive Stats ‐ 65 node cluster

MPI C++ Hadoop Python Streaming

Autocorrelation

Autocorrelation

• Developed MapReduce implementation
– Group data by each row in the domain

• Read data once, expand 3x
– For each row, calculate average at each “correlation distance” in parallel
– Average autocorrelation over all rows, by distance

• Scalability:

Adapting Hadoop

• How can we make Hadoop more accessible to scientific community?
– Hadoop Streaming: utilize other codes/libraries

• MapReduce Implementations
– Java
– Scalable

• Custom Hadoop Streaming
– C/OpenMP
– GlusterFS and HDFS Storage

Point 1: MapReduce easier/quicker to code
Point 2: Streaming simplified legacy scale up
Point 3: Attractive for parameter studies

Autocorrelation: Scaling Dimension

Autocorrelation: Scaling Timesteps

Dimension

Timesteps

Ti
m

e
(s

)
Ti

m
e

(s
)

Hadoop: Cluster Tradeoffs

• How should we build clouds for data-intensive work?
– Typically constrained by Cost, Power, and Size

• Hardware experiments

• Which components to upgrade?
– Interconnect: no
– SSD: maybe
– CPU/Memory: yes
– Node count: yes

Point 1: Hadoop does not leverage interconnect
Point 2: Other DFS do get boost for some tasks
Point 3: Scale out, then up

Speedup for 10GigE

Per-Node Upgrade Costs

Sp
ee

du
p

Platform Comparison

Platform API Storage Target

Netezza
SQL + UDF Proprietary Real Time Analytics

XtremeDB

IBM InfoSphere Streams Spade Sources Streaming Analytics

LexisNexis DAS ECL Proprietary Complex Dataflows

Hadoop MapReduce HDFS Batch Processing

MapR Tech MapReduce Proprietary Enterprise Hadoop

SectorSphere Sphere/UDF Sector Batch Processing

Cassandra Column DB
(Thrift) Key/Value Write Throughput,

Eventual consistency

MongoDB M-QL Sharding Doc-oriented DB

Membase MemcacheD Key/Value Persistent KV

Distributed File Systems

• Renewed interest in parallel or distributed file system research
– Kernel Space: Lustre, PVFS, GPFS, Ceph, MapR Tech
– User Space/Overlay: HDFS, GlusterFS, Ceph, Sector
– Key-Value/Objects: Cassandra, Membase

• Data-intensive applications benefit from DFS capabilities
– Locality: Enables scheduler to collocate computation with data
– Caching: Helps scalability and load balancing (Ceph,HDFS)
– Block Distribution: Helps load balance system
– Replication: Improves reliability and decreases hotspots

• How do we leverage in Hadoop?
– Native: Shim layers provide IO and locality
– Streaming: Do-it-yourself locality

Concluding Remarks

• Main points
– Data-intensive computing platforms can do meaningful scientific work
– Best targets today: post processing or low-communication capacity jobs
– Benefit: Simplifies out-of-core development, improves reliability
– Need for improvement in maximizing hardware components
– Hadoop MapReduce framework is a good option

• Impact: Stimulated interest by a number of large-data users
– Internal: Combustion, Satellite, Network Security, Radiation Portals
– External: Requests for unbiased FFRDC views

• Ongoing work
– Integrating data-intensive frameworks into Cray
– Security in MapReduce frameworks and cloud facilities
– Collaboration with peers towards government cloud

Relevant Publications

T. Plantenga, Y. Choe, A. Yoshimura, “Using Performance Measurements to
Improve MapReduce Algorithms”, ICCS 2012, Tools for Program Development and
Analysis in Computational Science Workshop, Omaha, NE, June 2012 (accepted).

C. Chen, Y. Choe, C. Chuah, and P. Mohapatra, “Experimental Evaluation of the
Impact of Packet Capturing Tools for Web Services”, IEEE Global Communications
Conference, Exhibition & Industry Forum (GLOBECOM), Houston, TX, December,
2011.

C. Ulmer, G. Bayer, Y. Choe, and D. Roe, “Scientific Data Analysis on Data-Parallel
Platforms,” Sandia Technical Report SAND2010-7471, September 2010.

C. Ulmer, G. Bayer, Y. Choe, and D. Roe, “Exploring Data Warehouse Appliances
for Mesh Analysis Applications,” in HICSS-43 Digital Media at Scale, January 2010.

M. Gokhale, J. Cohen, A. Yoo, M. Stokes, A. Jacob, C. Ulmer, and R. Pearce,
“Hardware Technologies for High-Performance Data-Intensive Computing”, IEEE
Computer, Vol. 41 No. 4, April 2008.

Additional Slides

Can SSDs Help?

• Solid-state Storage Devices (SSDs) vs Hard disk drives (HDDs)
– 10-100x Latency Improvement (250 μs – 25 μs)
– 2x-10x Bandwidth Improvement (200 MB/s – 1.2 GB/s)
– 32x more expensive per GB ($1.9/GB)
– 12x less capacity per SATA port

• SSDs have performance oddities
– Switch to highly-threaded IO for latency benefits
– Slowdowns may occur on dirty devices

• Should we expect a boost for Hadoop?
– Hadoop geared towards streaming operations

• Easy/Cheap to scale HDD bandwidth in RAIDs
– Intermediate values, sorting may benefit though

• See LBNL work in Magellan w/ Virident

Vector Sort on FusionIO

0

200

400

600

800

1000

1200

1 2 4 8 16 32

Number of Threads

To
ta

l T
im

e
(s

)

SATA RAID

ioDrive

Threads

