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Outline

Overview of the Spectral Element method in CAM.
= Spectral elements for the horizontal
discretization
= Vertically Lagrangian (Lin 2004) from CAM-FV

Global high resolution: CAM at 1/8°
= Computationally ready
= Parameterizations need some work

Variable resolution: CAM with localized regions at 1/8°
= Initial goal: Efficient “test-bed” for global 1/8°
= Initial focus: US mid-west diurnal propagating

systems
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ommunity Earth System
Model (CESM)
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IPCC-class model coupling atmosphere .
ocean, ice and land components S
= Seasonal and interannual variability in
the climate

= Explore the history of Earth’s climate

= Estimate future of environment for policy
formulation

= Contribute to assessments

Modeling the Climate System

Developed by NCAR, National Labs and ) L

Universities. l
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Evaporation
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and Precipitation]

CESM component acronyms:

CAM: Community Atmosphere Model

CAMS5: Version 5 physics including prognostic aerosols
CAM-SE: CAM with spectral element dynamical core from HOMM
HOMME: High-Order Method Modeling Environment
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Spectral Element Method
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Spectral Elements: A Continuous Galerkin Finite Element

Method
= Uses finite element grids made of quadrilateral elements
= Galerkin formulation, with a Gauss-Lobatto quadrature based
inner-product
= Basis/test functions: degree p polynomials within each element,
continuous across elements. Usually p=3
= Simple Pn-Pn element (velocity and pressure are both in Pn)
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- ' Spectral Element Method
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High-order (4" discretization

Mimetic/compatible numerics:

= Discretization preserves adjoint properties of div,
grad and curl operators

= Discrete versions (element level) of Stokes and
Divergence theorem

= Result: excellent local conservation, even for
equations not written in conservation form: mass,
energy, potential temperature, 2D PV.

All properties preserved on fully unstructured
grids

Simple Pn-Pn element (velocity and pressure
are both in Pn), stabilized with hyper-viscosity
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CAM4 Scalability,
ANL Intrepid 0.25° (28km)

CESM1 F1850, ATM component, BGP
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NCORES
Compare CAM with SE, FV and EUL (global spectral) dycores

CAM-SE achieves near perfect scalability to 1 element per core (86,000
cores). Peak performance: 12.2 SYPD.

6 Atmosphere only times. Full CESM runs ~50% slower because of o
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CESM1, ATM component

CAM4 Scalability
Intrepid and JaguarPF 1/8° (14km)

—4—QF 0.125 , JaguarPR
——SE 0.125, Intrepid

K 4K 16K 64K 256K

NCORES

» Excellent scaling to near full machine on both LCFs:

* Intrepid (4 cores/node):

elements per

« JaguarPF (12 cores/node): Good scalability, peak performance at 172 cg,ﬁag

core, 2.8 SYPD.

(2 elements per core), 6.8 SYPD.

Excellent scalability, peak performance at 115K cores, 3
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CAMS5-SE at 1/8°

CAMb5-SE has a very efficient, scalable

and expensive global 1/8°

Global 1/8°

configuration.
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1-2M core hours

6M core hours per year (ANL Intrepid)

Yellowstone

3.1M physics columns

ics dt=9.2

600, dynami

dtime=

d

Ine

SGP 8x Regionally Ref
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0.12 M core hours per year (Sand
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Many topographically induced precip biases

substantially reduced

Produces cat5 tropical cyclones. CAM5

physics produces more realistic cyclones.
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CAMS-SE at 1/8°
Precipitable water animations

NSF/DOE Community Atmosphere Model (CAMS5)

Category 5 storm in the Gulf of
Mexico

Aug 08 01:00

NSF/DOE Community Atmosphere Model (CAMS5)

Fujiwhara effect in the Pacific

Sep 04 23:00 Sandia
" @ National _
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US mid-west diurnal propagating systems
June-July

Diurnal Amplitude [mm /hr]
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Matsui, T., D. Mocko, M.-I. Lee, W.-K. Tao, M. J. Suarez, and R. A. Pielke

Sr., 2010: Ten-year climatology of summertime diurnal rainfall rate oyeg=y Sandia
12 the conterminous U.S. Geophys. Res. Lett., 37, L13807, el P
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- WPrecipitable water (gray), precip rate (color), sea level

pressure (contours)

182 18 Apr 2004
Precipitable g™
Water (mm) - )

Global 1/8° Simulation

Snapshots show propagating
O Lpde” N convective system not seen at lower
QS (A Y resolutions. Detailed frontal structure

’ \a and tapping of moisture

Precipitation (mm/day)

Precipitable
Water (mm)

Regionally Refined
Simulation

Similar convective systems form in
the 1/8° region, strongly dissipated

25

21:: as it propagates into the 1° region
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ecipitable water (gray), precip rate (color), sea level

pressure (contours)

Global 1/8° Simulation

Snapshots show propagating
convective system not seen at lower
resolutions. Detailed frontal structure
and tapping of moisture

Regionally Refined
Simulation

Similar convective systems form in

the 1/8° region, strongly dissipated
as it propagates into the 1° region
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Precip Hovmoller Diagrams
June/July 1° Resolution
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Composite TRMM June and July Precipitation (N. America)

hour (UTC)
composite hour (UTC)
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April/May 1/8°

Global Varr.
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Backup slides
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P
| Galerkin FE Approach Ideal for
Modern Architectures

Galerkin formulation of the equations leads to a 2 step solution procedure:
= Step 1. All computations local to each element and on a tensor-product grid.
Structured data with simple access patterns and arithmetically intensive
operations: Extremely efficient on modern CPUs or GPUs
= Step 2: Apply inverse mass matrix (projection operator).

All inter-element communication is embedded in Step 2, providing a clean
decoupling of computation & communication.
= Only a single routine has to be optimized for parallel computation.
= Gordon Bell Awards: 2000 (best performance, NEK5000), 2001 (honorable
mention, HOMME) , 2003 (best performance, SPECFEM3D)
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Wave Propagation

>

Diagonal mass matrix makes the method
attractive for time-dependent, explicit problems
(wave propagation and geophysical flows)

High-order representation of resolved waves,
even on unstructured grids

Near grid-scale waves ( A < 21th/(2n+1) ) are
“erratic’: method requires stabilization to control
these waves.

*Ainsworth & Wajid, Dispersive and dissipative
behavoir of the spectral element method, SINUM
20009.
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“SGP 8x” Variable Resolution Grid
1° global -> 1/8° regional

Unsmoothed

Grid generated with
CUBIT GUI-based
meshing tool. Starting
with global grid, apply
refinement in selected

= ] regions.
- |
i .
Smoothed
CUBIT’s Winslow

smoothing option uses
metric appropriate for
spectral elements. But
also smooths the cube
corners — Need option to

apply smoothin ig z
h - andia
limited regI@ National
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Sea Level Pressure: Icelandic Low

DJF

cam5.1_amip_1d_002 (yrs 1981-2000) NCEP

Sea-level pressure millibars Sea-level pressure millibars

MEAN=1013.21 Min= 98525 Max=1037.97 MEAN= 1012.58 Min= 994.30 Max=1033.93

981 987 1003 1008 1015 1021 1027 1033 891 897 1003 1008 1015 1021 1027 1033
cam5.1_amip_1d_002 - NCEP

Sea-level pressure millibars
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2 /) CAM-SE 110km

Sea Level Pressure: Icelandic Low

DJF

fc5_ne30f09b (yrs 2-5) NCEP

Sea-level pressure millibars Sea-level pressure millibars

MEAN= 1013.36 Min=995.29 Max= 1034.00 MEAMN= 1012.58 Min= 994.30 Max=1033.93

91 997 1003 1008 105 1021 1027 1033 991 997 1003 1008 105 1021 1027 1033
fc5_ne30f09b - NCEP
Sea-level pressure millibars

MIN =-12.06 MAX = 825
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o > CAM-SE 13km

Sea Level Pressure: Icelandic Low

DJF

CAMSE (yrs 2004-2005) NCEP

Sea-level pressure millibars Sea-level pressure millibars

MEAN= 1009.87 Min=992.28 Max=1037.09 MEAN= 1012.58 Min= 994.30 Max=1033.93

991 987 1003 1008 1015 1021 1027 1033 991 997 1003 1008 1015 1021 1027 1033
CAMSE - NCEP

Sea-level pressure millibars

MIN =-12.44 MAX = 255
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- /.}' CAM-SE 110km + SGH

Sea Level Pressure: Icelandic Low

DJF

fc5ne30a (yrs 2-6) NCEP

Sea-level pressure millibars Sea-level pressure millibars

Some improvement with
more consistent
topography and surface
roughness boundary data
sets. (Lauritzen,

3 _ Bacmeister, Taylor, Neale,
VEAL 0428 T8 Mo ESZE V- 2D Mo 5430 U 0030 JAS, under review.)

991 997 1003 1009 1015 1021 1027 1033 991 997 1003 1008 1015 1021 1087 1033

fc5ne30a - NCEP

Sea-level pressure millibars

MIN = -8.94 MAX = 9.32
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Kinetic Energy Spectra

Wavelength (km)
10° 102 10’ 100

eox Nastrom and Gage (1985) a Nastrom-Gage transition in KE
Lindborg (1999), eqn 71 spectra

108 @ Mesoscale shallowing:
E

@ Transition from a -3 regime
(representative of quasi-2d
large scale flow) to a -5/3
regime (associated with
Increased variability, increased
frequency of extreme events)

A
1(]!_'

E(k) (m3/s2)

# Resolving the -5/3 regime
considered necessary if not
sufficient to simulate correct
mesoscale variability

102

ol i i e . . .
1010-5 107 1074 1073 102 a Determine effective reSO|Ut|0n,

Wavenumber (radians m-1) following Skamarock 2004

KE spectra from aircraft observations (symbols, Nastrom and Gage 1985) and

functional fit (solid line, Lindborg, 1999). Figure from Skamarock, 2004. @ Sandia
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Kinetic Energy Spectra

CLIMATOLOGY 250mb Compensated Kinetic Energy Compensated Kinetic Energy
3 a 3 rotational, compressible
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10* 10° 102 10’ 10° 10° 10° 10?
wavelength (km) wavelength (km) wavelength (km)

Nastrom-Gage transition resolved in CAM at 1/8.
Effective resolution (Skamarock 2002) ~7dx = 100km at 1/8

Divergence component?
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4;'.. Long Wave Cloud Forcing
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CAM-FV 1° and observations

CAMFV (yrs 1981-2000) ANN
TOA LW cloud forcing mean= 25.67 W/~ Ne ANRN g 50 - - I I
14
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1 = 0 T — 1 T T T L

90N 60N 30N 0 305 60 908
latitude
CAMIF'YV — CERESZ

CAMFV - CERES2

CAM LWCF: close to observations in the tropics, to weak in mid-

latitudes. Sandia
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TOA LW cloud forcing (W/m~S~2~N~)
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30

At 1 degree resolution — very little sensitivity to the dycore
*Increasing resolution to ¥ degree: large drop in clouds, LWCF,

iIndependent of dycore.
*Change is to large to ‘tune’: CAM-SE Y4 degree run already using

unreasonably low cloud thresholds (rhminh=.68, rhminl=.84)
)
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Precipitation
CAM-FV CAM-SE

Elevation (meters)

500
1000
1500
2000
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