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i Simulation Hierarchy

Analog circuit simulation is just one of many types of
simulation used by electrical designers.

Tradeoff between fidelity and speed/problem size.
+ Digital simulation: fast, low fidelity

¢+ TCAD Device simulation: slow, very high fidelity
¢ Circuit simulation: in-between

Speed - m————— - Fidelity
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arallel Circuit Simulation Challenges

Analog simulation models network(s) of devices coupled via
Kirchoff’s current and voltage laws

dq(z(t)) [
fl2(t) + — = = b(t)

* Network Connectivity
» Hierarchical structure rather than spatial topology
« Densely connected nodes: O(n)

- Badly Scaled DAEs

- Compact models designed by engineers, not numerical N
analysts!
- Steady-state (DCOP) matrices are often ill-conditioned C e 7

« Non-Symmetric . /_/1' jﬁ] \Y/M\[

* Not elliptic and/or globally SPD iS= “pe

« Load Balancing / Partitioning § ‘

o Balancing cost of loading Jacobian values unrelated to @
matrix partitioning for solves ﬁaa% gir?al
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Majority of simulation
time spent here!

? Circuit Simulation Flow

= Circuit simulators solve a system of []
nonlinear DAES [ Nonlinearl‘:r);:i:olver \

P F(x,x')=0

* How this is done depends on analysis type —— [ "— ...
+ Implicit integration methods e

+ Newton’s method

Linear Solver

+ Sparse matrix techniques \_ T 2= )
= Transient simulation haslphases

¢+ Compute starting point (DCOP) \

¢ Start analysis (transient) e

Complete?

¢ Sparse linear algebra / solvers
Lynchpin of scalable performance

End Sim
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ircuit Simulation Flow

+ Multiple objectives for load balancing the solver loop
» Device Loads : The partitioning of devices over processes will impact device

evaluation and matrix loads

» Matrix Structure : Graph structure is static throughout analysis, repartitioning
matrix necessary for generating effective preconditioners

¢ Device Loads
* Each device type can have a

Dominating cost for
small networks

vastly different “cost” for evaluation
* Memory for each device is
considered separate
+ “Halo” exchanges may be very
irregular

+ Matrix Structure

* Third-party libraries used to
determine best graph structure
and provide preconditioners / solvers

Dominating cost for
large networks

Proc 1

Load f, g, dF/dx, dQ/dx
for n'm devices

Proc 2

Load f, g, dF/dx, dQ/dx
for nfim devices

Proc 3

Load f, g, dF/dx, dQ/dx
for nfm devices

Procm

Load f, g, dF/dx, dQ/dx
for n/m devices

Global
Reorder

Partifion

MPI
sumAill

Proc1

Device Loads

Matrix Structure

Sandia
National
Laboratories



i

Nonlinear Diff. Eq. Solver
F(xx")=0

Nonlinear Solver
F(x)=0

Linear Solver

Ax=b .

PARALLEL ELECTRONIC SIMULATOR

')\(‘yce‘ Simulation Flow

Trilinos Software Stack

Xyce Abstract Interface

1

NOX
Nonlinear Solvers

LOCA
Homotopy

/7
/ Amesos
AztecOO / Belos LY ek
i /| teratve Linear Sabvrs || 2155, L%
/
(_ Ifpack EpetraExt
B Algebraic Matrix Reordering /
N Precondifioners Singleton Removal
\ _ ! :
N\ Zoltan / Isomropia
3 Matrix Partitioning / Load Balancing
\ e
Epefra Teuchos
Linear Algebra. Portable Tools

=Parallel linear algebra
»Advanced graph reordering
and partitioning
*Preconditioners

=Parallel linear solvers

*Nonlinear methods
(homotopy, continuation)

Trilinos Software Stack
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'Impact of Next-Generation
Architectures

= Requires a combination of programming paradigms / models
= Analog circuit simulation has two dominant computational costs:
device evaluation, linear solve
» Re-evaluate simulation structure for intra-node parallelism

= Device Evaluation
= Organize device evaluations for vectorization or threading (Zoltan)
= Use computational kernels to address architecture differences (Kokkos)

= Linear Solve
= Solvers that employ hybrid parallelism (ShyLU)
» Linear algebra that takes advantage of node-level parallelism
= Epetra (MPIl/ OpenMP)
= Tpetra (Kokkos)
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Multi-core Results

The results in this section are from simulations are performed on a small
commodity cluster, where each node has a dual-socket/quad-core Intel
Xeon® E5520 2.67 GHz processor and 36 GB of memory.
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Epetra MPI / OpenMP Support

First multi-core support for OpenMP in Trilinos 10.4

Vector, MultiVector, CrsMatrix, CrsGraph support threading via

OpenMP

All computational methods are decorated with parallel for pragma’s

Use first-touch mechanism for optimal data placement

(unless wrapping user data)
¢+ Can improve performance 2X on NUMA nodes

Epetra MPI
only build

(2 MPI procs)

Epetra hybrid build
(2 MPI procs, 2 threads)

/11

otal Simu)Ation (sec.)

MPI w/OpenMP|x Speedup

i ver (sec. I

Circuit DM%

MPI oMly|MPI w/Op&MP|x Speedup
ckt2 92.8 66.1 1.40
ckt3 246.7 101.2 2.43
ckt4 36.2 23.4 1.54
ckth 92.9 46.3 2.00

143.3
198.4
157.3
181.3

1.15
1.76
1.18
1.32
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Multithreaded Device Loads

= Devices are evaluated and loaded one device type at a time.
+ Evaluation is performed on independent memory.
+ Loading the Jacobian matrix and residual vector can result in race conditions.

= Multithreading the device loads is the challenge.
+ Solution: distance-1 coloring of the device sub-graph

A distance-1 coloring of G = (V,E) is
m a mapping ¢ : V — {1,2,...,q} s.t.

o(u) # ¢(v) whenever (u,v) € E
m a partitioning of V into g independent sets

The objective is to minimize q
where V is the set of devices and E is the edges between those devices

+ Colors define workgroups that can be loaded without race conditions.

+ Zoltan is used to compute the distance-1 coloring of the device sub-graph.
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Multithreaded Device Loads

= Example 1: Simple 3k-stage RC ladder

s \
—=—Residual Load (Update
——Jacobian Load (Update;
—+—Total Sim. (Update)
-+ Residual Load (Color !
25 - Jacobian Load (Color! 7_’ﬁ_)ﬁ_/,,_,f—~~—’* =
-+ Total Sim. (Color) _Q'_fi,,_,f-~f#~'*"
/B—r—”'_)’—gipi
2 /// _
sl I |
g P e
aer”’"(”: T
1.{\1//// |
o
?———1 . —
[/E/
05, \ | \ | |
2 3 4 5 5 7 ]

Threads

+ Linear solver = 33% serial simulation time
+ Resistors (max vertex deg.=2; 2 colors), capacitors (max vertex deg.=1, 1 color)
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Multithreaded Device Loads

Example 2: CMOS memory circuit (cktd)

35

—=-Residual Load (Update
—£—Jacobian Load (Update;
——Total Sim. (Update)

-2 Residual Load (Color
-~ Jacobian Load (Color;
— Total Sim. (Color}

0.52

Threads

+ Linear solver = 20% serial simulation time

+ BSIM3 (max vertex degree 5098; no coloring) Resistor (max vertex degree 7; 7 colors)
Voltage Source (max vertex degree 1; 1 color) Capacitor (max vertex degree 1;
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Linear Solver Scaling / Robustness

Initially (circa 1999), Xyce used available PDE-based preconditioning

techniques
« Incomplete LU factorization

« Limited scaling / robustness

For small scale circuits, the Dulmage-Mendelsohn*

permutation (BTF) was leveraged in KLU (2004)

In 2008, BTF structure was leveraged to create

w10t

]

2_

5

aF

: q%‘-:f’

a new preconditioned iterative method
» Great for CMOS memory circuits .
« Circuits with parasitics are more challenging

—&— Jacobian Load (DD)
—&— Residual Load (DD}
—&— Linear Solve (DD)

#— Total Simulation (DD)
- & - Jacobian Load (BTF} .
- & - Residual Load (BTF) ai® SH ]
- Linear Salve (BTF) e T
~ Total Simuiation (BTF) - e
— ldeal Scaling

I I 1
* D

In 2011, initial development of ShyLU, a
“hybrid-hybrid” sparse linear solver package
* Improve robustness

Scaling vs. Serial Simulation Time
ne

W
2',_-_"_-_’.-,.___._.} S

W. Bomhof and H.A. van der Vorst [NLAA, 2000]
A. Basermann, U. Jaekel, and K. Hachiya [SIAM LA 2003 proc.]

10 20 ao 40 &0 60
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“Hybrid-Hybrid” Linear Solvers

= ShyLU is a sparse linear solver framework, based on Schur
complements (S. Rajamanickam, E. Boman, M. Heroux):
+ Incorporates both direct and iterative methods
¢ Coarse-scale (multi-processor) and fine-scale (multi-threaded) parallelism
+ Can be a subdomain solver / preconditioner or stand-alone linear solver

= The Schur complement approach solves

Axr = b
by partitioning it into

a=[Re] == (2] = [2]

where D and G are square, D is non-singular, and x and b are conformally partitioned

g ¢ The Schur complementis: S = (G — R % D—lc’, Sandia
“ National
labum]ra?ories




“Hybrid-Hybrid” Linear Solvers

= Solving Ax = b consists of three steps:

1. Solve Dz = b;.
2. Solve Sxy = by — Rxz.
3. Solve Dz = b; — Cuxs.

» For Xyce, ShyLU is used as a stand-alone solver

+ Matrices partitioned using hypergraph partitioning (Zoltan)
» Wide separator

¢ D s solved exactly using KLU

¢+ Sis solved iteratively via GMRES with S’ as a preconditioner

* S’ generated through dropping
« Maximum number of iterations = 30
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= This solution approach was necessary for efficient simulation of a
Sandia-designed ASIC:

¢ 1645693 total devices, N = 1944792
+ Single KLU solve takes ~ 40 sec.

¢+ ShyLU: 4 MPI procs -> number of rows in § = 1854

ShyLU & Xyce Results

Nodes Config. ShyLU time Speedup Total Sim. Speedup
(MPI x threads) (sec.) (over KLU) Time (sec.) (over KLU)
1 4x2 61545 1.3x 66089 1.3x
1 2x4 61061 1.3x 68426 1.2X
2 8x2 23008 3.4x 27985 3.0x
2 4x4 35137 2.3X 40430 2.0x
3 12 x 2 17976 4.4x 22783 3.7x
3 6x4 26250 3.0x 33162 2.6X
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Concluding Remarks

Next-generation architectures demand new programming models for
application codes

+ Re-evaluate simulation structure for intra-node parallelism

¢ Third-party libraries can facilitate some of this transition
« Trilinos: Epetra, Zoltan, ShyLU, ...

ShyLU can provide a flexible, robust solver framework for circuit
simulation

+ Whatif diagonal blocks are singular? -> inner / outer schemes

+ Powernode parasitics can provide a need for narrow separators
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