
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

FINDING FAULTS

Root-Cause Inference in HPC Systems

JOWOG-34 Meeting
May 23, 2012

Jon Stearley <jrstear@sandia.gov>

SAND2012-4042P

Example: find the silent bad nodes

Goal: Greatest capability job

Fault diagnostic: Job Pass/Fail

Approach: Recursive bisection

Current Practice: Manual, time-intensive process

Example: find the silent bad cables

Goal: Greatest capability job

Fault diagnostic: Job Pass/Fail

Approach: Recursive bisection (amidst dynamic routing)

Current Practice: Manual, time-intensive process

Overview of Resilience Efforts at SNL

Reducing the effects of faults (undesired events)

• Algorithm: Resilience API, GMRES-FT, …

• System: Process replication, rMPI, …

Reducing the occurrence of faults

• Design: SST, Procurement requirements, …

• Operation: Monitoring (e.g. Splunk), Inference, …

Outline

1. Problem Statement (DONE)

2. Overview of Resilience Efforts (DONE)

3. Approach

4. Results

5. Direction

Given:
System graph

Nodes = components

Edges = dependencies

Job log

Infer:

Node failure rates

JOB START STOP FAIL NODES

1 0 321858 1 1.1 1.2 1.3

2 1736 321858 1 1.5 1.6 1.7

3 276498 557283 0 1.11 1.12

Compute
Nodes

Other
Nodes

1

3

2

(1&2)!3

Structural Simulation Toolkit (SST)

Technical Approach

Goals

•Become the standard architectural
simulation framework for HPC

•Be able to evaluate DoD/DoE
workloads on future system designs

•Use supercomputers to design
supercomputers

•Parallel Discrete Event core with

conservative optimization over MPI

•End-to-end simulation

•Integrated Tech. Models for power

•McPAT, Sim-Panalyzer

•Multiscale

•Open Core, non viral, modular

•Modules include: power, network

processor, memory, resilience

Consortium
•Combine Lab, academic, & industry

• Conditional Likelihood Function

• Let fi(t|) be the PDF of the time to failure for component i and

• Let Ri(t|) be the reliability function for component i.

�  is vector of unknown distribution parameters with joint PDF conditioned on the job data: g(|data)

• Under the environment of masked observations, it can be shown that the likelihood function is given
by:

• As more data is accumulated, the underlying PDF of the distribution parameters,
g(|data), is updated. vj is an indicator variable for censoring (=1 if job j fails).

• Background

• Set of components in each job is known.

• The true source of failure is masked.

• By considering the operational state of other jobs in system, we can
find a minimum subset of components M={sj}, |M|=mj, that may be
responsible for the failure of job j .

• Solution Method

• Find the set of parameters  that maximizes the likelihood function conditioned on the uncertainty in the
observations. Very hard…

• Use Markov Chain Monte Carlo methods (e.g. Gibbs sampling) to find the best combination of parameters that
explain the data.

• Easy to implement, and parallelize.

Conditioned Maximum Likelihood Approach

Sample Results

Fault rate PDFs:

– X-axis is fault rate

– Y-axis is likelihood

– One row per
component

– True source of
failure is masked.

– But underlying
failure rates can be
inferred.

– Components are
ranked by
decreasing average
fault rate

Sample Results

Fault rate PDFs:

– X-axis is fault rate

– Y-axis is likelihood

– One row per
component

– True source of
failure is masked.

– But underlying
failure rates can be
inferred.

– Components are
ranked by
decreasing average
fault rate

– More observations,
less uncertainty

Sample Results

Fault rate PDFs:

– X-axis is fault rate

– Y-axis is likelihood

– One row per
component

– True source of
failure is masked.

– But underlying
failure rates can be
inferred.

– Components are
ranked by
decreasing average
fault rate

– More observations,
less uncertainty

Sample Results

Fault rate PDFs:

– X-axis is fault rate

– Y-axis is likelihood

– One row per
component

– True source of
failure is masked.

– But underlying
failure rates can be
inferred.

– Components are
ranked by
decreasing average
fault rate

– More observations,
less uncertainty

Sample Results

Sensitive to:

– Number of
observations

– Job sizes and
durations

– Job allocation
algorithm

– Differences among
failure rates

– Graph structure

– Priors used

Comments:

– Requires many
failed jobs!

– More information
would help!

Questions and Directions

How many jobs must fail before we can confidently
intervene?

To what degree can additional information (e.g. system
logs) be used to reduce root-cause uncertainty?

What do real system dependency graphs look like?
(hardware and software, dynamic routing)

Could this be used during production operation?
Influence allocator decisions, to accomplish
fault-estimate-driven recursive bisection

Demonstrate it on a real system!

The End

(Extra slides follow)

Splunk Interface?

System Graph?

(Info to map job->components and component->jobs)

Jobs via scheduler logs (eg SLURM)

Configuration via Genders

And/or Cfengine and promise theory?

Network via routing tables

Configuration changes via git

…and/or others?

Problem Approach Results Direction? Details

1. Automatically rank logs
by information content.

Sisyphus
Automatic Fault Detection

2. Automatically color words by
information weight.

3. Automatically deduce
word and message patterns.

“interestingness” =
information = |(GL)j|

Gi,j=1+Hi , L=log2(tfi,j)
Hi=∑jpijlog2(pij)/log2(n)
where pij= tfi,j /∑jtfi,j

L

|(GL)j|

wordslogs

time

G

“i
n

te
re

s
ti

n
g

n
e

s
s

”

Similar computers correctly performing similar work
should produce similar logs (anomalies warrant investigation).

Jon Stearley

jrstear@sandia.gov

What is wrong with this $#%&*! system???

Formulate a distribution of machine events based on time and
parameterized by failure rates of machine node groups.

Likelihood Function

Where

Find i such that

Maximum Likelihood Approach
(with Russell Hooper)

o Treats optimization by solving a system of nonlinear equations

o Solves equations using Newton method via Trilinos

• Efficient & accurate with “good” initial guess

• Can struggle or fail with bad initial guess (failures are readily
apparent, eg NaN)

o Strategies exist for obtaining good initial guesses but come at the
cost of decreased efficiency

• “Globalized” Newton – NOX

• “Homotopy” - LOCA

 Efficiency  Accuracy  Robustness/Automatic

Another Approach
Maximum Likelihood Conditioned Maximum Likelihood

Exponential distribution
(constant failure rate)

Arbitrary distribution

Failure rate is an
unknown constant
(explore uncertainty indirectly)

Distribution parameters are
random variables
(examine uncertainty directly)

Per-group failure rate
(eg all nodes in a group have the
same failure rate)

Per-node distribution parameters
(eg each node has own failure rate)

Count of failures based Time to failure based

1. AND/OR dependency paths in the graph

represent redundancy etc
(eg, both power supplies must fail before this
cabinet of nodes are affected)

2. Variety of events, observables, and latency

event type E results in observables O
(eg, logs or failures on connected nodes)

3. Job factors affect the likelihood of events

application A with library L with input deck D
causes event type E with observables O

Simulator Enhancement Ideas

Sample SST Results & Uses

Power analysis help prioritize
technology investments

SST Simulation of MD code shows diminishing
returns for threading on small data sets

Detailed component simulation
highlights bottlenecks

Component Library

• Parallel Core v2

– Parallel DES layered on MPI

– Partitioning & Load Balancing

– Configuration & Checkpointing

– Power modeling

• Technology Models

– McPAT, Sim-Panalyzer, IntSim, Orion and
custom power/energy models

– HotSpot Thermal model

– Supercomputer resilience (YUMYUM)

• Components

– Processor: Macro Applications, Macro Network,
NMSU, genericProc, state-machine, Zesto,
GeM5, GPGPU

– Network: Red Storm, simpleRouter, GeM5

– Memory: DRAMSim II, Adv. Memory, Flash,
SSD, DiskSim

SST Simulator
Core

SST
Workflow

