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Outline 

 Overview of the Spectral Element method in CAM.   

 Spectral elements for the horizontal 

discretization 

 Vertically Lagrangian (Lin 2004) from CAM-FV 

 Global high resolution:  CAM at 1/8° 

 Computationally ready 

 Parameterizations need some work 

 Variable resolution:  CAM with localized regions at 1/8° 

 Initial goal:  Efficient “test-bed” for global 1/8° 

 Initial focus:  US mid-west diurnal propagating 

systems  
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The Community Earth System 

Model (CESM) 

 IPCC-class model coupling atmosphere  

ocean, ice and land components 

 Seasonal and interannual variability in 

the climate 

 Explore the history of Earth‟s climate 

 Estimate future of environment for policy 

formulation 

 Contribute to assessments 

 Developed by NCAR, National Labs and 

Universities.  

CESM component acronyms:   

CAM:  Community Atmosphere Model 

CAM5:  Version 5 physics including prognostic aerosols 

CAM-SE:  CAM with spectral element dynamical core from HOMME 

HOMME:  High-Order Method Modeling Environment 
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Spectral Element Method 

 Spectral Elements:  A Continuous Galerkin Finite Element 

Method  
 Uses finite element grids made of quadrilateral elements 

 Galerkin formulation, with a Gauss-Lobatto quadrature based 

inner-product 

 Basis/test functions: degree p polynomials within each element, 

continuous across elements.  Usually p=3 

 Simple Pn-Pn element  (velocity and pressure are both in Pn) 
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Spectral Element Method 

 High-order (4th) discretization 

 Mimetic/compatible numerics: 
 Discretization preserves adjoint properties of div, 

grad and curl operators 

 Discrete versions (element level) of Stokes and 

Divergence theorem 

 Result: excellent local conservation, even for 

equations not written in conservation form:  mass, 

energy, potential temperature, 2D PV. 

 All properties preserved on fully unstructured 

grids 

 Simple Pn-Pn element  (velocity and pressure 

are both in Pn), stabilized with hyper-viscosity 
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CAM4 Scalability,  

ANL Intrepid  0.25°  (28km) 

 Compare CAM with SE, FV and EUL (global spectral) dycores 

 CAM-SE achieves near perfect scalability to 1 element per core (86,000 

cores).  Peak performance:  12.2 SYPD.   

 Atmosphere only times.  Full CESM runs ~50% slower because of other 

components 
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CAM4 Scalability 

Intrepid and JaguarPF   1/8° (14km)  

• Excellent scaling to near full machine on both LCFs: 

• Intrepid (4 cores/node):   Excellent scalability, peak performance at 115K cores, 3 

elements per core, 2.8 SYPD.         

• JaguarPF (12 cores/node):  Good scalability, peak performance at 172,800 cores 

(2 elements per core), 6.8 SYPD.    
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Global 1/8°  

CAM5-SE has a very efficient, scalable 

and expensive global 1/8° configuration. 
 
• 6M core hours per year (ANL Intrepid) 

• Yellowstone: 1-2M core hours?   

• 3.1M physics columns 

• dtime=600, dynamics dt=9.2 

   

SGP 8x Regionally Refined  

1° global resolution, refined to 1/8° 

continental sized region centered over 

SGP ARM site.   
 
• 0.12 M core hours per year (Sandia Linux 

cluster).    

• 67K columns.   

• dtime=600, dynamics dt=7.9 

CAM5-SE at 1/8°  
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CAM5-SE 1/8° Simulations 

 Many topographically induced precip biases 

substantially reduced 

 Produces cat5 tropical cyclones.  CAM5 

physics produces more realistic cyclones. 

 Nastrom-Gage transition in KE is well 

simulated, indicating more realistic 

mesoscale variability 

 Large scale climate biases typically not 

improved.  Some longstanding CAM biases 

degraded:   
 LWCF weakens in mid-latitudes 

 Icelandic low intensifies 

 US mid-west diurnal propagating systems 

dramatically improved. 
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CAM5-SE at 1/8° 

Precipitable water animations  

Category 5 storm in the Gulf of 

Mexico 

Fujiwhara effect in the Pacific 
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US mid-west diurnal propagating systems 

June-July 

Matsui, T., D. Mocko, M.-I. Lee, W.-K. Tao, M. J. Suarez, and R. A. Pielke 

Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate over 

the conterminous U.S. Geophys. Res. Lett., 37, L13807, 

doi:10.1029/2010GL044139 
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Tropical Rainfall 

Measuring 

Mission 

(TRMM) 

(35-45N, 

mm/day) 
Utah East 

Coast 
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Global 1/8° Simulation 
 

Snapshots show propagating 

convective system not seen at lower 

resolutions.  Detailed frontal structure 

and tapping of moisture  

Regionally Refined 

Simulation 
 

Similar convective systems form in 

the 1/8° region, strongly dissipated 

as it propagates into the 1° region     

 

Precipitable water (gray), precip rate (color), sea level 

pressure (contours) 
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Global 1/8° Simulation 
 

Snapshots show propagating 

convective system not seen at lower 

resolutions.  Detailed frontal structure 

and tapping of moisture  

Regionally Refined 

Simulation 
 

Similar convective systems form in 

the 1/8° region, strongly dissipated 

as it propagates into the 1° region     

 

Precipitable water (gray), precip rate (color), sea level 

pressure (contours) 
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Precip Hovmoller Diagrams 

June/July 1° Resolution 
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June/July 1/8°    

2000-2004 2000 YEAR 1-

4 

2005-2006 

TRMM                                  Global 

1/8                                  

Var. 

Resolution                                 



18 

April/May 1/8°    

2000-2004 2000 YEAR 1-

4 

2005-2006 

TRMM                                  Global 

1/8                                  

Var. 

Resolution                                 
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Backup slides 
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Galerkin FE Approach Ideal for  
Modern Architectures 

 Galerkin formulation of the equations leads to a 2 step solution procedure: 

 Step 1:   All computations local to each element and on a tensor-product grid.  

Structured data with simple access patterns and arithmetically intensive 

operations:  Extremely efficient  on modern CPUs or GPUs 

 Step 2:  Apply inverse mass matrix (projection operator).   

 All inter-element communication is embedded in Step 2, providing a clean 

decoupling of computation & communication.   

 Only a single routine has to be optimized for parallel computation.  

 Gordon Bell Awards:  2000 (best performance, NEK5000), 2001 (honorable 

mention, HOMME) , 2003 (best performance, SPECFEM3D) 
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Pn – Pn     

Wave Propagation 

  

•Diagonal mass matrix makes the method 
attractive for time-dependent, explicit problems 
(wave propagation and geophysical flows) 

•High-order representation of resolved waves, 
even on unstructured grids 

•Near grid-scale waves ( λ < 2πh/(2n+1) ) are 
“erratic”:  method requires stabilization to control 
these waves. 

•Ainsworth & Wajid, Dispersive and dissipative 
behavoir of the spectral element method, SINUM 
2009. 
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“SGP 8x” Variable Resolution Grid 

1° global -> 1/8° regional  

 

Unsmoothed 
Grid generated with 

CUBIT GUI-based 

meshing tool.  Starting 

with global grid, apply 

refinement in selected 

regions.   

Smoothed 
CUBIT‟s Winslow 

smoothing option uses 

metric appropriate for 

spectral elements.  But 

also smooths  the cube 

corners – Need option to 

apply smoothing in 

limited region.  
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CAM-FV  110km 
Sea Level Pressure:  Icelandic Low 
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CAM-SE  110km 
Sea Level Pressure:  Icelandic Low 
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CAM-SE  13km 
Sea Level Pressure:  Icelandic Low 
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CAM-SE  110km + SGH 
Sea Level Pressure:  Icelandic Low 

 

Some improvement with 
more consistent 
topography and surface 
roughness  boundary data 
sets.  (Lauritzen, 
Bacmeister, Taylor, Neale, 
JAS, under review.) 
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  Kinetic Energy Spectra 

KE spectra from aircraft observations (symbols, Nastrom and Gage 1985) and 

functional fit (solid line, Lindborg, 1999).  Figure from Skamarock, 2004. 

Nastrom-Gage transition in KE 
spectra  

Mesoscale shallowing: 

Transition from a -3 regime 
(representative of quasi-2d 
large scale flow) to a -5/3 
regime (associated with 
increased variability, increased 
frequency of extreme events) 

Resolving the -5/3 regime  
considered necessary if not 
sufficient to simulate correct 
mesoscale variability 

Determine effective resolution, 
following Skamarock 2004 
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  Kinetic Energy Spectra 

 Nastrom-Gage transition resolved in CAM at 1/8.   

 Effective resolution (Skamarock 2002)  ~7dx = 100km at 1/8   

 Divergence component?  
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Long Wave Cloud Forcing 
CAM-FV 1° and observations 

CAM LWCF:  close to observations in the tropics, to weak in mid-

latitudes.   
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Long Wave Cloud Forcing 

CAM-FV 1° 
CERES2 

CAM-SE 1°  
CAM-FV 1° 

CAM-SE 1/4°  
CAM-SE 1° 

•At 1 degree resolution – very little sensitivity to the dycore 

•Increasing resolution to ¼ degree: large drop in clouds, LWCF, 

independent of dycore.   

•Change is to large to „tune‟:  CAM-SE ¼ degree run already using 

unreasonably low cloud thresholds (rhminh=.68, rhminl=.84)  
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Precipitation         

CAM-FV                              CAM-SE             


