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Background

Post-processing in exascale computing is a significant challenge
— Massively-parallel scientific simulations: 10s to 100s of TBs of data
— Post processing requires out-of-core data processing algorithms

Data-Intensive Computing: Systems for simplifying large data work
— Industry: Significant progress in parallel DBs and cloud computing

Can we leverage these technologies to improve our workflows?
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Data-Intensive Computing

Databases, Data Warehouses, Dataflow Engines, NoSQL

Key idea: Make life easier by separating API from implementation
— Developers: write algorithms, Architects: handle reliability/performance

Yahoo’s Hadoop: Combination of MapReduce and Framework

Input Map Sort Reduce Output
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1 Hardware Technologies for High-Performance
Data-Intensive Computing, IEEE Computer, 2008.
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Sandia’s Research Direction

« Understand and leverage existing frameworks
— Adapt SNL-relevant analysis codes to different platforms
— Explore hardware/software/economic/security/political tradeoffs
— Enhance with HPC technologies
— Do these platforms ?

FEDERAL CLOUD

 Funding: ASC, LDRD, CSRF
« Sandia’s connectivity
— LLNL, LBNL, MITRE, Wisconsin-Madison

— Government agencies
— Bay Area Hadoop Users + Companies

« Work with peers towards formation of useful government cloud

— CIO + DOE Cloud Audit Reports
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Outline

« Scientific Computing users
— Need to embed data analysis in storage systems
— Two scientific data analysis algorithms using MapReduce

 Mesh Analysis on DWAs

— Data Warehouse Appliances (DWAs) have been proven effective
for data mining and informatics

— Very few examples in scientific computing
— MapReduce: Hadoop, Others: Netezza, XtremeData, LexisNexis

 Combustion Data Analysis
— Turbulent Kinetic Energy (TKE)
— Autocorrelation calculation
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Scientific Simulation

Advanced Simulation and Computing (ASC) - Sandia

Simulating properties of complex systems
* Mechanical, Thermal, Electrical

MeSh'based a naIyS|S A 100M element si-r:;llztsion can generate many terab;/:jvss/:y?:a.
— Unstructured meshes Eloment 100 Milion
— Non-uniform elements Stg;::ral Vi 100 — 800 Million

2.4GB - 19.2GB

Massive datasets o Element “25T6
— Significant variable data pata Vertex LT

In-memory, single machine analysis infeasible
— Need for out-of-core post-processing analysis tools
— Example: ParaView
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Data Warehouse Appliances (DWAS)

« DW appliances

— Mid-to-large volume data warehouse market
» Terabyte to Petabyte range

— Large number of parallel storage devices
— Near-storage processing, via programming interface

« SQL-based

— ¥ 5 —=
NETEZZA  Yysmommawe:  ©RASLS (0)Greenplum  [ERADATA

« Dataflow-based (other data-parallel languages)

1@'hadmap @ LexisNexis
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An Early Evaluation

Traditional approach of moving data to the user’s analysis code is
infeasible

— Increased Dataset Sizes
— Constant disk and network speeds
— Capability computing consolidation

Must provided processing within storage system

DWA's have been successfully used to solve informatics
problems

Intent of this work:
— @Gain insight into tradeoffs involved in using DWAs to analyze

scientific datasets
Sandia
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Evaluation Platforms
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Hadoop MapReduce

HDFS (Hadoop Map/Reduce
Distributed File System)  « Automatic parallelization
* High throughput — Partitions Input Data
* Fault-tolerant — Schedules Execution
— Replicated data — Handles Machine Failures

— Automatic failover — Manages Communication

o Complexity abstracted — No deadlocks, race conditions
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SNL Hadoop Cluster History

Decline Cluster
Purpose: Research
40 Nodes

Dual Core, Dual 40GB Disks
GigE + InfiniBand
January 2009

80 1TB SATAZ2 disks
Revamped installation

June 2009

Recline;

lon:

Mini Clusters

Temporary replacement for Decline
~20 small nodes from Reapp, GigE

Low-power, cluster
8 Atom/lon (35W) nodes
GigE

| ]
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Nebula Cluster
Purpose: Production
70 Nodes, 0.5PB

Intel 17 Quad-Core,
12GB Memory

4x 2TB Disks

GigE

July 2010

Buzz Cluster
Purpose: Research
10 1/0O Nodes

30 Diskless Nodes

6x HDD, 2x SSD
GigE/10GigE/DDR IB
ATl 4890 GPU

December 2010




' NETEZZA

Netezza: Parallel Database

The Netezza system utilizes multiple snippet-
processing units (SPUs) to process data in parallel

SPU
sigel powern N Froa T * Netezza Performance Server 10050
« Half-rack system
SPU_ | <B4 active SPUs
CigEr) PowerPC 1y FPGA * 5 terabytes of database space
:  Built-in PC with dual AMD Opteron
SPU | processors functions as head node and
sssipoero tresa 0| access point for the database
« Users connect to the database
Login Node

remotely through ODBC connections
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Data Warehouse Appliances (DWAS)

SQL-based DWAs: Netezza and XtremeData
Dataflow-base: LexisNexis Data Analytics Supercomputer (DAS)

Hadoop MapReduce: Local cluster and Amazon EC2

Compute Cores/ Memory/ | Disks/ | FPGAs/
Platform Nodes Node Node Node Node
Netezza Mustang 54 1 PowerPC 1 GB 1 1
Netezza TwinFin6 6 8 x86 16 GB 8 2
XtremeData dbX 1008 8 6 x86 32 GB 12 1
XtremeData dbX 1016 16 6 x86 32 GB 12 1
LexisNexis DAS-20 10 4 x86 4 GB 2 0
LexisNexis DAS-60 32 4 x86 8 GB 1 0
Hadoop-Decline 32 2 x86 4 GB 2 0
Hadoop-Amazon-32 32 2 x86 1.7 GB 1 0
Hadoop-Amazon-128 128 2 x86 1.7 GB 1 0
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Application Experiments
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Threshold Volume

« Goal: Measure volume of gas exceeding
threshold

* Mesh schema

— Static element data stored separately from
variable data

 Marching cubes style approach

— Sums contribution of each element to total
volume

* Very Parallel
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« Structural and Variable Data representation

Node ID | X

Y | Z

Node lookup table

Threshold Volume - Data

Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Node 6 | Node 7 | Node 8
Element ID D, ID, ID, ID, ID, ID, D, ID,
XYZ | XYZ | XYZ | XY,)Z | XYZ | XYZ | XYZ | XYZ
Ertended element lookup table
Timestep ID | Node ID | DISP X | DISP Y | DISP Z | NVAR1 | NVAR2
Node variable data table
Timestep ID | Element ID | EVAR1 | EVAR2 | EVAR3

FElement variable data table
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Threshold Volume - Implementation

Load and Stage static data with Join SWD
C0O0 OO0 6O OO0

Volume Calculation
— Join with dynamic data (8 joins per element)
— Filter on node variable-based threshold
— Calculate volume of a single element
— Sum volume locally, then globally

Netezza and XtremeData
— 2" version of join: 4 joins for each tetrahedron x 6 (tetrahedra)

LexisNexis
— Enterprise Control Language (ECL)
— Use built-in JOIN, ROLLUP, PROJECT and SUM operators

Sandia
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} Threshold Volume
Performance: Hadoop Cluster

1,400

O Decline 32
1,200

O Amazon 32 small

1,000 - .
mAmazon 32 medium

800 4 m Amazon 32 large

Time (S)

600

400 +

- l
0 _ML :
1M 10M 100M
Mesh Elements

« 32 node hadoop clusters with different node types
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Threshold Volume

Performance: Data Warehouse Appliances

Time (S)
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Netezza TwinFin6
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Hadoop Decline 32
Hadoop Amazon 32
Hadoop Amazon 128
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Element Pairing

 Goal: Simulate realistic fractures
 Two separate meshes

« Central challenge: auto-generate list of
element pairs pressed against each other
closest

* Phase 1: Generate all faces of mesh then
eliminate interior faces

 Phase 2: Find the closest faces

 Phase 1. Extremely parallel

» Phase 2: O(n?) — All to all distance calculation
— Chose not to use bounding-box filter (test extreme case)
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Element Pairing - Implementation

Load and Stage static data
— Join static data

Phase 1: Filter for surface faces of each mesh
— Join with dynamic data
— Compare vertices of each hexahedron in sorted order

Hadoop: Distribute surface faces of mesh 2 using Distributed Cache

Phase 2: O(n?) — All to all distance calculation
— SQL-based: “Group By”
— Hadoop: Map-join, in memory streaming comparison, iterative approach
— LexisNexis: PROJECT and DENORMALIZE operators
— Chose not to use bounding-box filter (test extreme case)

Select min distance pair for each element of mesh 1
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Element Pairing

Performance: Data Warehouse Appliances

Time (S)

12,000

10,000

§.000

6.000

4,000

2,000

26,605

Netezza Mustang
Netezza TwinFin6
XtremeData dbX-1008
XtremeData dbX-1016 |- -----------®--------8----Q---—
LexisNexis DAS-20
LexisNexis DAS-60
Hidoop Pecline 32 | covssvssrwofllovvsviu o : £
Hadoop Amazon 32
Hadoop Amazon 128

EONENCONON

2M 5M 10M 20M 50M 100M

Mesh Elements
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Lessons Learned

 Hadoop

— Distributed Cache, Combiners, Binary Seek, explicitly moving
calculation into memory helped

— Highly tunable and Job startup cost is high

* Netezza

— Proprietary commands: “Generate statistics” helped but less portable,
UDF debugging difficult, Floating-point limitations (Mustang)

— SQL portable but less control

» All Platforms
— Performance optimization was non-trivial
— Final phase (NxM calculation) was dominant
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Mesh Analysis

« Ported mesh analysis algorithms to multiple platforms ==
— Traditional SQL Parallel Database: Netezza, XtremeData
— “NoSQL” Platforms: LexisNexis DAS, Hadoop (Local + Amazon)
— Unique Sandia Research: Breadth study, 4 languages, 9 platforms

1.600 T T T T
I Netezza Mustang
1400 = - -mmmr e [ Netezza TwinFine [ ' ]
[[] XtremeData dbX—1008
152 O SRk M XtremeData dbX—1016 [------------------§--- - -—
B LexisNexis DAS-20
1000 oo B lexisNexis DAS-60 | @#& |
o [l Hadoop Decline 32
= ern @ Hadoop Amazon32 | @
= 800 I Hadoop Amazon 128
H

1M 2M SM 10M 20M 50M 100M

Mesh Elements

: Point 1: Hadoop provides competitive choice
: Point 2: Algorithms may be difficult to express
: Point 3: Refactoring required for performance

1 Scientific Data Analysis on Data-Parallel Platforms, SAND 2010 Sandla
2 Exploring Data Warehouse Appliances for Mesh Na‘[mnal

Analysis Applications, Digital Media at Scale 2010 I.ahﬂmmriﬂs
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}.‘ Nebula Cluster

 New Hadoop Cluster - S150K Multi-Customer
- 2 Racks / 70 1U nodes: 280 cores + 280 disk drives
- 560 TB Total Raw Disk Capacity (~0.5 PB)
- 876 GB Total RAM

 Motivation for Hadoop / Nebula

- Fault Tolerant, TB-Scale Analysis on Commodity Hardware

- Best Suited to Algorithms that are 10-Limited
(instead of CPU-Limited or Communication- Limited )

* Performance Comparison — Hadoop Terasort Benchmark

Normalized to

Cluster Test Date Nodes Cores Data Size Time Vahoo Cluster*
Recline July 2010 18 18 100GB 3807 sec  0.28x

Nebula July 2010 65 260 100GB 346 sec 0.84x — 1.68x
Nebula July 2010 65 260 1TB 3390 sec  0.87x—1.75x
Yahoo May 2008 910 7280 1TB 208 sec 1x

. _ _ _ rl'| National
Performance normalized by # nodes — # cores. 100GB runs compared via runtime x 10. Laboratories



Combustion Data Analysis
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Combustion Simulation Data

« Jetin Cross Flow Vector Data
— JICF square-jet simulation by R. Grout, A. Gruber, and J.H. Chen
— S3D code run on Jaguar and produced 100+TB datasets at ORNL
— CREF researchers use in situ analysis to obtain early results
— Collaborators provided access to data in cloud resource

« Data File Format

Time-varying 3-dimensional grid of vectors

Three files for each time step, <u, v, w> coordinates of velocity vector at
each point in domain

Binary file with xvarying the fastest then y then z

The dimension of the data: 1408 by 1080 by 1100 (21 time steps)
Total 400 GB of data

Dataset generators were also used for scaling experiments
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} Turbulent Kinetic Energy (TKE)

Givenasetofi =1,..., n timesteps, for any given point p in the domain the turbulent kinetic energy at that point is
defined as:

1 — N2 _\2 _\2
-y (( 0) - ul)) + (v (p) -0 () + (wi(p) - w(r) ) (1
i=1
Through rearrangement of terms, equation 1 can be re-written as follows:

LS () -30) + (50 -7) + (w0 -9 )

%Z(ui (p) —@) +%i (T-’i (F‘)—W)E‘l'%i (wz-(p)—m)

1:1 1= 1=

2

Variance (u (p)) + Variance (v (p)) + Variance (w (p))
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Turbulent Kinetic Energy (TKE)

 Developed MapReduce implementation
— First Implementation (Orig): Groups data by point (sort)
— Calculate total TKE for each point in parallel
— Second (optimized) Implementation: Groups by buffer

TKE Run Time

5818

800

700

< 600

500
m6.3GB

400
m50GB

300

Total Run Time (sec

w393 GB

N
o
o

100

512 B 256 KB 512 KB 1MB 2 MB 4 MB 8 MB Orig
Buffer Size
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Basic Descriptive Statistics

Integrated Hadoop with VTK statistics package
VTK: Visualization Toolkit

VTK Descriptive Stats Library calculates:
— Learn: cardinality, min, max, mean, centered M,, M3, M,
— Derive: variance, standard deviation, skewness, kurtosis, sum

Performance comparison study

— C++ implementation of basic statistics
— VTK C++ Library

— Hadoop Java integration with VTK

— Hadoop Pipes C++ Implementation

— Hadoop Pipes C++ using VTK

Compatible with any Hadoop-based cloud
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Basic Descriptive Statistics

Using Hadoop Pipes C++ support shown efficient

Processing Time (s)

10

Computing Statistics on Large Files

e—e Stand-alone C++/VTK
e—e Stand-alone C++
e—e Hadoop/Java/VTK
e—e Hadoop/C++/VTK
e—e Hadoop/C++

.

8GB 16GB 32GB 64GB 128GB
Input Dataset Size

®)
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Basic Descriptive Statistics

» Using Hadoop Streaming in Python and VTK
— Using binary (typedbytes) input file format
— Small cluster with MPI/NFS and Baseline (local disk) comparisons
— Distributed Files System (e.g. GlusterFS or Ceph) comparison on going

VTK Descriptive Stats - 4 node cluster VTK Descriptive Stats - 65 node cluster

®MPIC++ M Hadoop Python Streaming B MPIC++ m Hadoop Python Streaming

700
1600
g 1400 z 600
< 1200 2 500
ig 1000 qé 400
S 800 =
=} c
= 600 g 300
2 =
400 £ 200
200 - " 100 -
O = T O ]

400MB 1600MB 3200MB 6400MB
Total Input Data Size

6GB 13GB 19GB 26GB 32GB 38GB 45GB 51GB 58GB 64GB

Total Input Data Size
Sandia
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Autocorrelation

Autocorrelation functions show how correlated the velocity is in different regions in the domain. The following is a
series of fields that are of interest to combustion scientists:

1: for all timesteps i do
2:  for all points j in the domain do

3 for all points & in = (with same y & 2 coordinates) do
4: compute f,. (7, k) + = u:c%w;@
i :Eji
5: compute f,. (j,k)+ = Ue(ml:)v:(mkj
w Cﬂj
6: compute f,. (7, k)+ = ﬂ'i(ﬂ:i)w;{-‘rk:’
w :I:j
7: compute 7, (j, k) = |z; — x|
8: end for
. for all points £ in y (with same x & z coordinates) do
10: compute fy, (j,k) + = %3&'
1: compute f,, (j. k) + = "':(y{}vrj[yx-)
v y}
12: compute f,, (j, k) + = %{N;W_ﬂ
13: compute 1y, (j, k) = |y; — yi|
14: end for
= for all points £ in z (with same = & y coordinates) do
16: compute f,. (j, k) + = %{Jﬂ;(i}
ulzy
17: compute f,. (7, k) + = m{z'[)v;(zk]
w .Zj
18: compute f,. (j, k) + = &%‘gﬂ
ur Zj
19: compute 7, (j, k) = |z; — 21|
20: end for
21:  end for
22: end for

mauw Idl
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Autocorrelation

Developed MapReduce implementation
— Group data by each row in the domain
* Read data once, expand 3x
— For each row, calculate average at each “correlation distance” in parallel
— Average autocorrelation over all rows, by distance

Scalability:

16.000 Linear Axis
14,000 |-
12,000 | V
10,000 |

e—e Amazon AC
- = Linear Speedup ||

8,000
6,000 |
4,000 |
2,000

o

Time(s)

) I ——

Amazon Nodes

16,000
14,000 |-
12,000
10.000 |-
8,000 |-
6,000 |-
4,000 |
2,000

Log AXxis

Amazon AC
Linear Speedup

Time(s)

M
oL | T
o]
0

qLO 160

Amazon Nodes ’ Sal'!dia
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Adapting Hadoop

 How can we make Hadoop more accessible to scientific community?
— Hadoop Streaming: utilize other codes/libraries
. : Autocorrelation: Scaling Dimension
MapReduce Implementations e
— Java 35,000 | e—e Streaming-GlusterFs
@;g'ggg: e—e Streaming-HDFS
— Scalable 220,000 _
= 15,000 | 1
10,000 i
« Custom Hadoop Streaming 5000] | =~
200 600 800 1,000 1,200 1,400 1,600 1,800 2,000
_ C/OpenMP Dimension
— GlusterFS and HDFS Storage 25,000 Autocorrelation: Scaling Timesteps
20,000 - : I\S’It?z:fnci’:mj;?GlusterFS
. @15,000- e—e Streaming-HDFS
: Point 1: MapReduce easier/quicker to code Em,ooo-
i Point 2: Streaming simplified legacy scale up 5,000 |
Point 3: Attractive for parameter studies o) ; 5 s wm s ow %

R A A A AR R AR R AR AR R AR R AR AR AR AR R A AR AN AR AR AN AR AN EEEEEEEEEEEEEEESEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEl Tlmesteps
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Hadoop: Cluster Tradeoffs

How should we build clouds for data-intensive work?

[ J
— Typically constrained by Cost, Power, and Size
) Speedup for 10GigE
 Hardware experiments | ‘ - | ——
0x B GlusterFs ||
«  Which components to upgrade? g
— Interconnect: no LN B I -----
_ S S D : m ay be :Zx Ge!te Generate ! TKE I !
_ CPU/Memory: yeS uster! usterli lapReduce r:ggﬁsmg Glrs!:tr:;;;lg
— Node count: yes $5.000 Per-Node Upgrade Costs
$4,000 |-
: Point 1: Hadoop does not leverage interconnect : ool
: Point 2: Other DFS do get boost for some tasks § _ |
: Point 3: Scale out, then up L -
Node 10Gige 1B DDR IB QDR CPU Memory SSDx1 SSDx4 PCle SSD
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National
Laboratories

®)




\

Platform Comparison

Platform Storage
Netezza
SQL + UDF Proprietary Real Time Analytics
XtremeDB
IBM InfoSphere Streams Spade Sources Streaming Analytics
LexisNexis DAS ECL Proprietary Complex Dataflows

Hadoop
MapR Tech

SectorSphere
Cassandra

MongoDB

Membase

MapReduce
MapReduce

Sphere/UDF

Column DB
(Thrift)

M-QL

MemcacheD

HDFS
Proprietary

Sector

Key/Value

Sharding
Key/Value

Batch Processing
Enterprise Hadoop

Batch Processing

Write Throughput,
Eventual consistency

Doc-oriented DB

Persistent KV
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Distributed File Systems

 Renewed interest in parallel or distributed file system research
— Kernel Space: Lustre, PVFS, GPFS, Ceph, MapR Tech
— User Space/Overlay: HDFS, GlusterFS, Ceph, Sector
— Key-Value/Objects: Cassandra, Membase

» Data-intensive applications benefit from DFS capabilities
— Locality: Enables scheduler to collocate computation with data
— Caching: Helps scalability and load balancing (Ceph,HDFS)
— Block Distribution: Helps load balance system
— Replication: Improves reliability and decreases hotspots

 How do we leverage in Hadoop?
— Native: Shim layers provide 10 and locality
— Streaming: Do-it-yourself locality

Sandia
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Concluding Remarks

* Main points
— Data-intensive computing platforms can do meaningful scientific work
— Best targets today: post processing or low-communication capacity jobs
— Benefit: Simplifies out-of-core development, improves reliability
— Need for improvement in maximizing hardware components
— Hadoop MapReduce framework is a good option

* Impact: Stimulated interest by a number of large-data users
— Internal: Combustion, Satellite, Network Security, Radiation Portals
— External: Requests for unbiased FFRDC views

« Ongoing work
— Integrating data-intensive frameworks into Cray ,
— Security in MapReduce frameworks and cloud facilities ‘ @
— Collaboration with peers towards government cloud
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2011.

C. Ulmer, G. Bayer, Y. Choe, and D. Roe, “Scientific Data Analysis on Data-Parallel
Platforms,” Sandia Technical Report SAND2010-7471, September 2010.

C. Ulmer, G. Bayer, Y. Choe, and D. Roe, “Exploring Data Warehouse Appliances
for Mesh Analysis Applications,” in HICSS-43 Digital Media at Scale, January 2010.
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“Hardware Technologies for High-Performance Data-Intensive Computing”, IEEE
Computer, Vol. 41 No. 4, April 2008.
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Can SSDs Help? ==

Solid-state Storage Devices (SSDs) vs Hard disk drives (HDDs)
— 10-100x Latency Improvement (250 us — 25 us)
— 2x-10x Bandwidth Improvement (200 MB/s — 1.2 GB/s)
— 32x more expensive per GB ($1.9/GB)
— 12x less capacity per SATA port

SSDs have performance oddities ... Vector Sort on FusionlO
— Switch to highly-threaded IO for latency benefits | [ ——smwo

—e—joDrive /

— Slowdowns may occur on dirty devices | /

Should we expect a boost for Hadoop? -

— Hadoop geared towards streaming operations ) S -
» Easy/Cheap to scale HDD bandwidth in RAIDs

— Intermediate values, sorting may benefit though
+ See LBNL work in Magellan w/ Virident Threads
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