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Plimpton’s Assessment: Big Data vs. Scientific Sim.

* Programming model

— SS: tune same code for years; performance is driver

— BD: adapt code to data; agile, minimize programming effort
 Computational load

— SS: compute bound, in-core

— BD: memory, I/O bound, out-of-core
* Data distribution

— SS: structured; partitioning/load balancing/locality are key

— BD: unstructured
« Data usage and ownership

— SS: large datasets are output, not input (simulation) — regenerate in HPC

— BD: data are valuable, 1n situ, can’t be moved

Thanks: Steve Plimpton, Sandia National Laboratories
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Graph Analysis: What is it?

 Agraph is a set of vertices and a set of edges

This abstraction is a powerful modeling tool
Edges are “meta-data” — storing this is economical and often sufficient

Motivations in homeland security, computer security, biology, etc.

* Typical graph algorithm behavior:

Nodes visit their neighbors

Algorithms traverse and compute

There’s a large amount of communication relative to computation
Often this is asynchronous
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Some Non-Trivial Graph Analysis

* Connection subgraphs (Faloutsos, et al.,, KDD 2004)

 Community detection (100’s of papers)
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Application Characteristics Simplified

The HPC community is used to datasets with geometry,

like these

But datasets in graph analysis often look

like this

From Attaway ‘00 From UCSD ‘08
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Graph Datasets Are Different

HCC distribution
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Primary HPC Implications: 1) Any partitioning is “bad” Broder, et al. “00
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HPC Applications: Locality Challenges

Eencrmark Siite Mean Tempaoral vs. 3 xatial Locality
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HPC Applications: Locality and Instruction Mix
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Graph 500

e Currently: simple challenge: Breadth-First Search (BFS)

— Not representative of typical graph analysis

— Complex filtering at each level, early stops, fine-grain operations would
make it more realistic

* Bulk-synchronous parallel (BSP) operation: compute, then communicate

— No special architecture needed
— SciComp machines win, but nobody does particularly “well”

* Biggest development so far: data exploited to produce 10X algorithmic

improvement

* More representative algorithm kernel benchmarks on the way
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The Burton Smith/Cray “Threadstorm” Processor

No Processor Cache;
] (N I o oo [ ] Chip real estate goes

\ to thread contexts

Latency Tolerant:

important for Graph
- Algorithms

The Cray XMT combines up to 8192
Threadstorm processors with the Red
Storm (Cray XT4/5) network.

Hashed Memory
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Single-Source Shortest Paths (SSSP)

Google demonstrates Map/Reduce on SSSP; what is the cost?

— Case study: Dijkstra’s single-source shortest paths algorithm )
1

« Basic algorithm (much detail omitted)
1. Start with the source and “settle” it 2\ y 03
2. “relax” edges leading out of most recently settled vertex
3. Find next closest vertex and settle it, goto 2.

Map/Reduce algorithm (much detail omitted)
1. Do a Map/Reduce pass to relax all edges (near the source or not)
2. Ifany node’s distance from the source decreased, goto 1.

Memory — [ TS
N
Disk — Jr
1 Iy 1 || 2 1 2
Map Exchange Reduce
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A - stepping algorithm [Meyer, et al. 2003]

» Label-correcting algorithm: Can relax edges from unsettled vertices

* A - stepping: “approximate bucket implementation of Dijkstra’s
algorithm”

* A: bucket width

* Vertices are ordered using buckets representing priority range of size A

« Each bucket may be processed in parallel

0.05

Process “light” (red) edges in parallel, then

“heavy” edges in parallel

Slide credit: Kamesh Madduri, Lawrence Berkeley Laboratories
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SSSP Discussion

* Hadoop is open-source software for cloud computations

« MapReduceMPI keeps problem mostly in memory

* The “Parallel Boost Graph Library” implements Delta-Stepping on
Traditional (distributed-memory) HPC

 The XMT version of delta stepping (a C code by Kamesh Madduri) is
the fastest known parallel implementation of SSSP.

i K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “An Experimental Study of A Parallel
i Shortest Path Algorithm for Solving Large-Scale Graph Instances,” Workshop on Algorithm
' Engineering and Experiments (ALENEX), New Orleans, LA, January 6, 2007.

____________________________________________________________________________________________

* Our experiments here are on realistic data with power-law degree
distributions
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SSSP Results
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Plimpton’s “Olympic Medal” Metaphor

* Olympic Models: Gold, Silver, and Bronze

 Computing Solutions: Gold, Aluminum, Plywood

— This conference: Gold
— Lower top-500: Aluminum
— Google, Facebook Big Data: Plywood (racks of cheap compute)

$/PByte Pb/Pﬂop I0Ps/PB

Gp;d $10M 0.044 ~100K
Aluminum $2.5M 0.25 40 ~500K
Plywood $0.3M 1+ 100+ ~200K

Thanks: Steve Plimpton, Sandia National Laboratories
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50 ; Summary

« “Big Data” often takes the form of relational data (graphs)

— Different context has different priorities, constraints
— If HPC used, alternative architectures may or may not be necessary

* BSP vs. non-BSP is a key issue for HPC graph analysis

* “Plywood” computing platforms suffice for Big Data for now
— What might change this?

jberry@sandia.gov
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