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Interconnected Power System Operation

~37 in the WECC, 140 Control Areas in North America 



Graphical View of a Unit Committment
Forecasted Power Needs for 
time t (Bids).  Forecasts 
made at time t-6 Hours

Generating Resources 1-5 Available 
(Offers)

At time t-6 Hours, which 
generating resources do 
we select to meet 
tomorrow’s needs (while 
preserving security) ?
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System Frequency 
Indicates Mismatch Between Load and Generation

Stored 
Kinetic Energy

2

2

1
J Speed of rotation

(also the system 
frequency)

Synchronous
System

Q. When a load is instantly 
turned on, where does the 
power come from?

A.    Initially from the stored 
kinetic energy of the system, 
followed by increased turbine 
power

Conservation of Energy
•If there is more load than generation, stored 
kinetic energy will decrease, and frequency 
will fall.

•If there is more generation than load, stored 
kinetic energy will increase, and frequency 
will raise.

Inertia, or “mass”
of the systemExciter LP MP HPGenerator



Hz & V/Hz Regulation Bands
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Sample Balance Data – PJM
Load is never exactly as we forecasted



Tail Events from BPA System Wind in 
2010
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How do 
we 
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these?

How do 
we 
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On Feb 26, 2008, 
Industrial load tripping 
in Texas worked well 
to manage a 1400 
MW wind power loss 
in a 5 minute time 
frame.



Frequency Excursion

The slope of this line indicates the 
system inertia.  Stored rotating energy is 
supplying 950MW due to the lost Diablo 
Generator

I wonder how far frequency will fall before 
speed droop regulation kicks in… I hope not 
below 58.5 Hz (under frequency load shed 
setpoint)



Common Means of Managing System 
Imbalance

Resources Operations Flexibility

• Storage
• Demand response

• Smart Charging 
EVs

• Residential
• Industrial
• Commercial

• Traditional generation
• Additional 
transmission

• Balancing Area 
Consolidation 
(ISO formation)

• Generator Schedule 
Compression

• Dynamic scheduling of 
loads and resources

• Improved forecasts for 
wind, solar, and load

• Improved (stochastic) 
commitment process

• The variable resource itself 
(regulation down and up if 
spilling)

• Expansion of system 
flexibility (expanded ramp 
rates, start up times, etc)

• Optimization of hydro 
resources (in coordination 
with environmental 
constraints)



Grid Reliability

 What is reliability?
 It’s “the lights coming on when I need them on”

 This definition doesn’t care why they didn’t come on, nor does it care 
what part of the system didn’t do its job.

 Two components

 Adequacy- is there enough generation?

 Security- is the grid robust enough to withstand a disturbance?

 System reliability is often thought of from two perspectives:
 Transmission level reliability

 Distribution level reliability

 The distinction between the two helps to focus solutions

 From a PUC perspective, what is the right amount of reliability 
and how do we measure it?



Grid Reliability

 From a transmission point of view, there are several possible 
metrics that can be used for system reliability.

 Measured
 ACE (CPS1 and CPS2) – N/A for Hawaii

 TLR levels on transmission line loading- N/A for Hawaii

 Substation voltage fluctuations

 Raw frequency deviations, beyond specified limits

 Amount of MW Hours of under frequency load shedding per year

 Analyzed
 N-1 contingency analysis

 Voltage, stability, line overload

 Available reserves

 Loss of Load Probability



Grid Reliability

 From a distribution perspective
 SAIDI- System Average Interruption Duration Index [Hours] 

 “I have 4-nines of reliability! Power is served all by one hour per year! 
Yeah!

 SAIFI- System Average Interruption Frequency Index 
[interruption/customer]

 “Oops, I had 3600 interruptions, each lasting one second”

 Voltage regulation

 Harmonics 



Grid Reliability EQUALS Money

The Reliability Yin-Yang:

If you give me money, I will give you reliability

(Reliability is a choice… safety, not so much)


