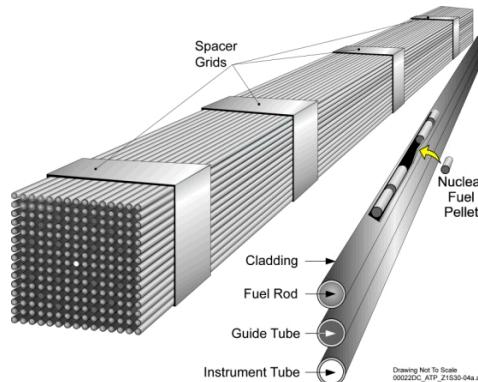


U.S. DEPARTMENT OF
ENERGY

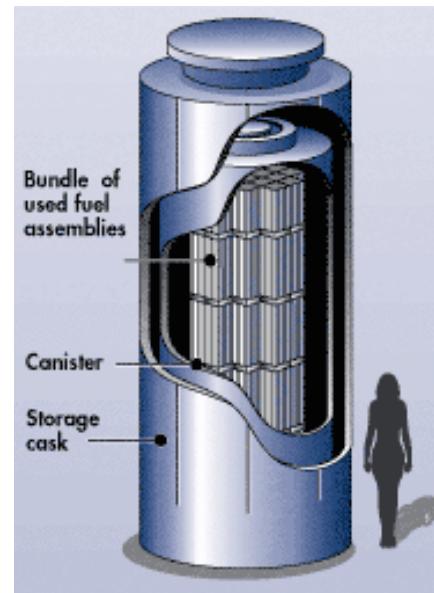
SAND2012-4132P
Nuclear Energy

UFD Mid-year Review

**UFD Storage and Transportation
FY12 Activities**


Ken Sorenson: Control Account Manager

**May 17, 2012
Las Vegas, Nevada**

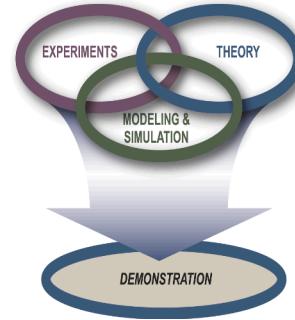


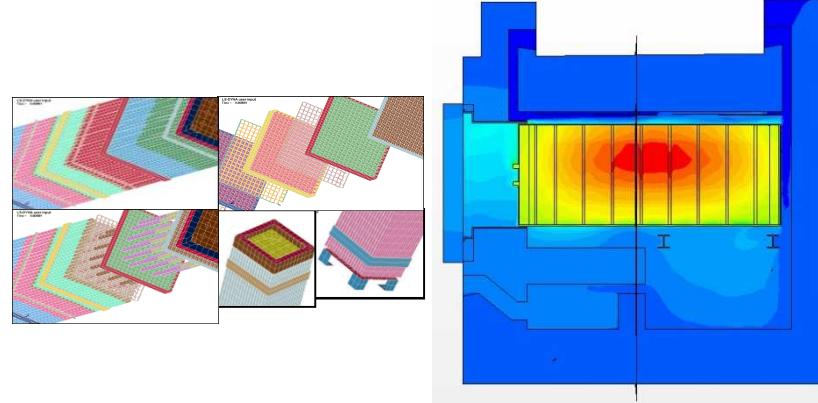
Contents

- Overall Storage and Transportation Objectives
- Control Account Status and Major Activities
- Collaborations

<http://energy.gov/sites/prod/files/styles/>

www.nrc.gov/waste/spent-fuel-storage/


www.connyankee.com/


Storage and Transportation Objectives

Overall Objectives:

- Develop the technical bases to demonstrate used fuel integrity for extended storage periods.
- Develop technical bases for fuel retrievability and transportation after long term storage.
- Develop the technical basis for transportation of high burnup fuel.

UFD Telecon, April 12, 2012
Billone, Liu; Argonne

UFD Telecon, April 12, 2012
Wagner, Adkins; ORNL

'Jones 2010.ppt',
Calvert Cliffs Dry Fuel Storage
and Industry Lessons Learned

Storage and Transportation Major Control Accounts

■ Six major Control Accounts are designed to define the work to address the objectives

- R&D Investigations
- Engineered Materials – Experimental
- Engineering Analysis
- Field Testing (ST T&E Capability Development)
- Transportation
- Security (transitioning to MPACT in FY13)

R&D Investigations

Scope & Status

- Refine last year's Level 1 Technical Data Gap Rpt:
 - Submitted as a Lvl 2, April 30, 2012
- Review of identified data gaps relative to external studies: Lvl 2 due July 31, 2012
- Conduct Aging Management Plans: ANL Lvl 2 report due June 30, '12

Impact

- This prioritization informs the experimental and analysis work in the other S&T CAs

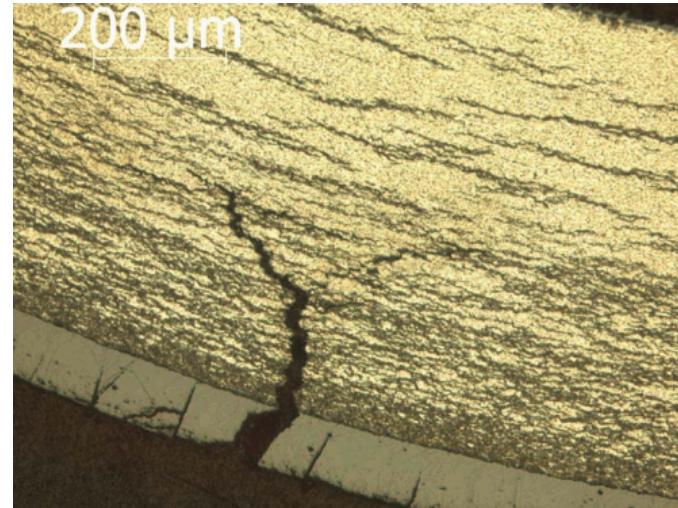
FY13

- Collapse this CA into a general Experimental CA

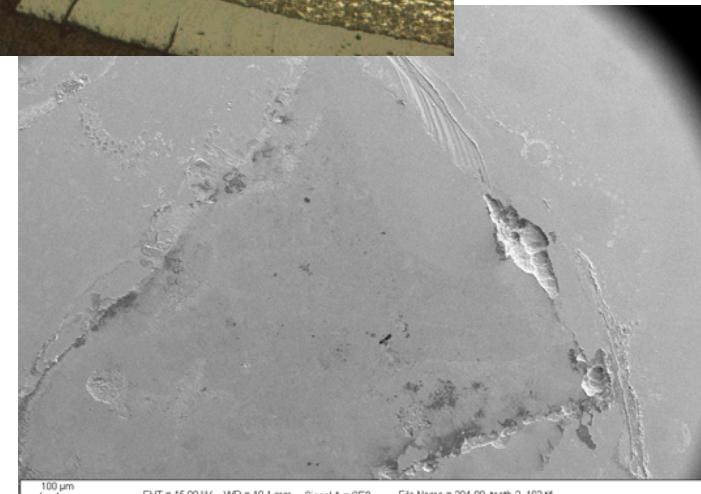
Gap	Likelihood of Occurrence	Consequences	Difficulty for Remediation	Importance for Licensing	Importance for Licensing
Cladding – annealing	3/2	2	3	8/7	MH/M
Cladding - H2 effects, reorientation and embrittlement	4/4	3	3	10/10	H/H
Cladding - H2 Effects, DHC	3/4	3	3	9/10	MH/H
Cladding - Oxidation	1/1	3	3	7/7	M/M
Cladding - Creep	3/3	2	3	9/9	MH/MH
Assembly Hardware – SCC of lifting hardware and spacer grids	2/2	2	3	8/8	MH/MH
Neutron Poisons - Thermal aging effects	4/4	3	3	10/10	H/H
Neutron Poisons - Creep	1/2	2	2	6/7	M/M
Neutron Poisons - Embrittlement and cracking	2/3	3	3	8/9	MH/MH
Neutron Poisons - Corrosion (blistering)	2/2	2	2	7/7	M/M
Welded Canister - Atmospheric corrosion	4/4	4	3	11/11	VH/VH
Welded Canister - Aqueous corrosion	4/4	4	3	11/11	VH/VH
Bolted casks - Thermomechanical fatigue of seals and bolts	4/4	4	2	11/11	VH/VH
Bolted casks - Atmospheric corrosion	4/4	4	2	11/11	VH/VH
Bolted casks - Aqueous corrosion	4/4	4	2	11/11	VH/VH
Concrete Overpack - Freeze-thaw	2/4	1	1	4/6	ML/M
Concrete Overpack - Corrosion of embedded steel	2/4	1	1	5/7	ML/M

Engineered Materials - Experimental

Scope & Status


- Conduct ring compression
Tests on used fuel cladding:
ANL Lvl 2 report submitted
Dec 31, '11
- HFIR cladding tests : ORNL
Lvl 2 report submitted Mar 31, '12
- Conduct SS canister corrosion
tests: SNL Lvl 4 Test Plan SS
corrosion submitted Jan 31, '12

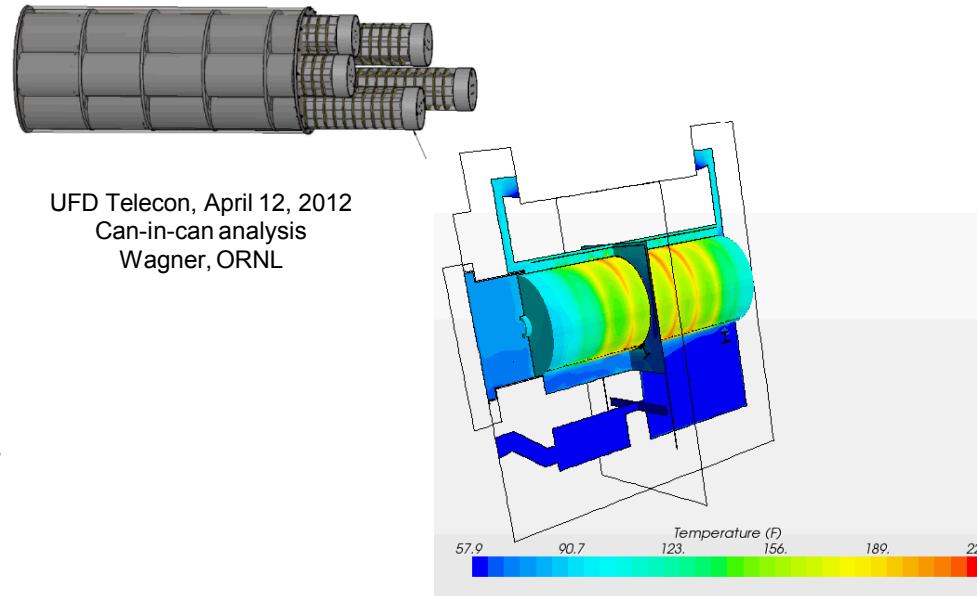
Impact


- This testing addresses high priority gaps
identified for cladding and canisters

FY13

- Continue cladding and canister
testing

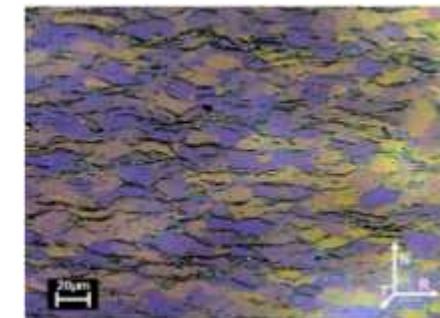
UFD Telecon, April 12, 2012
Ring compression test on
HB Zry-4
Billone, Liu; ANL


UFD Telecon, April 12, 2012
304 SS 100μg/cm² corrosion test
Bryan, Enos; SNL

Engineering Analysis

Scope & Status

- Develop Can-in-Can concept: ORNL Lvl 4 report due Sept 28, '12
- Conduct thermal analysis on Calvert Cliffs Canister: PNNL Lvl 3 report due Sept 24, '12
- Hydride re-orientation: SNL Lvl 3 report due Sept 30, '12
- Support mechanical analysis of transport testing: New BCP for INL/PNNL


Impact

- This testing addresses identified high priority gaps
 - Thermal profiles
 - Cladding integrity

FY13

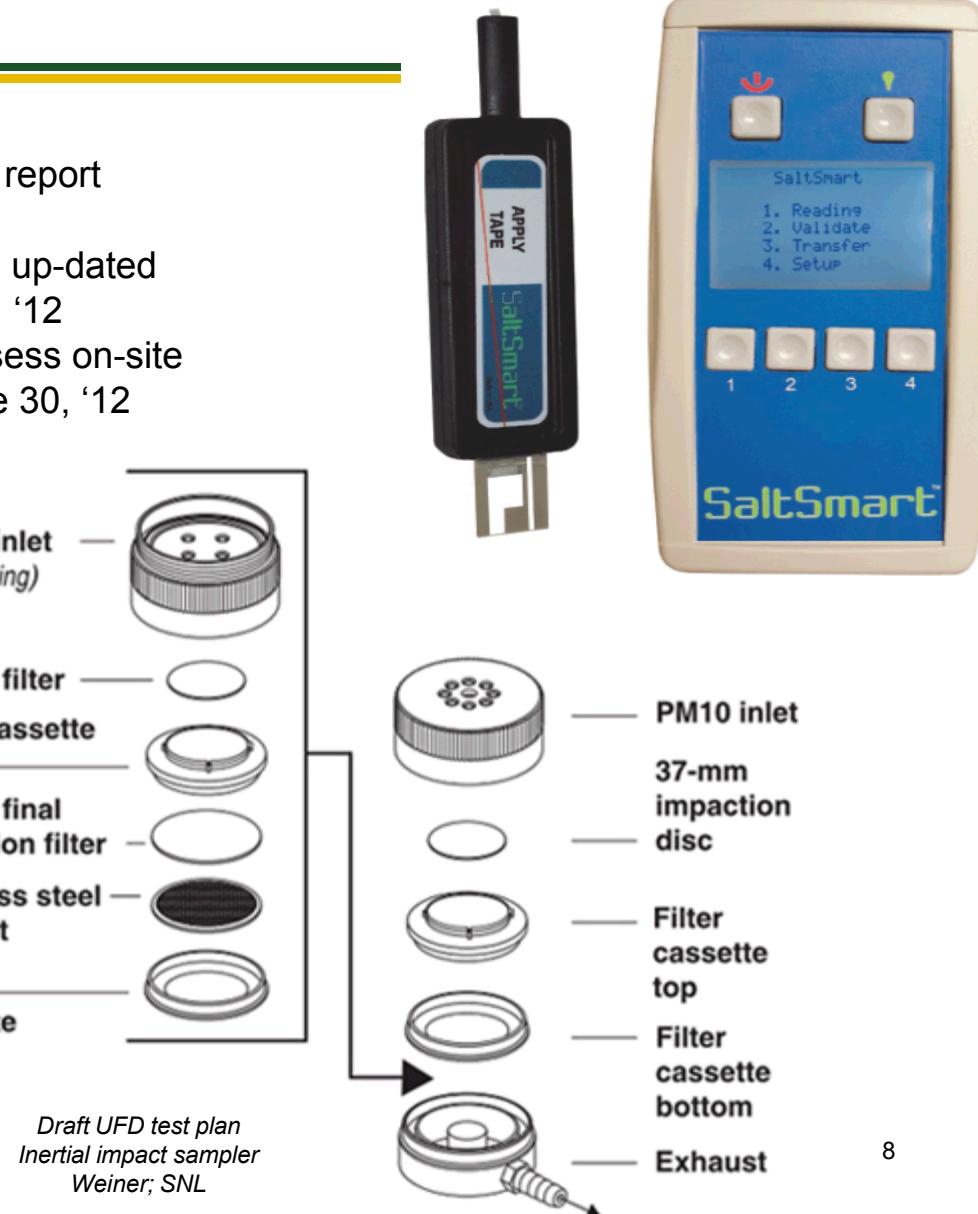
- Continue cladding and canister analysis
- Support transportation loading tests

Email/Tikare to Wagner; May 10, 2012
Preliminary Hydride analysis
Tikare; SNL

Field Testing (ST T&E Capabilities)

Draft UFD test plan
Salt content sampler
Weiner; SNL

Scope & Status


- Write Storage/Transportation RD&D Plan; Lvl 3 report submitted Mar 31, 2012 by INL
- Revise facility functional requirements based on up-dated data gap report: SRNL Lvl 4 report due May 31, '12
- Develop collaborative test plan with EPRI to assess on-site canister corrosion: SNL, Level 2 report due June 30, '12
- Collaborate with field canister corrosion tests: INL Lvl 3 report due Aug 30, '12

Impact

- The RD&D report supports readiness for the BRC recommendations.
- This testing addresses identified high priority gaps
 - Thermal profiles
 - Cladding integrity

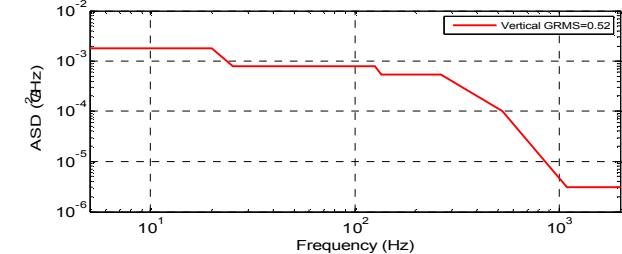
FY13

- Expand canister corrosion testing to multiple sites

Scope & Status

- Criticality analysis: ORNL Lvl 2 report due Sept 01, '12
- Moderator exclusion: INL Lvl 3 report due Sept 28, '12
- Data base work: SRNL Lvl 3 report due Aug 15, '12
- Transportation test: SNL Lvl 3 report due Sept 30, '12

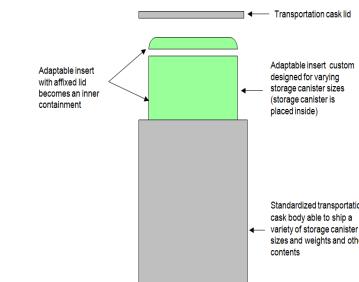
Impact


- Supports BRC recommendations to conduct transportation studies early and to de-inventory orphan sites
- Addresses alternate path to transporting used fuel without the full suite of cladding data

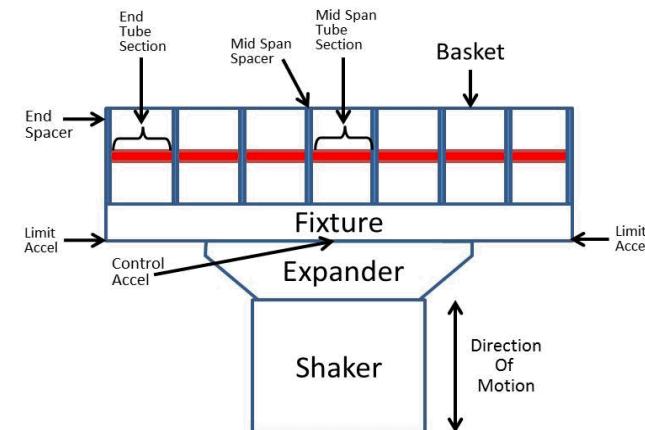
FY13

- Continue analyses and testing to support transport of HB used fuel
- Continue data analysis to support planning for transport of fuel

Transportation


Stressor	Degradation Mechanism	Importance	
		Storage	Trans
Cladding			
Thermal	Annealing of radiation Damage	Med	High
	Metal Fatigue caused by temperature fluctuations	Low	Low
	Phase Change	Low	Low
Chemical	Emissivity Changes	Low	Low
	H ₂ effects: embrittlement and reorientation	High	High
	H ₂ effects: delayed hydride cracking	High	Med
	Oxidation	Med	Med
Mechanical	Wet corrosion	Low	Low
	Creep	Med	Med
Assembly Hardware			
Thermal and Mechanical	Creep	Low	Low
	Metal Fatigue caused by temperature fluctuations	Low	Low
Chemical	Corrosion and stress corrosion cracking (chemical)	Med	Med
	Hydriding effects	Low	Low
Fuel Baskets	Creep	Low	Low
	Thermal and Mechanical	Metal Fatigue caused by temperature fluctuations	Low
		Low	Low
Chemical	Corrosion	Low	Low
	Neutron Poisons		
Thermal	Thermal aging effects	Med	High
Thermal and radiation	Embrittlement and cracking	Med	Low
Thermal and	Creep	Med	Med

Assembly vibration analysis SNL


Transportation data gaps: PNNL

- Basic principle of defense-in-depth is the use of multiple barriers

- Use of an inner containment depends upon the functionality of the storage canister

Moderator exclusion concept: INL

Vibration test frame concept: SNL

Security

Scope & Status

- Transitioning to MPACT in FY13
- For UFD:
 - Continues to track regulatory movement on the spent fuel self-protection threshold and material attractiveness
 - Continues to develop the security assessment methodology
 - LLNL Lvl 4 report due on July 13, '12
 - SNL Lvl 3 report due on Aug 15, '12

Impact

- This work aligns with BRC recommendations as well as draft NE response to BRC to assess security implications of extended storage.

FY13

- All security work transitioned to MPACT