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Per- and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals that
have caught the attention of many governmental agencies and researchers. These chemicals are
highly stable and possess hydrophobic properties that lead to the widespread use of PFAS in
aqueous film forming foams, and household products such as carpets, paper and non-stick
cookware (Prevedouros et al., 2006). Regulatory and health advisories have focused determining
a lifetime drinking water health advisory of 70 ng/L for PFOA and PFOS (USEPA, 2016). Other
PFASs may be present in the environment, along with PFOA and PFOS, due to product
manufacturing processes (Prevedouros et al., 2006). A variety of proprietary AFFF formulations
were manufactured and sold during different timeframes, thereby complicating the signature
and distribution of PFASs in groundwater beneath former firefighting training areas (McGuire
et al., 2014). PFOA and PFOS are stable chemicals that persistent in the environment and are
difficult to remediate. The understanding of the physicochemical properties and fate and
transport of PFASs in groundwater is growing but is still limited (USEPA, 2012). Many traditional
approaches such as coagulation and conventional water treatment are ineffective in treating
PFOA and PFOS. Selecting the most appropriate remedial strategy for PFOA and PFOS is therefore
challenging. In this survey findings from the literature on PFASs removal using various

technologies were compiled.
Granular Activated Carbon and Anion Exchange

Multiple PFASs were successfully removed using Granular Activated Carbon (GAC) and
Anion Exchange (AE) columns. The AE and GAC adsorbent columns successfully removed the 14
PFASs in this study with an average removal efficiency 66% for the AE column and 62% for the
GAC. Neither the AE nor GAC columns showed evidence of PFSA desorption during the testing,
however, desorption may still occur for the short-chained PFAS. The adsorption of the 14 PFASs
by the AE and GAC columns was characterized by an increase in removal capacity after ~60 and

~50 days, respectively. This increase may be due to a transition of the removal mechanism from
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being a function of open sites on the absorbents (Phase 1) to agglomeration of PFASs on the
absorbent surface (Phase 2) which provides a more hydrophobic site for attachment of PFAS
molecules. In addition, dissolved organic carbon loading may facilitate the agglomeration
process, although the DOC removal efficiency did not correlate to PFAS removal efficiency for the
AE or GAC column. GAC has been found to offer more economical performance compared to
other removal techniques such as reverse osmosis and some advanced oxidation
processes (Bartell etal.,, 2010, Deng et al.,, 2014). GAC consistently removes PFOS with an
efficiency of more than 90% (Ochoa-Herrera et al., 2008). The sorption kinetics are faster for
longer-chained PFASs and smaller-diameter GAC particles, therefore, GAC that is optimized for
PFOS removal may not optimally remove other PFASs (Rayne and Forest, 2009). During recent
discussions on PFAS treatment, concerns were raised regarding the potential for smaller chain
PFASs (four or six carbons) to break through the GAC media within shorter timeframes than their
longer chain equivalents (Deeb, 2015). Such compounds have yet to be evaluated for their impact
on human health and the environment, and may be subject to future regulation pending such

evaluations.

Thermal Destruction
Thermal destruction is commonly used for used granular activated carbon and other waste
byproducts of water treatment. Despite the highly oxidized nature of the PFOA and PFOS, PFASs
display a relatively high thermal reactivity (Lee et al., 2012). The temperature used for thermal
incineration of PFASs is usually greater than 1000 °C (Lee et al., 2013); however, in laboratory
studies more than 99% PFOS is degraded at 600 °C. In case of long-chain PFAS
salts, pyrolysis yields products such as the perfluoroalkylacetyl fluorides and acids. It was found
that the required degradation temperature increased with increasing perfluoroalkyl chain
lengths (Rayne and Forest, 2009).

Novel adsorbents with increased adsorption performance and the potential for decreased
costs are starting to appear as a topic of laboratory research. Some new materials such as cross-

linked chitosan beads of greater adsorption capacity for PFOS at pH 3 have been reported (Zhang
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etal, 2011). When the pH of the tested solution was adjusted to 3.0, over 99.4% of the amino
groups of the chitosan beads were protonated, and thus the negatively charged PFOS was easily
adsorbed, resulting in its increased removal. The final sorption capacity of optimized chitosan
biosorbent was reported at up to 5.5 mmol/g for PFOS at the equilibrium concentration of

0.33 mmol/L, which is much higher than conventional absorbents.

Filtration

A variety of diverse types of membranes can be implemented for PFAS treatment
including microfiltration, ultrafiltration, nanofiltration, and reverse osmosis membranes.
Nanofiltration and reverse osmosis membranes are theoretically more applicable for PFAS
filtration due to the desirable pore sizes. First studies on filtration with RO showed over 99%
rejections of PFOS compounds (Tang et al., 2006). Nanofiltration membranes in combination
with reverse osmosis had a high success rate when tested on a feed of 10 parts per million PFOS
over 4 days (Tang et al., 2007). The rejection of PFOS for RO membranes was typically higher than
99%, while the removal for nanofiltration membranes ranged from 90 to 99% due to the slow
penetration of molecules through smaller pores on the surface of the nanomembrane. The

removal of PFOS was generally greater with higher pressure for a given type of membrane.

Sonochemical destruction

Sonochemistry is the use of acoustic fields to generate chemical reactions in a solution. Sound
waves collapse the bubbles in the solution, resulting in high vapor temperatures and
decomposition of PFASs at the bubble-water interface (Hao et al., 2014). Typical ultrasound
frequencies applied during the sonochemical treatment of PFASs range from 20 to 1000 kHz. The
half-lives of PFOA and PFOS have been reported at 43 and 22 min, respectively, when treated
under an argon atmosphere and 102 and 45 min under an air atmosphere (Rayne and Forest,
2009) with the concurrent production of shorter-chain PFASs. The sonochemical reactions were
performed with PFOS and PFOA concentrations ranging from 20 nM to 200 uM and with
irradiation of 354 kHz. The decrease in concentration of PFOS and PFOA ranged from 39% to 44%,

respectively.
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The primary surfactants and PFOS were sonochemically degraded over a range of dilutions,
65 ug/L to 13,100 pg/L of PFOS. Sonochemical methods can be used on large quantities of AFFF
at a larger scale to treat large stockpiles of toxic fire-fighting chemicals (McGuire et al., 2014).
This innovative approach will be applied to unused inventory of AFFF products stored at Air Force
sites to aid in the development of a system to produce the required high incineration
temperatures and desired concentration of active oxidizing radicals, while consuming the least

amount of energy.

Electrochemical Destruction using Boron-Doped Diamonds

This treatment is based on the oxidative destruction of PFOS using boron-doped diamond film
electrodes. Experiments measuring oxidation rates of PFOS were performed over a range in
current densities and temperatures using a rotating disk electrode reactor and a parallel plate
flow-through reactor. The oxidation of PFOS yields sulfate, fluoride, carbon dioxide, and trace
levels of trifluoroacetic acid. Short chains are made, but vary in different waters (Carter et al.,
2008). Precursor transformation is a crucial knowledge gap for treatment using any technology.
Researchers at CDM Smith have studied PFAS remediation with boron-doped diamond

electrodes deposited using.
Photocatalysis

Photocatalysis is the acceleration of a photoreactionin the presence of acatalyst. In
catalyzed photolysis, light is absorbed by an adsorbed substrate. Heterogeneous photocatalysis
is an effective technology for PFAS degradation. Photocatalysis performs well in acidic medium
and increased with temperature. Dissolved organic matter reduces photocatalytic performance
in wastewater. In203 nanoplates degrade 100% PFAS under UV light (Xu, B. et al., 2017).
Titanium Oxide (TiO,) is a feasible photocatalyst choice due to its chemical and physical stability,
availability, low cost, nontoxicity and the ability to degrade a diverse range of chemicals from
water (Xu etal., 2014).1t has been reported that perfluorocarboxylic acids (PFCA) with

perfluorinated carbon chain could be decomposed by more than 85% within 420 min treatment
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by TiO, photocatalysis irradiated with a 16 W low-pressure mercury UV-lamp (Panchangam et al.,
2009). TiO2 can be modified with other elements or compounds to ultimately improve the
degradation efficiency. When TiO2 is used as the catalyst for the degradation of PFOA, the
efficiency is increased at pH < 3.0 due to the presence of an acidic solution. This suggests that

TiO2 at low pH has better photocatalytic ability.
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