SAND2012- 4402P
Sandia

Exceptional service in the national interest National

Laboratories

More-reliable Methods of Verification for
FPGA-based Digital Systems

Ensuring that critical control systems will perform as expected

A fundamental question for Sandia high-consequence .
electronics involves the reliability of field £
programmable gate array (FPGA)-based control
systems. Many critical-system electronic components
are being replaced by modern digital devices, thus
dramatically increasing system complexity. Such
systems include those used in aerospace applications,
as well as those upgraded as part of nuclear weapons
life-extension programs, and the updated designs
commonly rely on FPGAs to implement sophisticated
logic. A key outcome of this trend is the need to
validate the performance of such digital systems to
the greatest extent possible (fig. 1).

Figure 1. Searching immense volumes of code for
faults/vulnerabilities can be a daunting proposition.

FPGAs

Ubiquitous in modern hardware, FPGAs are

electronic components that are somewhat akin to a tabula rasa, a blank page. Perhaps a
more appropriate analogy would be a child’s play tool for improving reading—a
magnetic slate filled with movable words that the child can reconfigure into a variety of
meaningful sentences. In FPGAs, the words are logic blocks that can be connected
together in a variety of configurations determined by a user who is addressing specific
hardware design requirements. Based upon tools provided by the vendor, FPGAs are thus
designed to be configured by a customer after manufacturing, that is, after their logic
functional blocks are implemented. One advantage of FPGAs over custom hardware is
that they are harder to attack because the design for a processing functionality is not pre-
loaded onto a device. Among their other uses, FPGA characteristics make them suitable
for implementing
cryptographic
applications. However,
while they offer this attack
resistance and flexibility,
they can also comprise yet -
another source of S

problematic issues, in that,

. . s
1n using the vendor’s tools to . Figure 2. The process of using vendor tools on design code to
conﬁgur c thema a hardware engineer pattern the logic elements of FPGAs for critical systems may
may introduce unintended introduce unanticipated vulnerabilities that simulation would not
vulnerabilities (fig 2). necessarily account for.

U.S. DEPARTMENT OF Sandia National Laboratories is a multi-program laboratory managed and operated by

4 Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
E N E RGY U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
< AC04-94AL85000. SAND



SIMULATION

Typically, validation of such systems has relied primarily on simulation, a technique that
can inform the hardware designer whether the system can indeed perform as intended,
that is, whether the design’s intent is preserved and reflected in its implementation and
performance. As a validation tool, simulation, has its limitations, however. First, for
stateful systems—that is systems with a large number of possible states—run times for
simulations can become prohibitively long. For example, using a state-of-the-art
simulator, the time required to simulate all

possible combinations of inputs (each input

can take a value of 0 or 1) for an n-bit adder is 1 [

a matter of microseconds for n =4, and still 2 16 ps

less than 100 milliseconds (one-tenth of a 4 256 ps

second) for n = 8. But the simulation run time 8 65 ms

jumps to over one hour for n = 16, and for n = 16 1.2 hr

32 becomes a remarkable 583,000 years (fig. 32 584,942 yr

3). The type of stateful systems involved

in much of Sandia’s mission space are Figure 3. Comparative run times for “complete” simulations

of an n-bit adder.

often prohibitively difficult to simulate.
And there is yet an even more crucial
issue with simulation, namely that it can be somewhat blind to bugs, able to discover
them only if clever test cases are used as the basis for guiding which system properties to
simulate. There is no guarantee that disastrous bugs will all be discovered. While
simulating a system can inform designers that it does what was intended in its design, it
cannot necessarily also verify that it does not do what was not intended. In other words,
simulation is generally not good at catching all unintended operational states—bugs—in
a design.

In over 10 years working in the semiconductor
industry for a leading FPGA company, Yalin Hu
was repeatedly faced with this validation dilemma.
As she poses it: “Through the years, I have seen
customers facing the same question again and
again: ‘how do I know . . . how confident can I be .
.. that what I want is what I get”?

Initial state

Upon her arrival at Sandia, Yalin noted that there
were critical systems caught in this limbo, whereby
simulation was the primary tool being employed for
verification, even while other validation and
verification methodologies were beginning to enter

the broader realm of FPGA-based
system analysis. Using the vehicle of
an early career LDRD research award,
Yalin has been adopting and

Figure 4. Simulation uses test cases to examine a system’s state space
in a somewhat incoherent fashion, and the probability of bug discovery
is highly dependent on the cleverness of the test cases used to guide the
simulations. Bugs are easily missed. By contrast, formal verification
systematically searches state space regions for bugs; eventually, the FV
algorithm will search the entire state space, discovering all bugs.




modifying other methods for verification of Sandia critical systems.

FORMAL VERIFICATION

These methods fall under the rubric of formal verification, a compendium of approaches
employing rigorous mathematical proof that a hardware design satisfies certain specified
properties. These include specific functionalities, timing properties, structural properties,
and fault tolerance. Logically, this more-rigorous approach is necessary for mission-
critical Sandia systems that are highly concurrent (simultaneously processing several data
streams in parallel), that often operate in harsh environments (such as the high-radiation
environment of outer space), and that, of course, are high-consequence systems, whose
failure can have catastrophic outcomes, and whose fault tolerance is rather restricted.
Formal verification is a technique to catch faults, that is, to verify that a system’s array of
reachable states does not include properties and states that were not intended in its
design. It exhaustively explores all regions of a system’s state space to uncover such

incorrect system behaviors (fig. 4).

Under that formal verification umbrella are the techniques of model checking (MC) and
theorem proving (TP). Each has its advantages and its drawbacks. Model checking is a
computationally intensive approach in that it entails an exhaustive examination of a
system’s collection of reachable states (its state space) to check that desired properties
hold. This is, of course, a formidable task for complex (stateful) systems because of the
large number of states that must be validated. Theorem proving is a method for logical
derivation of system properties that is performed by mathematically defining the system’s
implementation. This is far from a trivial endeavor, requiring a significant investment of
human intervention to construct such a mathematical definition of the system.

In order to facilitate the application of
these more-rigorous methods to Sandia
critical systems, this project is studying
RAM (random access memory) a quite
stateful system and is, more importantly,

employing a decomposition approach, that

is, breaking down a high-complexity
problem to several lower-complexity
problems.

DECOMPOSITION
Up to this point, there has been a relative

dearth of research into this decomposition

methodology, and therefore, Yalin Hu’s
LDRD research stands to provide Sandia
critical systems with a great advantage in

terms of their trusted functionality. The
approach can be most easily expressed as

Comparison of Runtimes for RAM (M=16)

100000

= 1E+180

| 1 2
—_ 10000 1E+160 ¢
s 2 1E+140 =
ERA 120 3
L 1000 2+12 b
2 2 e
i 1E+100 2
P 100 IE+B0 %
E LE+60 E
- s - ’
- 10 X 1E+40 2
- N~ o
= xﬂ“" 1E+20

£ 1 R .

'd

=

2 6 10 14 18 22 26 30 34 38

Memory Size (N)
Number of States ~=#¥== Unaltered Runtime

Decomposition Runtime

Figure 5. Comparison of runtimes for model checking of increasing RAM
sizes, run as a single large problem (red) and as a set of decomposed
problems (green). As the state space explodes with a problem of larger
sizes, the runtime becomes prohibitive, but remains relatively stable for the
decomposed problem.




decomposing a problem of size P(N x 2) into N problems of size P(2™). What this
effectively does is to generate problems of a size that can be solved in a reasonable time
period (fig. 5). Naturally, one must ultimately prove that such decomposition approaches
have full validity, and part of this research is aimed at verifying that this is true. Such
verification would pave the way for the use of the far more rigorous model checking with
decomposition in validating critical Sandia systems.

The parallel formal verification approach of theorem proving is also a focus of this
research, in that, currently, the theorems to mathematically represent a system are
manually generated, consuming inordinate amounts of staff time. Were the
decomposition approach successful in defining lower-complexity problems, a future goal
would be to have the TP theorems be machine generated, and the hope is to develop
algorithms to ultimately accomplish this. The possibility of automatizing the entire
process of formal verification—model checking, theorem generation, and theorem
proving —would represent an immense time savings to implement processes that would
come much closer to ensuring the precise functionality of modern digital systems.

Finally, this research is not abandoning simulation, but is rather attempting to improve it.
A process known as “assertion-based verification” can act as a bridge, introducing some
features of formal verification into simulation to help devise simulation test cases in a
more-rigorous fashion, thereby ultimately strengthening simulation as a verification tool.

It is rather obvious that within this critical systems domain, the consequences of getting it
wrong, that is, of validating a system that may still, for example, possess a bug making
possible a system state leading to control failure would be dire, potentially leading to loss
of equipment, loss of life, and even catastrophic doomsday scenarios. These
considerations boldly underline the critical nature of this research, work that should be
strongly supported in every possible way.



