

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-789697

Role of manganese on accelerating the oxidation of Pb(II) carbonate solids to Pb(IV) oxide at drinking water conditions

W. Pan, C. Pan, Y. Bae, D. Giammar

September 13, 2019

Environmental Science & Technology

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

**The role of manganese in accelerating the oxidation of Pb(II) carbonate
solids to Pb(IV) oxide at drinking water conditions**

Weiyi Pan[†], Chao Pan^{†‡*}, Yeunook Bae[†], and Daniel Giammar[†]

[†]Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Missouri 63130, United States.

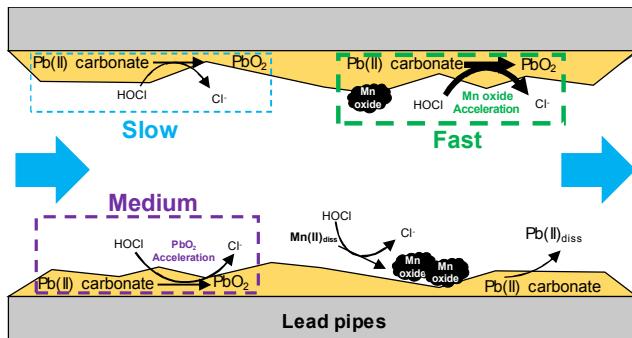
[‡]Physical & Life Sciences, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States.

*Corresponding Author

*Phone: (314) 608-8987; e-mail: pan10@llnl.gov (C. Pan)

IM release number: LLNL-JRNL-775405

1 **ABSTRACT**


2 Pb(II) carbonate solids are corrosion products that form on the inner surfaces of lead service lines
3 (LSLs) and can be oxidized by free chlorine to form Pb(IV) oxide (PbO₂). The formation of PbO₂
4 can maintain low dissolved lead concentrations in drinking water, but PbO₂ can dissolve if a free
5 chlorine residual is not maintained. Experiments demonstrated that the oxidation of Pb(II)
6 carbonate by free chlorine was faster with manganese (Mn). Without Mn(II), the oxidation of Pb(II)
7 carbonate was an autocatalytic process. With Mn(II), the overall oxidation rate was two orders of
8 magnitude faster than without Mn(II). X-ray diffraction and free chlorine consumption profiles
9 indicated that δ -MnO₂ was formed within several minutes of the reaction of Mn(II) with free
10 chlorine, and δ -MnO₂ catalyzed the oxidation of Pb(II) carbonate by free chlorine. Free chlorine
11 consumption profiles for Pb(II) carbonate with and without Mn(II) were interpreted based on the
12 kinetics and stoichiometry of the underlying chemical reactions. These findings highlight the
13 importance of Mn in accelerating the formation of PbO₂ in water with Pb(II) carbonate solids and
14 free chlorine, and it may help explain why PbO₂ is observed on LSLs of some but not all water
15 systems that use free chlorine.

16 **Key words:** Manganese, Pb(II) carbonate, Pb(IV) oxide, catalytic oxidation, drinking water

17

18 Graphical Abstract

19

20 **Introduction**

21 Ingestion of lead-contaminated drinking water is one of the major pathways for human exposure
22 to lead.¹⁻³ Lead service lines (LSLs) and premise plumbing are the largest sources of lead to
23 drinking water.² In the United States, the Lead Copper Rule has an action level of 0.015 mg/L lead
24 for the 90th percentile of specific homes' 1-L first draw samples of tap water that triggers additional
25 actions if it is not met.⁴ Although the 1986 Safe Drinking Water Act Amendments banned lead
26 pipes, fittings, fixtures, solder and flux, millions of partial or whole lead service lines are still
27 present in the United States.^{3,5,6}

28 Lead concentrations in drinking water are controlled by the solubility of lead corrosion
29 products that form in lead pipes and premise plumbing.⁷⁻¹² These corrosion products include Pb(II)
30 carbonate, oxide, and phosphate solids as well as Pb(IV) oxide (PbO₂).^{9,10,13,14} Previous studies
31 have shown that the oxidation of Pb(II) carbonate, including cerussite (PbCO₃) and hydrocerussite
32 (Pb₃(CO₃)₂(OH)₂), by free chlorine will lead to the formation of lead(IV) oxide.^{8,15,16} Liu et al.¹⁶
33 reported an autocatalytic reaction during Pb(II) carbonate oxidation by chlorine. Wang et al.⁸ found
34 that the identity and rate of formation of the PbO₂ phases produced from reaction of various Pb(II)
35 species with free chlorine were affected by the initial solid or dissolved Pb(II) species, dissolved
36 inorganic carbon (DIC), pH, and free chlorine concentration.¹⁷ PbO₂ has two phases, scrutinyite
37 (α -PbO₂) and plattnerite (β -PbO₂), both of which have a low solubility compared with Pb(II)
38 corrosion products. Triantafyllidou et al.¹⁸ reported that lead release from lead pipes coated with
39 Pb(IV) oxides was consistently much lower than from pipes coated with Pb(II)-containing solids
40 and hence concluded that formation of PbO₂ in LSLs could be an effective lead corrosion control
41 strategy.¹⁸ The depletion of free chlorine, lower oxidation reduction potential (ORP) disinfectants
42 (such as monochloramine), and the presence of reductants (natural organic matter, Br⁻, I⁻, Fe(II),

43 and Mn(II), etc.) may lead to the dissolution of PbO₂.¹⁹⁻²⁵ The increases in lead concentrations in
44 Washington, DC tap water that begins in late 2000 were triggered by a change in disinfectant from
45 higher ORP free chlorine to lower ORP monochloramine.²⁶ While PbO₂ has been observed on
46 many LSLs from water systems that use free chlorine,^{10,12,14,18} PbO₂ has not always been observed
47 in the scales of LSLs for such systems.^{10,12,18} The limited range of conditions over which PbO₂ is
48 stable may limit its observation. While PbO₂ can be formed by reaction with free chlorine, it is
49 only stable when a free chlorine residual is present and PbO₂ can be reduced by reductants such as
50 natural organic matter, I⁻, Br⁻, Fe(II), Mn(II), and even water (Figure 1) when free chlorine is
51 depleted.^{19,21-25}

52 Manganese accumulation has been reported in different water distribution systems.^{11,27-30} The
53 accumulated Mn in water distribution systems is generated from oxidation of soluble Mn(II) by
54 free chlorine, oxygen, and other oxidants to form insoluble Mn(III) and Mn(IV) solids.^{27,28,31} In
55 addition, the activity of manganese depositing microbes can also give rise to the formation of
56 manganese oxides in drinking water networks.^{27,32-35} Gerke et al.³³ reported that birnessite (Mn(III)
57 and Mn(IV)), hollandite (Mn(II) and Mn(IV)), and braunite (Mn(II) and Mn(IV)) were the main
58 Mn oxides/oxyhydroxide in water distribution systems. The interactions between Pb and Mn may
59 represent a sink or source for lead and Mn in drinking water, and previous studies have investigated
60 the adsorption of Pb(II) on Mn(III, IV) oxides³⁶⁻³⁸ as well as the oxidation of Mn(II) by lead(IV)
61 oxide.^{25,39} Matocha et al.³⁹ revealed that Pb(II) was adsorbed as inner-sphere complexes on both
62 birnessite and manganite, and they found no evidence of Pb(II) oxidation by birnessite and
63 manganite based on X-ray absorption fine structure (XAFS) spectra. Shi and Stone²⁵ studied the
64 redox reaction between PbO₂ and Mn(II), and they found that Mn(II) could be oxidized to Mn(III)

65 or Mn(IV) (hydr)oxides (MnOOH and $\sigma\text{-MnO}_2$) by PbO_2 . This result is consistent with Figure 1,
66 which illustrates that PbO_2 is a stronger oxidant than Mn(IV) oxide.²⁵

67 Although recent investigations have examined the fundamental surface reactions between Pb-
68 and Mn-containing solids, the nature of these interactions at conditions relevant to drinking water
69 supply and their implications for tap water quality had not been sufficiently explored. Such
70 interactions can be important in affecting lead concentrations in drinking water. Recently,
71 Trueman et al.⁴⁰ reported that without free chlorine, Mn(II) increased Pb release mainly because
72 of the oxidation of lead by oxygen on MnO_2 deposits or by Mn(IV) itself. However, this may not
73 be the scenario when free chlorine is present in the system. The goal of this work was to identify
74 the products and pathways of the reaction of dissolved Mn(II), Pb(II) carbonate and free chlorine.
75 Specific attention was paid to the heterogeneous catalytic effect of Mn solids on hydrocerussite
76 and cerussite oxidation by chlorine. The oxidation of Pb(II) is a necessary step to form Pb(IV)
77 oxide. This process may take place during drinking water distribution at locations where lead-
78 containing materials and dissolved or solid Mn coexist. In this study, we investigated the oxidation
79 of Pb(II) from Pb(II) carbonate solids with and without the presence of Mn(II) at various pH values.
80 We performed batch experiments to probe the products and dynamics of the reactions, and these
81 were supplemented by kinetic models based on mass balances and the stoichiometry of the
82 reactions. Flow-through experiments provided additional information on reaction rates with a
83 lower but sustained supply of free chlorine that is more directly relevant to the actual conditions
84 in LSLs.

85 **Materials and Methods**

86 **Materials**

87 Hydrocerussite and cerussite were purchased from Sigma-Aldrich. A free chlorine stock solution
88 was prepared using NaOCl (Fisher Chemical, 4-6% w/w) and ultrapure water. Plattnerite (β -PbO₂)
89 was purchased from Acros Organics. Scrutinyite (α -PbO₂) was synthesized in a 500 mL
90 polypropylene batch reactor with hydrocerussite as a precursor with the pH maintained at 10. The
91 synthesis was conducted at carbonate-free conditions by sparging the solution with air that had
92 been scrubbed of CO₂ using a 1 M NaOH solution. During the scrutinyite synthesis, the free
93 chlorine concentration was maintained at 50 mg/L (0.70 mM) as Cl₂. The XRD pattern (Figure
94 S1) confirmed the high purity of synthesized scrutinyite. Synthetic δ -MnO₂ (Figure S2) was
95 prepared by reacting KMnO₄ with MnCl₂ at basic pH following a published method.^{41,42} The
96 identities of the solids synthesized were confirmed by X-ray diffraction (XRD). Reagent grade
97 NaHCO₃, NaNO₃, NaOH, MnCl₂ and concentrated HNO₃ were purchased from Fisher Scientific.
98 All solutions were prepared using ultrapure water (resistivity >18.2 M Ω -cm, Milli-Q, Millipore
99 Corp., Milford, MA).

100 **Experimental design**

101 Three sets of batch experiments were conducted. To study cerussite or hydrocerussite
102 oxidation in isolation, the first set of experiments were conducted with 200 mL of 2 mM cerussite
103 or hydrocerussite suspensions with a DIC concentration of 0.2 mM (2.4 mg/L as C), 0.28 ± 0.03
104 mM free chlorine (20 ± 2 mg/L as Cl₂) and pH 6.5 to 8.5 ± 0.2 maintained by 0.1 M HNO₃ and 0.1
105 M NaOH. The high chlorine concentration was chosen to facilitate the development of a kinetic
106 model for oxidation of Pb(II) in Pb(II) carbonate solids by free chlorine. A lower free chlorine
107 concentration will yield a relatively short reaction time and we may not be able to capture some
108 crucial features of the reactions in the batch experiment. To investigate the effect of an initial
109 amount of scrutinyite and plattnerite on lead carbonate oxidation, the second set of experiments

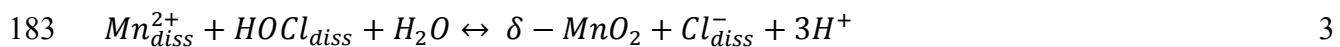
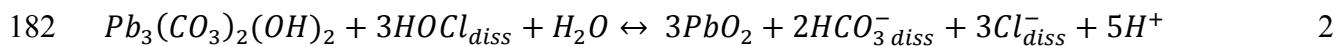
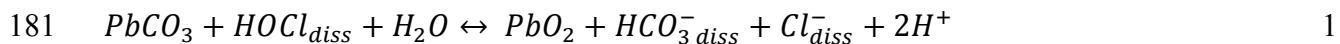
110 had certain amounts of scrutinyite or plattnerite added to the suspensions of cerussite or
111 hydrocerussite solutions with the same DIC, free chlorine, and pH as in the first set of experiments.
112 In support of this second set of experiments, control experiments were conducted with just
113 scrutinyite or plattnerite and free chlorine and no Pb(II) carbonate solids. In the third set of
114 experiments, the effect of Mn(II) was studied by adding 0.1 or 1 mL of 0.25 M MnCl₂ solution to
115 the cerussite or hydrocerussite suspensions to reach 0.1 mM or 1 M initial Mn(II) concentrations.
116 All batch experiments were performed in 250 mL glass bottles with their contents stirred with
117 polypropylene-coated stir bars at a speed of 500 rpm on a multi-position stirrer (VARIOMAG,
118 Thermo, U.S.A) at room temperature (21 ± 1 °C).

119 For all batch experiments, 5 mL samples of suspension were collected at selected times.
120 Reactions between solutes and the surfaces of solids were quenched by immediately filtering
121 suspensions through 0.05 µm pore diameter polyethersulfone (PES) membranes (Tisch Scientific,
122 U.S.A) with a collection of 2 mL of filtrate. Samples after this additional filtration step were
123 acidified to 2% HNO₃ and preserved for dissolved lead analysis by ICP-MS. Samples of the
124 suspension that included solids were collected at the beginning of the experiment and after 5 and
125 24 h of reaction. The suspensions were centrifuged and freeze-dried to yield solids for further
126 analysis.

127 Flow-through experiments with suspensions of lead carbonate reacting with free chlorine
128 were conducted in continuously stirred tank reactors (CSTRs). In contrast to the batch reactors in
129 which free chlorine was added at a relatively high initial concentration, the flow-through reactors
130 could provide a steady supply of free chlorine at a lower concentration that is more directly relevant
131 to the drinking water supply. The reactions were examined both in the absence and presence of 0.1
132 mM δ-MnO₂ at the ambient room temperature (21 ± 1 °C). The δ-MnO₂ solid was employed

133 instead of Mn(II) solution in the flow-through experiments because any Mn(II) in the solution that
134 was not oxidized by the initial influx of free chlorine would have been flushed out of the reactors
135 (Figure S3). The volume of each reactor was 40 mL and lead carbonate suspensions were loaded
136 to a concentration of 1 mM as Pb. Specific amounts of δ -MnO₂ that provided the same Pb:Mn ratio
137 as a set of the batch experiments were added to CSTRs. Mixing was achieved by continuous
138 stirring with a polypropylene-coated magnetic stir bar at 250 rpm. A 0.22 μ m mixed cellulose filter
139 membrane at the reactor outlet prevented the loss of solids from the reactor. Influent was pumped
140 into the reactor at 2 mL/min using a peristaltic pump (Cole-Parmer), so the reactor hydraulic
141 residence time (τ) was 20 min. The pH and free chlorine concentrations of the effluents were
142 monitored, and aqueous samples were periodically collected for dissolved Pb(II) concentration
143 analysis. The influents were prepared in 4-L polypropylene bottles covered with aluminum foil to
144 minimize CO₂ exchange with the atmosphere and prevent photodegradation of free chlorine.
145 Addition of an aliquot of 1 M NaHCO₃ solution to the bottles provided the DIC concentration of
146 0.02 mM (2.4 mg/L) as C. An aliquot of a NaOCl stock solution was added to reach a concentration
147 of 0.034 mM (2.4 mg/L) as Cl₂. The pH was adjusted to the target values by addition of
148 concentrated HNO₃ or freshly prepared 0.5 M NaOH solutions to reach pH 7.5 \pm 0.2. The flow
149 through experiments were conducted for 2000 min (i.e. 100 residence times).

150 **Analytical methods**




151 The residual free chlorine concentration was measured with the standard DPD method.⁴³ Dissolved
152 lead was analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) (PerkinElmer
153 ELAN DRC II). Solution pH was measured with a glass pH electrode and pH meter (Accumet).
154 XRD patterns were collected using Cu K α radiation (Bruker d8 Advance X-ray diffractometer).
155 Scanning Electron Microscopes (SEM) examination was performed with FEI Nova NanoSEM 230.

156 The specific surface areas of dry solids were determined by the Brunauer–Emmett–Teller–N₂
157 (BET- N₂) adsorption (Quantachrome Instruments) method.

158 **Model development:**

159 All the models were developed using constraints of mass balances and the stoichiometry of the
160 oxidation-reduction reactions. The specific rate equations used are presented in the Results and
161 Discussion section, and a brief overview of the modeling approach is provided here. The
162 conceptual model of the processes occurring is presented in Figure 2. The formation of PbO₂
163 included noncatalytic oxidation of Pb(II), autocatalytic oxidation of Pb(II) with PbO₂ formed *in*
164 *situ*, and catalytic oxidation of Pb(II) and Mn oxides. The consumption of free chlorine included
165 noncatalytic oxidation of Pb(II), autocatalytic oxidation of Pb(II) with PbO₂ formed *in situ*,
166 oxidation of Mn(II) to δ-MnO₂, and catalytic oxidation of Pb(II) with δ-MnO₂ formed *in situ*. In
167 this study, *in situ* means in the reactor. For cerussite and hydrocerussite oxidation, the consumption
168 of free chlorine was assumed to equal the formation of PbO₂ in molar concentration (reactions 1
169 and 2). For cerussite and hydrocerussite reaction with free chlorine in the presence of Mn, the
170 consumption of free chlorine included oxidation of Pb(II) as well as oxidation of Mn(II) (reaction
171 3). Mole balance equations were developed for free chlorine and PbO₂ that included terms for the
172 rates of oxidation of Pb(II) carbonate directly, catalyzed by PbO₂, and catalyzed by MnO₂. The pH
173 dependence was not accounted in model development since the data examined in comparison with
174 the model were all collected at pH 7.5 ± 0.2. For the flow-through experiment, the free chlorine in
175 the influent and δ-MnO₂ concentrations were treated as constants since it was continuously
176 supplied from a well mixed 4 L reservoir. Although catalytic reactions were surface-related
177 reactions, the surface area was incorporated into reaction rate constants in our model development.
178 Differential equations obtained from the mass balance equations were solved by MATLAB

179 R2018a. Optimization of the fit of data to model by adjusting multiple parameters at the same time
180 to obtain the minimum coefficient of determination (R^2).

184 **Results and Discussion**

185 *The catalytic effect of PbO_2 on lead carbonate oxidation*

186 The trends in the consumption of free chlorine for oxidation of cerussite provided insights into an
187 autocatalytic reaction in which the production of an initial amount of PbO_2 accelerated the rate of
188 further PbO_2 formation (Figure 3). We observed the oxidation occurring with a lag stage followed
189 by a rapid stage for both cerussite and hydrocerussite. These two stages of oxidation for lead
190 carbonate were also observed by other researchers.¹⁶ The addition of PbO_2 (either plattnerite or
191 scrutinyite) accelerated cerussite oxidation by free chlorine and dramatically shortened the lag
192 stage of the reaction (Figure 3). With the increasing amount of PbO_2 (from 0.5 to 1 g/L), the free
193 chlorine consumption speed increased, indicating the increasing rate of cerussite oxidation. A
194 shortened lag stage was still observed with high PbO_2 concentration (1 g/L). Control experiments
195 determined that plattnerite and scrutinyite by themselves did not accelerate chlorine degradation
196 (Figure S4). While the data presented in Figure 3 are for cerussite, similar trends were observed
197 for hydrocerussite and are shown in the supporting information (Figure S6).

198 When comparing the rate of chlorine consumption associated with oxidation of cerussite and
199 hydrocerussite, the rate was faster with hydrocerussite (Figure S6), which was consistent with

200 previous findings.^{16,44} The lower oxidation speed of cerussite by free chlorine may due to
201 cerussite's lower specific surface area ($3.28\text{ m}^2/\text{g}$ versus $10.70\text{ m}^2/\text{g}$ for hydrocerussite) that may
202 be related to lower concentration of active surface sites for oxidation or to a slower release of
203 dissolved Pb(II) from the Pb(II) carbonate solid.

204 Kinetic models were developed to interpret the rates of cerussite and hydrocerussite oxidation
205 under the experimental conditions. For cerussite and hydrocerussite oxidation with or without
206 initial PbO_2 (scrutinyite or plattnerite), the consumption of free chlorine included noncatalytic
207 oxidation of Pb(II) and autocatalytic oxidation of Pb(II) with PbO_2 added or formed *in situ*
208 (equation 1). The moles of PbO_2 formed were the same as the moles of free chlorine consumed
209 (equation 2). For Pb(II) carbonate oxidation without any added PbO_2 , the consumption of free
210 chlorine and the formation of PbO_2 were described as simplified forms of equations 1 and 2 with
211 a value of zero for $[\text{Pb(IV)}_{\text{added}}]$ which eliminated particular terms in the equations. The term
212 $[\text{HOCl}]$ indicates all free chlorine (both HOCl and OCl^-). Good fits of the model to the data
213 required different rate constants for Pb(II) oxidation catalyzed by PbO_2 formed *in situ* versus PbO_2
214 added as pre-synthesized solids. An initial modeling effort attempted to interpret the data using a
215 single rate constant for PbO_2 , but this provided much poorer fits (equations S1-S4 and Figure S5).
216 The kinetic constants k_1^* and k_2^* correspond to the noncatalytic and autocatalytic reaction proposed
217 in other studies.^{8,16,45} The catalytic reaction rate constants (k_2^* , k_3^* , and k_4^*) were the value of
218 apparent rate constants k_2 , k_3 , and k_4 multiplied by the amount of PbO_2 in the system (equations 3
219 and 4). The added scrutinyite and plattnerite were assumed to have different catalytic reaction rate
220 constants (k_3^* and k_4^* , respectively). Equations 1-5 were employed for kinetic model development
221 with scrutinyite and equations S5-S9 were used with plattnerite. The four unknown constants were
222 estimated by finding the values that provided the optimal fit of five sets of experimentally

223 measured chlorine consumption data (Figure 3 and Figure S6). The definition and unit of each
 224 constant are listed in Table 1. These constants in Table 1 are apparent rate constants for oxidation
 225 reactions. The dissolution of lead carbonate solids and adsorption of Pb(II) onto PbO₂ or δ-MnO₂
 226 were not considered in the model development because they are much faster compared with the
 227 oxidation reactions so they can be ignored.

$$228 -\frac{d[HOCl]}{dt} = k_1^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_2^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_3^* * \\ 229 [Pb(II)_{lead\ carbonate}] * [HOCl] \quad (1)$$

$$230 \frac{d[Pb(IV)]}{dt} = k_1^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_2^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_3^* * \\ 231 [Pb(II)_{lead\ carbonate}] * [HOCl] \quad (2)$$

$$232 k_2^* = k_2 * [Pb(IV)] \quad (3)$$

$$233 k_3^* = k_3 * [Pb(IV)_{added}] \quad (4)$$

$$234 [Pb(II)_{lead\ carbonate}] = [Pb(II)_0] - [Pb(IV)] \quad (5)$$

235 The constants that provided the best fit of the model output to the experimental results are
 236 compiled in Table 2. The simulated free chlorine concentration trends based on these reactions
 237 and apparent constants are shown together with the experimental data in Figure 3 (cerussite) and
 238 Figure S6 (hydrocerussite). The apparent constant for cerussite oxidation on PbO₂ formed *in situ*
 239 ($k_2 = 5.5 \times 10^5 \text{ M}^{-2} \cdot \text{h}^{-1}$) was two orders of magnitude higher than the constants for Pb(II) oxidation
 240 on the added PbO₂ ($k_3 = 6 \times 10^3 \text{ M}^{-2} \cdot \text{h}^{-1}$ and $k_4 = 6 \times 10^3 \text{ M}^{-2} \cdot \text{h}^{-1}$). The apparent constants for
 241 hydrocerussite followed the same trend. The oxidation rate constants $k_2^* - k_4^*$ were calculated by
 242 multiplying $k_2 - k_4$ by the concentration of PbO₂ present (equations 3, 4, and S8). The rate
 243 constants used here are related to the moles of PbO₂ present, but for surface-based reactions, the

244 controlling factor is probably the surface area of PbO_2 present. The higher specific surface area of
245 PbO_2 formed *in situ* may be one reason for its more robust catalytic effect on $\text{Pb}(\text{II})$ carbonate
246 oxidation than that of pre-synthesized PbO_2 . Unfortunately, we did not have a means of measuring
247 the surface area of PbO_2 formed *in situ*. Comparing hydrocerussite and cerussite, hydrocerussite
248 exhibited a higher autocatalytic oxidation speed than cerussite and k_1^* and k_2 of hydrocerussite
249 were both greater than these of cerussite. The reaction rate constants k_1^* and apparent rate constants
250 k_3 and k_4 in Table 2 were almost 10 times higher than in the study by Liu et al.¹⁶ because the
251 surface areas of cerussite and hydrocerussite (3.38 and 10.70 m^2/g) employed in this study were
252 almost 10 times higher than Liu et al.¹⁶ (0.42 and 0.81 m^2/g).

253 The effect of pH on cerussite oxidation was examined (Figure 4). The duration of the lag
254 stage was not affected by increasing pH for cerussite. Free chlorine consumption speeds were
255 almost the same at pH 6.5, 7.5, and 8.5 for cerussite. For hydrocerussite oxidation, the free chlorine
256 consumption speed decreased with increasing pH (Figure S7). Similar results were observed by
257 Zhang and Lin.⁴² The influence of pH on $\text{Pb}(\text{II})$ carbonate oxidation by free chlorine could be
258 related to two phenomena. First, the pH determines the ratio of HOCl/OCl^- , and for many species,
259 oxidation rates are faster with HOCl than with OCl^- .⁴⁶ Second, the pH determines the species of
260 dissolved $\text{Pb}(\text{II})$, which also affects the oxidation rates according to Figure 3. Prior research
261 demonstrated that high DIC concentration could inhibit $\text{Pb}(\text{II})$ carbonate oxidation by free chlorine
262 via formation of dissolved $\text{Pb}(\text{II})$ carbonate complexes, which are much less reactive compared
263 with lead hydroxo complexes.^{8,16,44}

264 *The catalytic effect of Mn oxide on lead carbonate oxidation*

265 The addition of Mn(II) significantly enhanced the rate of cerussite oxidation (Figure 5). With free
266 chlorine Mn(II), oxidation was much faster than Pb(II) oxidation and it produced δ -MnO₂ (Figure
267 S2). The free chlorine concentration was in excess of the amount required to oxidize 0.1 mM
268 Mn(II), so after Mn(II) was completely oxidized, there was still sufficient free chlorine to oxidize
269 Pb(II) carbonate. The rate of Pb(II) carbonate oxidation was accelerated as the rate of free chlorine
270 consumption was much higher than with the lead carbonate oxidation in the absence of Mn(II).
271 Hydrocerussite oxidation with the presence of Mn(II) showed the same trends as cerussite (Figure
272 S9).

273 A kinetic model for free chlorine concentration during Pb(II) oxidation in systems to which
274 Mn(II) had been added was developed (equations 6 and 7). Because the rate of Mn(II) oxidation
275 was at least 3 orders of magnitude higher than the rates of other reactions used in the model, we
276 assumed that all of the Mn(II) was instantaneously oxidized to δ -MnO₂; efforts to account for the
277 kinetics of Mn(II) oxidation made the model more complicated but did not improve the ability to
278 simulate Pb(II) oxidation. This assumption was confirmed by the similar catalytic effects on Pb(II)
279 carbonate oxidation of δ -MnO₂ solids formed *in situ* and added (Figure 5, S8, and S9). In
280 developing the model of Pb(II) oxidation in the presence of Mn oxide, the constants for non-
281 catalytic Pb(II) oxidation and for oxidation catalyzed by PbO₂ were set at the values determined
282 from the previously discussed experiments in which no Mn had been added. k_5 value was
283 determined by fitting the model output to experimental data of chlorine consumption in the
284 presence of 0.1 mM Mn(II). The value obtained then can be successfully applied to the system
285 with 1mM Mn(II) (Figure 5). The definition and units of each constant are listed in Table 1. The
286 actual second order oxidation rate constants were determined using apparent constants as noted in
287 equation 7.

288
$$\frac{d[Pb(IV)]}{dt} = k_1^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_2^* * [Pb(IV)] * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_5^* * [Pb(II)_{lead\ carbonate}] * [HOCl]$$
 (6)

290
$$k_5^* = k_5 * [\delta - MnO_2]$$
 (7)

291 Based on our modeling results (Table 2), the apparent constants for Pb(II) oxidation with δ -
 292 MnO_2 were one order of magnitude higher than these of PbO_2 formed *in situ*. Considering the
 293 amount of δ - MnO_2 in the system, the actual catalytic rate constant with δ - MnO_2 could be at least
 294 3 orders of magnitude higher than that of PbO_2 formed *in situ* and PbO_2 added. Apart from the
 295 catalytic effect of Mn(II) on Pb(II) carbonate oxidation, we also observed faster chlorine
 296 consumption rates for Mn(II) when Pb(II) carbonate was present than when Mn(II) was present on
 297 its own, which may indicate that the surface of Pb(II) carbonate helped catalyze the oxidation of
 298 Mn(II) by chlorine.

299 *Products of Pb(II) carbonate oxidation*

300 The reaction of cerussite and hydrocerussite with free chlorine produced PbO_2 . Scrutinyite
 301 was formed from lead carbonate oxidation as determined by XRD (Figure 6). The effect of Mn(II)
 302 on lead carbonate oxidation by free chlorine was further confirmed by XRD patterns. The
 303 structural changes of Pb(II) carbonate solids and the formation of PbO_2 were also observed by
 304 SEM results (Figure S10). With 1 mM Mn(II), there was no change in the cerussite XRD pattern
 305 because all the free chlorine was consumed by Mn(II) oxidation. For cerussite oxidation by free
 306 chlorine, the XRD patterns for 5 h samples were almost the same as those of the initial cerussite,
 307 which was consistent with batch experiment results that the reactions were in a lag stage for the
 308 first 5 h. After 24 h reaction with free chlorine, peaks for scrutinyite at 2θ of 23° and 28° were
 309 observed for the reacted cerussite. Liu et al.¹⁶ examined cerussite and hydrocerussite oxidation by

310 50 mg/L free chlorine and observed the signature peaks for scrutinyite at a longer oxidation time,
311 which was probably because of the higher DIC concentration (0.001 M) used in their experiments.

312 With the presence of Mn(II), the same peaks for scrutinyite were observed after cerussite
313 reaction with free chlorine for both 5 h and 24 h. These XRD results were consistent with the
314 observed free chlorine consumption profiles from batch experiments. As shown in Figure 6,
315 scrutinyite was the only product of cerussite oxidation by free chlorine. The same overall trend
316 was observed for hydrocerussite oxidation (Figure S11); with the addition of 0.1 mM Mn(II),
317 scrutinyite was observed in the solid sample for 5 h and 24 h reaction with free chlorine. The
318 formation of pure scrutinyite from hydrocerussite oxidation was also observed in the studies by
319 Wang et al.⁸ and Liu et al.¹⁶ When starting with cerussite and no DIC, Wang et al.⁸ observed
320 cerussite transformed to hydrocerussite after one day and a mixture of scrutinyite and plattnerite
321 formed after 28 days. Nevertheless, in both the work of Liu et al.¹⁶ and our research, plattnerite
322 was not observed after cerussite oxidation. The difference in these studies may be due to difference
323 in experimental pH and carbonate concentration. Higher pH and higher carbonate concentration
324 can lead to higher generation of scrutinyite over plattnerite in PbO₂ formation. We also note that
325 there are two possible processes for the oxidation of lead carbonate solids to PbO₂, dissolution–
326 oxidation–reprecipitation (DOR) and direct solid-state oxidation.^{8,16,47} In this study, DOR is
327 considered to be the main PbO₂ formation pathways. Although there might be direct solid-state
328 oxidation of a Pb(II) layer at the surface of lead carbonate solids, this process will yield a protective
329 layer of PbO₂ on lead carbonate solid surface and inhibit further oxidation. Nevertheless, thorough
330 oxidation of Pb(II) carbonate solids to PbO₂ was observed by previous studies^{8,48}, which indicates
331 that DOR is more significant.

332 *Flow-through experiment*

333 In the batch experiments, a high free chlorine concentration (0.28 ± 0.03 mM as Cl_2) was applied
334 initially and then depleted as it oxidized $\text{Pb}(\text{II})$ and $\text{Mn}(\text{II})$ species. In contrast to the batch
335 experiments, flow-through experiments were conducted with a more realistic free chlorine
336 concentration (0.034 mM or 2.4 mg/L as Cl_2) that was continuously supplied. The oxidation of
337 cerussite was enhanced with $\delta\text{-MnO}_2$ in the flow-through experiment (Figure 7). After a period of
338 relatively high effluent concentrations (~ 1.5 μM) of $\text{Pb}(\text{II})$ as the CSTRs started up, the
339 concentrations of $\text{Pb}(\text{II})$ dropped to much lower values (0.05-0.32 μM). The effluent
340 concentrations of $\text{Pb}(\text{II})$ were lower with $\delta\text{-MnO}_2$ (0.05 μM) than without (0.32 μM). For the
341 system without $\delta\text{-MnO}_2$, the concentrations of $\text{Pb}(\text{II})$ stabilized at a steady-state concentration. A
342 steady-state was not necessarily expected since the rate of $\text{Pb}(\text{II})$ consumption would be expected
343 to increase as more PbO_2 accumulated in the reactor; however, the rate of PbO_2 accumulation may
344 have been slow enough for the system to be at steady-state. For the system with $\delta\text{-MnO}_2$, a steady
345 state was not reached and $\text{Pb}(\text{II})$ concentrations decreased over the duration of the experiment,
346 which indicates that the amount of PbO_2 in the system was probably increasing with time. The
347 faster oxidation of cerussite with $\delta\text{-MnO}_2$ was also confirmed by higher chlorine consumption in
348 the effluent. When similar experiments were conducted with hydrocerussite (Figure S12), we
349 observed the similar trend that $\delta\text{-MnO}_2$ accelerates hydrocerussite oxidation.

350 For model development, we considered the conditions with and without $\delta\text{-MnO}_2$ (equations
351 8 and 9). Q and V are the flow rate and volume, respectively. The amount of $\text{Pb}(\text{II})$ (≤ 1.2 μmol)
352 in the total outlet was neglected in the model development because it was negligible when
353 compared with the amount of $\text{Pb}(\text{II})$ and $\text{Pb}(\text{IV})$ solids (≥ 38.8 μmol) left in the CSTRs after the
354 experiment. For cerussite oxidation without $\delta\text{-MnO}_2$, the $\delta\text{-MnO}_2$ concentration was set to zero in

355 equations 8 and 9 which eliminated particular terms in the equations. The constants were defined
356 in Table 1, and rate constants (k_1^* , k_2^* , and k_5^*) were obtained by using the same rate constants
357 obtained from batch experiments (Table 2). The application of parameters from batch experiments
358 to flow-through experiment was based on the hypothesis that the behavior of solids in batch
359 experiment was consistent with the behavior of solids in the flow-through experiments, which was
360 confirmed by the overall agreement between experimental and modeled chlorine concentrations in
361 the effluent. Chlorine concentration profiles in the effluent derived from modeling work are shown
362 in Figure 7 and Figure S11 as dashed lines. The simulations provided general agreement with the
363 flow-through experimental data that the presence of δ -MnO₂ accelerates chlorine consumption,
364 which indicates a higher rate of Pb(II) oxidation.

$$365 \frac{d[HOCl]}{dt} * V = [HOCl_{inlet}] * Q - \{k_1^* * [Pb(II)_{lead\ carbonate}] * [HOCl] - k_2^* * [Pb(II)_{lead\ carbonate}] * [HOCl] - \\ 366 k_5^* * [Pb(II)_{lead\ carbonate}] * [HOCl]\} * V - [HOCl] * Q \quad (8)$$

$$367 \frac{d[Pb(IV)]}{dt} = k_1^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_2^* * [Pb(II)_{lead\ carbonate}] * [HOCl] + k_5^* * \\ 368 [Pb(II)_{lead\ carbonate}] * [HOCl] \quad (9)$$

369 *Environmental Implications*

370 PbO₂ solids can maintain low dissolved Pb(II) concentrations, but they are not always observed
371 on LSLs that deliver drinking water with free chlorine as the disinfectant. Water chemistry can
372 strongly influence the oxidation of Pb(II) carbonate in the actual distribution system. Under a more
373 realistic and continuously supplied free chlorine concentration (0.034 mM or 2.4 mg/L as Cl₂), δ -
374 MnO₂ also enhanced Pb(II) carbonate oxidation.

375 The effect of Mn on Pb(II) carbonate oxidation can be successfully explained by the δ -MnO₂
376 that formed *in situ* acting as a heterogeneous catalyst for Pb(II) oxidation. Modeling work showed

377 that the catalytic effect of δ -MnO₂ formed *in situ* is almost three orders of magnitude faster than
378 that of an equal amount of PbO₂ formed *in situ*. Although results in this study were obtained from
379 batch and flow-through experiments, it can be extrapolated to LSLs. In a pipe reactor study by Bae
380 et al.,⁴⁹ an accidental dosage of Mn(II) was found to skyrocket the free chlorine consumption speed
381 and decrease the Pb(II) concentration from ~50 μ g/L to less than 10 μ g/L in the effluent of lead
382 pipes. Our experimental and modeling results can help explain the phenomenon of Pb(II)
383 decreasing in the effluent of lead pipes by PbO₂ formation catalyzed by *in situ* formation of MnO₂.
384 We anticipate that the study of water chemistry in bench-scale experiments can be employed to
385 study the Pb corrosion in drinking water distribution systems with different levels of Mn in the
386 water. The same findings may potentially be extended to other metal oxide deposits on the inner
387 surface of LSLs, such as those of iron and copper. Nevertheless, the catalytic effect of these metal
388 oxide may not as robust as δ -MnO₂, which has a relative high surface area, fast Pb(II) adsorption
389 kinetics, and high Pb(II) adsorption capacity.⁵⁰ Furthermore, our findings likely have broader
390 implications for the role of deposits (such as Mn, Fe, and Cu oxide) in drinking water distribution
391 systems. Previous studies have explored the role of these deposits as sinks for trace inorganic
392 contaminants (arsenic, selenium, vanadium, etc.) via sorption process.^{11,14,51,52} Here, our findings
393 reveal another possible role of these deposits in mediating redox transformations of trace inorganic
394 contaminants such as Pb(II).

395 **Supporting Information**

396 One table and twelve figures show the initial model development for Pb(II) carbonate oxidation
397 with added PbO₂, standard reduction potentials of chemicals in the experiment, XRD patterns for
398 synthesized scrutinyite and solids obtained from Mn(II) oxidation, flow-through experiment set-
399 up, chlorine concentration with PbO₂, free chlorine concentration profiles for hydrocerussite

400 oxidation with and without PbO_2 , the effect of pH on hydrocerussite oxidation by chlorine,
401 oxidation of $\text{Pb}(\text{II})$ carbonate by chlorine with and without 0.1 mM $\delta\text{-MnO}_2$ solids, oxidation of
402 hydrocerussite by chlorine with different $\text{Mn}(\text{II})$ concentrations, SEM images of $\text{Pb}(\text{II})$ carbonate
403 before and after reactions, XRD patterns for of solids from hydrocerussite oxidation experiments,
404 and results of flow-through experiments with hydrocerussite.

405 **Author information**

406 Corresponding Author

407 *pan10@llnl.gov. Phone: (314) 608-8987; 7000 East Avenue, Livermore, CA 94550. (C.P.)

408 **Acknowledgments**

409 This research was supported by the U.S. National Science Foundation (CBET 1603717, CHE
410 1709484). W.P. acknowledges the fellowship support through the McDonnell International
411 Scholars Academy. This work was performed in part using the Nanoscale Research Facility at
412 Washington University in St. Louis. Work at LLNL was conducted under the auspices of the US
413 Department of Energy at LLNL under Contract DE-AC52-07NA27344. We thank Anushka
414 Mishrra, Anshuman Satpathy, and Neha Sharma for assistance with experimental activities.

415 **Reference**

416 (1) Edwards, M.; Triantafyllidou, S.; Best, D. Elevated Blood Lead in Young Children Due
417 to Lead-Contaminated Drinking Water: Washington, DC, 2001–2004. *Environ. Sci. Technol.*
418 **2009**, *43* (5), 1618–1623.

419 (2) Edwards, M. Fetal Death and Reduced Birth Rates Associated with Exposure to Lead-
420 Contaminated Drinking Water. *Environ. Sci. Technol.* **2013**, *48* (1), 739–746.

421 (3) Triantafyllidou, S.; Edwards, M. Lead (Pb) in Tap Water and in Blood: Implications for
422 Lead Exposure in the United States. *Crit. Rev. Environ. Sci. Technol.* **2012**, *42* (13), 1297–1352.

423 (4) U.S. EPA, Maximum Contaminant Level Goals and National Primary Drinking Water
424 Regulations for Lead and Copper. Final Rule. *Fed. Regist.* 1991, *56*, 26460

425 (5) Rosario-Ortiz, F.; Rose, J.; Speight, V.; Von Gunten, U.; Schnoor, J. How Do You like
426 Your Tap Water? *Science*. **2016**, *351* (6276), 912–914.

427 (6) Cornwell, D. A.; Brown, R. A.; Via, S. H. National Survey of Lead Service Line
428 Occurrence. *J. Am. Water Works Assoc.* **2016**, *108* (4), E182–E191.
429 <https://doi.org/10.5942/jawwa.2016.108.0086>.

430 (7) Schock, M. R. Understanding Corrosion Control Strategies for Lead. *J. Am. Water Works
431 Assoc.* **1989**, *81* (7), 88–100.

432 (8) Wang, Y.; Xie, Y.; Li, W.; Wang, Z.; Giammar, D. E. Formation of Lead(IV) Oxides
433 from Lead(II) Compounds. *Environ. Sci. Technol.* **2010**, *44* (23), 8950–8956.

434 (9) Del Toral, M. A.; Porter, A.; Schock, M. R. Detection and Evaluation of Elevated Lead

435 Release from Service Lines: A Field Study. *Environ. Sci. Technol.* **2013**, *47* (16), 9300–9307.

436 <https://doi.org/10.1021/es4003636>.

437 (10) DeSantis, M. K.; Triantafyllidou, S.; Schock, M. R.; Lytle, D. A. Mineralogical Evidence
438 of Galvanic Corrosion in Drinking Water Lead Pipe Joints. *Environ. Sci. Technol.* **2018**, *52* (6),
439 3365–3374. <https://doi.org/10.1021/acs.est.7b06010>.

440 (11) Peng, C. Y.; Korshin, G. V.; Valentine, R. L.; Hill, A. S.; Friedman, M. J.; Reiber, S. H.
441 Characterization of Elemental and Structural Composition of Corrosion Scales and Deposits
442 Formed in Drinking Water Distribution Systems. *Water Res.* **2010**, *44* (15), 4570–4580.

443 (12) Kim, E. J.; Herrera, J. E. Characteristics of Lead Corrosion Scales Formed during
444 Drinking Water Distribution and Their Potential Influence on the Release of Lead and Other
445 Contaminants. *Environ. Sci. Technol.* **2010**, *44* (16), 6054–6061.
446 <https://doi.org/10.1021/es101328u>.

447 (13) Frenkel, A. I.; Korshin, G. V. EXAFS Studies of the Chemical State of Lead and Copper
448 in Corrosion Products Formed on the Brass Surface in Potable Water. *J. Synchrotron Radiat.*
449 **1999**, *6* (3), 653–655.

450 (14) Schock, M. R.; Hyland, R. N.; Welch, M. M. Occurrence of Contaminant Accumulation
451 in Lead Pipe Scales from Domestic Drinking-Water Distribution Systems. *Environ. Sci. Technol.*
452 **2008**, *42* (12), 4285–4291. <https://doi.org/10.1021/es702488v>.

453 (15) Vasquez, F. A.; Heaviside, R.; Tang, Z.; Taylor, J. S. Effect of Free Chlorine and
454 Chloramines on Lead Release in a Distribution System. *J. Am. Water Works Assoc.* **2006**, *98* (2),
455 144–154.

456 (16) Liu, H.; Korshin, G. V; Ferguson, J. F. Investigation of the Kinetics and Mechanisms of
457 the Oxidation of Cerussite and Hydrocerussite by Chlorine. *Environ. Sci. Technol.* **2008**, *42* (9),
458 3241–3247.

459 (17) Noel, J. D.; Wang, Y.; Giammar, D. E. Effect of Water Chemistry on the Dissolution
460 Rate Of the Lead Corrosion Product Hydrocerussite. *Water Res.* **2014**, *54*, 237–246.
461 <https://doi.org/10.1016/j.watres.2014.02.004>.

462 (18) Triantafyllidou, S.; Schock, M. R.; DeSantis, M. K.; White, C. Low Contribution of PbO₂
463 -Coated Lead Service Lines to Water Lead Contamination at the Tap. *Environ. Sci. Technol.*
464 **2015**, *49* (6), 3746–3754. <https://doi.org/10.1021/es505886h>.

465 (19) Dryer, D. J.; Korshin, G. V. Investigation of the Reduction of Lead Dioxide by Natural
466 Organic Matter. *Environ. Sci. Technol.* **2007**, *41* (15), 5510–5514.
467 <https://doi.org/10.1021/es070596r>.

468 (20) Lin, Y.-P.; Valentine, R. L. Release of Pb(II) from Monochloramine-Mediated Reduction
469 of Lead Oxide (PbO₂). *Environ. Sci. Technol.* **2008**, *42* (24), 9137–9143.
470 <https://doi.org/10.1021/es801037n>.

471 (21) Lin, Y.-P.; Valentine, R. L. Reductive Dissolution of Lead Dioxide (PbO₂) in Acidic
472 Bromide Solution. *Environ. Sci. Technol.* **2010**, *44* (10), 3895–3900.
473 <https://doi.org/10.1021/es100133n>.

474 (22) Wang, Y.; Wu, J.; Giammar, D. E. Kinetics of the Reductive Dissolution of Lead(IV)
475 Oxide by Iodide. *Environ. Sci. Technol.* **2012**, *46* (11), 5859–5866.
476 <https://doi.org/10.1021/es2038905>.

477 (23) Lin, Y.-P.; Washburn, M. P.; Valentine, R. L. Reduction of Lead Oxide (PbO_2) by Iodide
478 and Formation of Iodoform in the $PbO_2/I^-/NOM$ System. *Environ. Sci. Technol.* **2008**, *42* (8),
479 2919–2924. <https://doi.org/10.1021/es702797b>.

480 (24) Shi, Z.; Stone, A. T. PbO_2 (s, Plattnerite) Reductive Dissolution by Natural Organic
481 Matter: Reductant and Inhibitory Subfractions. *Environ. Sci. Technol.* **2009**, *43* (10), 3604–3611.

482 (25) Shi, Z.; Stone, A. T. PbO_2 (s, Plattnerite) Reductive Dissolution by Aqueous Manganese
483 and Ferrous Ions. *Environ. Sci. Technol.* **2009**, *43* (10), 3596–3603.

484 (26) Edwards, M.; Dudi, A. Role of Chlorine and Chloramine in Corrosion of Lead-Bearing
485 Plumbing Materials. *J. Am. Water Works Assoc.* **2004**, *96*(10), 69–81.
486 <https://doi.org/10.2307/41311235>.

487 (27) Sly, L. I.; Hodgkinson, M. C.; Arunpairojana, V. Deposition of Manganese in a Drinking
488 Water Distribution System. *Appl. Environ. Microbiol.* **1990**, *56* (3), 628–639.

489 (28) Kohl, P. M.; Medlar, S. J. *Occurrence of Manganese in Drinking Water and Manganese
490 Control*; American Water Works Association, 2006.

491 (29) Gerke, T. L.; Little, B. J.; Maynard, J. B. Manganese Deposition in Drinking Water
492 Distribution Systems. *Sci. Total Environ.* **2016**, *541*, 184–193.

493 (30) Gallard, H.; Allard, S.; Nicolau, R.; Von Gunten, U.; Croué, J. P. Formation of Iodinated
494 Organic Compounds by Oxidation of Iodide-Containing Waters with Manganese Dioxide.
495 *Environ. Sci. Technol.* **2009**, *43* (18), 7003–7009.

496 (31) Tebo, B. M.; Bargar, J. R.; Clement, B. G.; Dick, G. J.; Murray, K. J.; Parker, D.; Verity,
497 R.; Webb, S. M. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. *Annu.*

498 *Rev. Earth Planet. Sci.* **2004**, *32* (1), 287–328.

499 <https://doi.org/10.1146/annurev.earth.32.101802.120213>.

500 (32) Zacheus, O. M.; Lehtola, M. J.; Korhonen, L. K.; Martikainen, P. J. Soft Deposits, the
501 Key Site for Microbial Growth in Drinking Water Distribution Networks. *Water Res.* **2001**, *35*
502 (7), 1757–1765. [https://doi.org/10.1016/S0043-1354\(00\)00431-0](https://doi.org/10.1016/S0043-1354(00)00431-0).

503 (33) Szewzyk, U.; Szewzyk, R.; Manz, W.; Schleifer, K.-H. Microbiological Safety of
504 Drinking Water. *Annu. Rev. Microbiol.* **2000**, *54* (1), 81–127.
505 <https://doi.org/10.1146/annurev.micro.54.1.81>.

506 (34) Cerrato, J. M.; Falkinham, J. O.; Dietrich, A. M.; Knocke, W. R.; McKinney, C. W.;
507 Pruden, A. Manganese-Oxidizing and -Reducing Microorganisms Isolated from Biofilms in
508 Chlorinated Drinking Water Systems. *Water Res.* **2010**, *44* (13), 3935–3945.
509 <https://doi.org/10.1016/J.WATRES.2010.04.037>.

510 (35) Marcus, D. N.; Pinto, A.; Anantharaman, K.; Ruberg, S. A.; Kramer, E. L.; Raskin, L.;
511 Dick, G. J. Diverse Manganese(II)-Oxidizing Bacteria Are Prevalent in Drinking Water Systems.
512 *Environ. Microbiol. Rep.* **2017**, *9* (2), 120–128. <https://doi.org/10.1111/1758-2229.12508>.

513 (36) Zhao, D.; Yang, X.; Zhang, H.; Chen, C.; Wang, X. Effect of Environmental Conditions
514 on Pb (II) Adsorption on β -MnO₂. *Chem. Eng. J.* **2010**, *164* (1), 49–55.

515 (37) Xu, M.; Wang, H.; Lei, D.; Qu, D.; Zhai, Y.; Wang, Y. Removal of Pb(II) from Aqueous
516 Solution by Hydrous Manganese Dioxide: Adsorption Behavior and Mechanism. *J. Environ. Sci.*
517 **2013**, *25* (3), 479–486. [https://doi.org/10.1016/S1001-0742\(12\)60100-4](https://doi.org/10.1016/S1001-0742(12)60100-4).

518 (38) Eren, E.; Gumus, H.; Sarihan, A. Synthesis, Structural Characterization and Pb(II)

519 Adsorption Behavior of K- and H-Birnessite Samples. *Desalination* **2011**, *279* (1–3), 75–85.

520 <https://doi.org/10.1016/J.DESAL.2011.05.058>.

521 (39) Matocha, C. J.; Elzinga, E. J.; Sparks, D. L. Reactivity of Pb(II) at the Mn(III),
522 IV)(Oxyhydr) Oxide–Water Interface. *Environ. Sci. Technol.* **2001**, *35* (14), 2967–2972.

523 (40) Trueman, B. F.; Gregory, B. S.; McCormick, N. E.; Gao, Y.; Gora, S.; Anaviapik-Soucie,
524 T.; L’Héroult, V.; Gagnon, G. A. Manganese Increases Lead Release to Drinking Water.
525 *Environ. Sci. Technol.* **2019**, *53* (9), 4803–4812. <https://doi.org/10.1021/acs.est.9b00317>.

526 (41) Villalobos, M.; Toner, B.; Bargar, J.; Sposito, G. Characterization of the Manganese
527 Oxide Produced by *Pseudomonas Putida* Strain MnB1. *Geochim. Cosmochim. Acta* **2003**, *67*
528 (14), 2649–2662.

529 (42) Pan, C.; Liu, H.; Catalano, J. G.; Qian, A.; Wang, Z.; Giammar, D. E. Rates of Cr(VI)
530 Generation from Cr_xFe_{1-x}(OH)₃ Solids upon Reaction with Manganese Oxide. *Environ. Sci.*
531 *Technol.* **2017**, *51* (21), 12416–12423.

532 (43) Clesceri, L. S.; Greenberg, A. E.; Eaton, A. D. *Standard Methods for the Examination of*
533 *Water and Wastewater*, 20th ed.; American Public Health Association, American Water Works
534 Association, Water Environment Federation: Washington, DC, 1999.

535 (44) Zhang, Y.; Lin, Y.-P. Determination of PbO₂ Formation Kinetics from the Chlorination
536 of Pb(II) Carbonate Solids via Direct PbO₂ Measurement. *Environ. Sci. Technol.* **2011**, *45*, 30.
537 <https://doi.org/10.1021/es1039826>.

538 (45) Brezonik, P. *Chemical Kinetics and Process Dynamics in Aquatic Systems*; Routledge,
539 2018.

540 (46) Nadupalli, S.; Koorbanally, N.; Jonnalagadda, S. B. Kinetics and Mechanism of the
541 Oxidation of Amaranth with Hypochlorite. *J. Phys. Chem. A* **2011**, *115* (27), 7948–7954.
542 <https://doi.org/10.1021/jp202812f>.

543 (47) Liu, H.; Korshin, G. V.; Ferguson, J. F. Interactions of Pb(II)/Pb(IV) Solid Phases with
544 Chlorine and Their Effects on Lead Release. *Environ. Sci. Technol.* **2009**, *43* (9), 3278–3284.
545 <https://doi.org/10.1021/es803179b>.

546 (48) Lytle, D. A.; Schock, M. R. Formation of Pb(IV) Oxides in Chlorinated Water. *J. Am.*
547 *Water Works Assoc.* **2005**, *97* (11), 102–114.

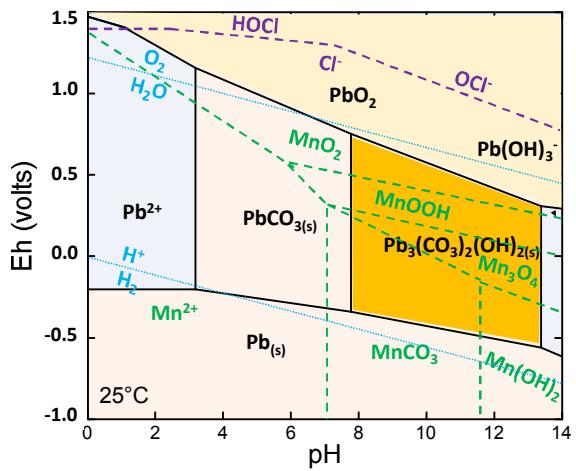
548 (49) Bae, Y.; Giamar, D.; Ivarson, A.; Mishra, A.; Pasteris, J.; Schattner, L. The Ability of
549 Orthophosphate to Limit Lead Release from Pipe Scales When Switching from Free Chlorine to
550 Monochloramine. In *2018 Water Quality Technology Conference*; 2018.

551 (50) McKenzie, R. The Adsorption of Lead and Other Heavy Metals on Oxides of Manganese
552 and Iron. *Aust. J. Soil Res.* **1980**, *18* (1), 61. <https://doi.org/10.1071/SR9800061>.

553 (51) Hill, A. S.; Friedman, M. J.; Reiber, S. H.; Korshin, G. V.; Valentine, R. L. Behavior of
554 Trace Inorganic Contaminants in Drinking Water Distribution Systems. *J. Am. Water Works
555 Assoc.* **2010**, *102* (7), 107–118. <https://doi.org/10.1002/j.1551-8833.2010.tb10153.x>.

556 (52) Gerke, T. L.; Scheckel, K. G.; Schock, M. R. Identification and Distribution of
557 Vanadinite ($Pb_5(V^{5+}O_4)_3Cl$) in Lead Pipe Corrosion By-Products. *Environ. Sci. Technol.* **2009**,
558 *43* (12), 4412–4418. <https://doi.org/10.1021/es900501t>.

559

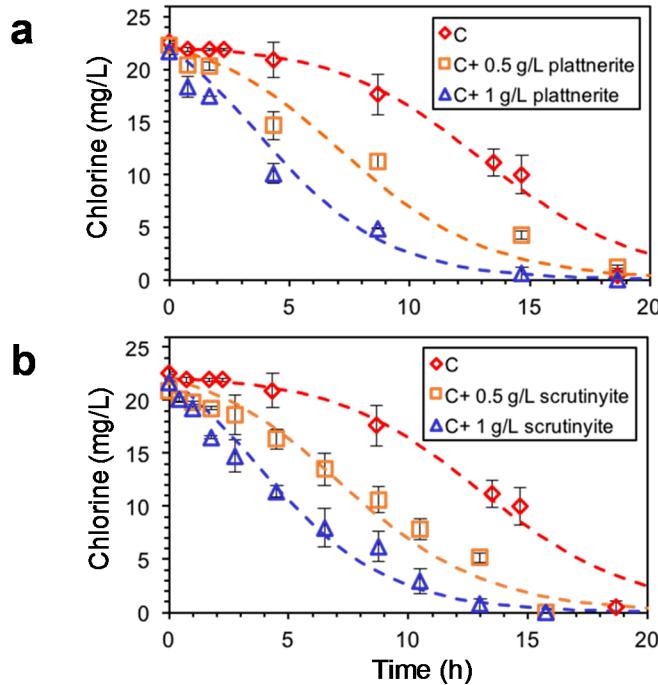

Table 1 Definitions and units for constants in kinetic model.

Constants	Definitions	Units
$^{*}[\text{HOCl}]_0$	Initial free chlorine concentration	mM
Pb(II)_0	Initial Pb(II) carbonate concentrations	mM
$\text{Pb(IV)}_{\text{add}}$	The concentration of Pb(IV) solids added	mM
$\delta\text{-MnO}_2$	The concentration of Mn(IV) formed in the batch experiments	mM
k_1^{*}	Rate constant of homogeneous Pb(II) carbonate oxidation by chlorine	$\text{M}^{-1} \cdot \text{h}^{-1}$
k_2^{*}	Rate constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by PbO_2 generated <i>in situ</i>	$\text{M}^{-1} \cdot \text{h}^{-1}$
k_3^{*}	Rate constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by scrutinyite	$\text{M}^{-1} \cdot \text{h}^{-1}$
k_4^{*}	Rate constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by plattnerite	$\text{M}^{-1} \cdot \text{h}^{-1}$
k_5^{*}	Rate constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by manganese oxide	$\text{M}^{-1} \cdot \text{h}^{-1}$
k_2	Apparent constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by PbO_2 generated <i>in situ</i>	$\text{M}^{-2} \cdot \text{h}^{-1}$
k_3	Apparent constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by scrutinyite	$\text{M}^{-2} \cdot \text{h}^{-1}$
k_4	Apparent constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by plattnerite	$\text{M}^{-2} \cdot \text{h}^{-1}$
k_5	Apparent constant for heterogeneous Pb(II) carbonate oxidation by chlorine catalyzed by manganese oxide	$\text{M}^{-2} \cdot \text{h}^{-1}$

562 **Table 2. Constants for modeling the dynamics of HClO during Pb(II) carbonate oxidation at**
 563 **pH 7.5.**

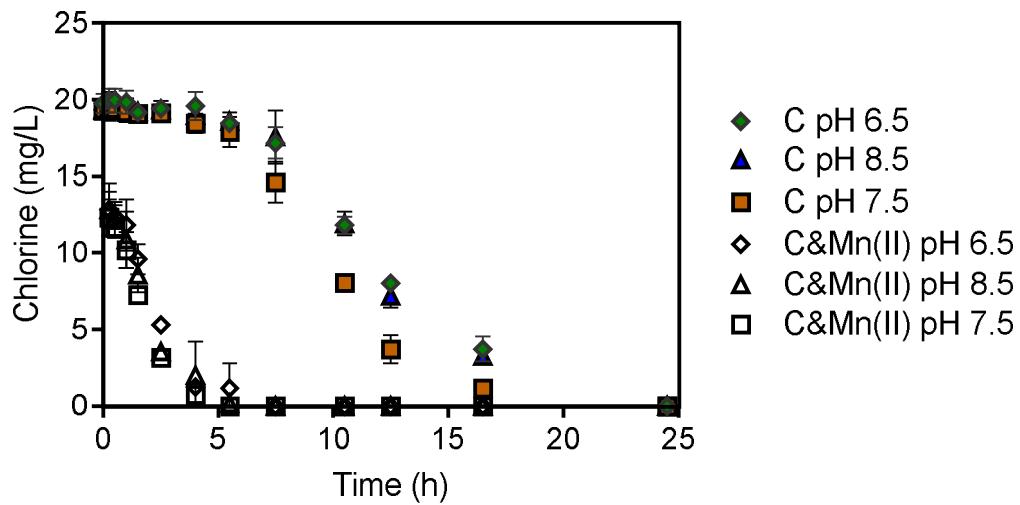
Constants	Cerussite	Hydrocerussite	References
k_1^*	$20.0 \pm 4.0 \text{ M}^{-1} \cdot \text{h}^{-1}$	$30.0 \pm 2.4 \text{ M}^{-1} \cdot \text{h}^{-1}$	our study
k_2	$(5.5 \pm 1.1) \times 10^5 \text{ M}^2 \cdot \text{h}^{-1}$	$(7.5 \pm 0.6) \times 10^5 \text{ M}^2 \cdot \text{h}^{-1}$	our study
k_3	$(6.0 \pm 1.3) \times 10^3 \text{ M}^2 \cdot \text{h}^{-1}$	$(6.0 \pm 1.0) \times 10^3 \text{ M}^2 \cdot \text{h}^{-1}$	our study
k_4	$(6.0 \pm 1.2) \times 10^3 \text{ M}^2 \cdot \text{h}^{-1}$	$(4.0 \pm 0.7) \times 10^3 \text{ M}^2 \cdot \text{h}^{-1}$	our study
k_5	$(3.0 \pm 0.3) \times 10^6 \text{ M}^2 \cdot \text{h}^{-1}$	$(5.5 \pm 0.6) \times 10^6 \text{ M}^2 \cdot \text{h}^{-1}$	our study

564



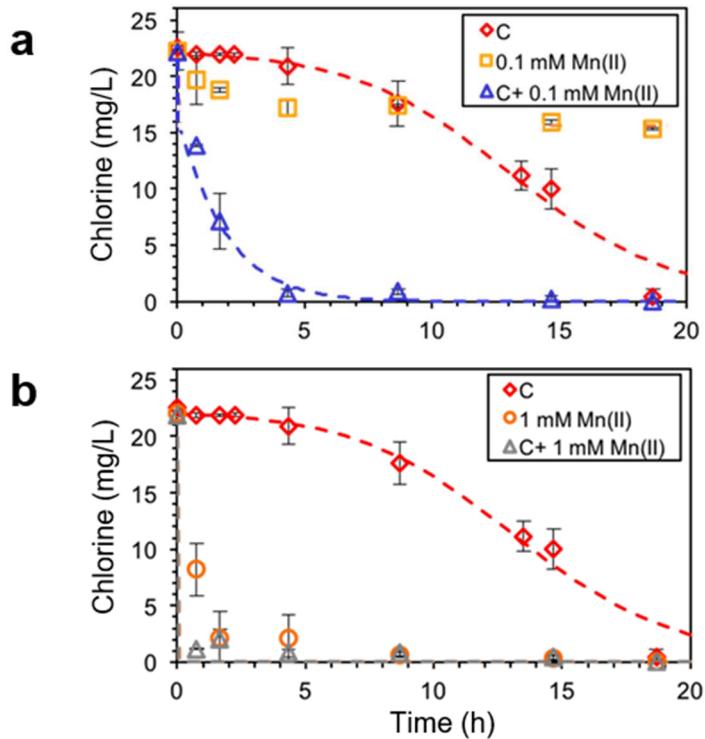
567 **Figure 1.** Eh-pH diagram of Pb-Mn-Cl at 25 °C and 1 bar total pressure. Predominance areas were
 568 calculated for conditions with 2 mM Pb, 0.1 mM Mn, and 0.2 mM inorganic carbon. Boundaries
 569 of predominance areas are shown for chlorine (purple), lead (black), and manganese (green)
 570 species. Blue lines indicate the stability limits of water.

571

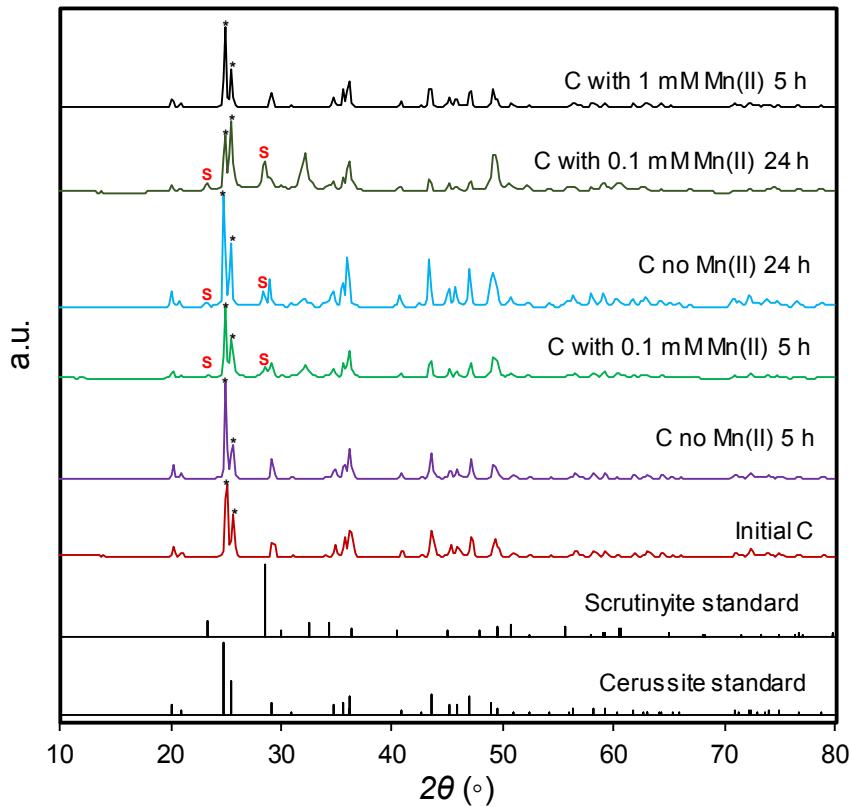

572 **Figure 2.** Conceptual model of PbO₂ formation from cerussite considering PbO₂ autocatalytic and
573 MnO₂ catalytic effects. Both the hypochlorite ion and hypochlorous acid can oxidize Pb(II) to
574 Pb(IV), and only the hypochlorite ion is shown here for the sake of simplicity.

575

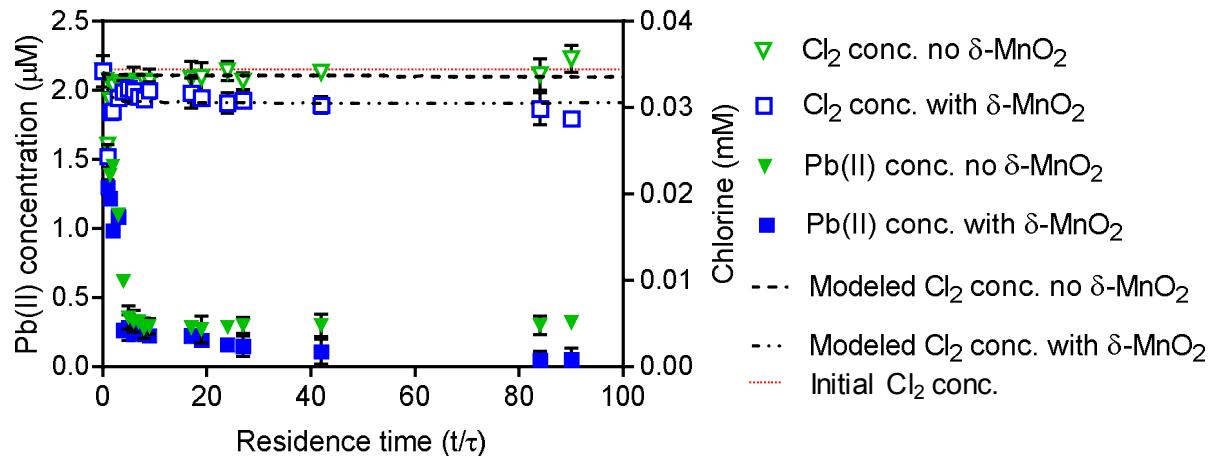
576 **Figure 3.** Oxidation of cerussite (C) by chlorine with and without (a) plattnerite and (b) scrutinyite.


577 Conditions: $\text{pH} = 7.5 \pm 0.2$, initial free chlorine = 0.31 mM (22 mg/L as Cl_2), initial cerussite = 2
 578 mM as Pb, DIC = 0.2 mM as C. Experimental results are shown as points and modeling results are
 579 shown as dashed lines. The average values from duplicate experiments are shown, and the error
 580 bars represent the standard deviation from the duplicate experiments.

581


582 **Figure 4.** Effect of pH on cerussite oxidation. Condition: initial free chlorine = 0.31 mM (22 mg/L)

583 as Cl_2 , initial Pb = 2mM, carbonate = 0.2 mM as C. Experimental results were shown as points.


584

585 **Figure 5.** Oxidation of cerussite (C) by chlorine with (a) 0.1 and (b) 1 mM Mn(II) concentrations.
 586 Conditions: $\text{pH} = 7.5 \pm 0.2$, initial free chlorine = 0.31 mM (22 mg/L as Cl_2), initial Pb = 2 mM,
 587 carbonate = 0.2 mM as C. Experimental results are shown as points and modeling results are shown
 588 as dashed lines. The average values from duplicate experiments are shown, and the error bars
 589 represent the standard deviation from the duplicate experiments.

590

591 **Figure 6.** X-ray diffraction patterns of solids from cerussite (C) oxidation experiments. Dominant
 592 peaks associated with scrutinyite and cerussite were indicated, and reference powder diffraction
 593 file patterns are included for these phases (04-008-7674 and 01-073-4362). The main peaks of
 594 scrutinyite are indicated as S. The main peaks of cerussite are indicated as *.

595

596 **Figure 7.** Effluent lead and chlorine concentrations from flow-through experiments with cerussite
 597 in the absence and presence of $\delta\text{-MnO}_2$. Experiments were conducted at a hydraulic residence time
 598 of 20 minutes. Samples were not taken during the middle of the experiments (50 to 80 τ). Modeling
 599 results are shown as dashed lines. Conditions: $\text{pH} = 7.5 \pm 0.2$, initial free chlorine = 0.034 mM
 600 (2.4 mg/L) as Cl_2 , initial $\text{Pb} = 2 \text{ mM}$, carbonate = 0.2 mM as C.