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Organic Materials Employed in Service for Decades in
Critical High Reliability and Performance Applications

—

Textiles/Fibe

Aircraft Wire Insulation

rs Protective Clothing

Sandia
National
Laboratories




Polymer Aging - Approaches/Goals

Macroscopic level
Physical Properties

Tensile Property

Permeation Elongation

Dimensional changes

Goals
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Molecular Level

Chemical Properties

Mass Spectrometry

* Prediction of physical properties vs. time
* Predict remaining physical properties of field materials
» Develop condition monitoring method
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Nuclear Power Plant Cable Insulations

DEVELOPING LIFETIME PREDICTIONS FOR
ORGANIC MATERIALS




Power Plant Cables LUl

Nuclear Power Plant Cable Insulation

One of the 5 critical concerns for license renewal
of US Nuclear Power Plants (NPPs)
IEEE 383-1974: ~50 Mrad (500 kGy) in 40 years at 50 °C
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Nuclear Power Plant Cable Insulation

One of the 5 critical concerns for license renewal
of US Nuclear Power Plants (NPPs)
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Dose Rate (Gy/s)
Figure taken from a collaborative (NRC/DOE/EPRI) document in
progress to be published later in 2012 — NUREG 6923, “Expert
Panel Report on Proactive Materials Degradation Assessment”

Dose-to-Equivalent Damage @
DED is assumed to be Eg = 100%

(IEEE Standards Define End-of-Life when a cable achieves Egz = 50%)
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Nuclear Power Plant Cable Insulation

One of the 5 critical concerns for license renewal
of US Nuclear Power Plants (NPPs)
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Dose Rate (Gy/s)
Figure taken from a collaborative (NRC/DOE/EPRI) document in
progress to be published later in 2012 — NUREG 6923, “Expert
Panel Report on Proactive Materials Degradation Assessment”

Dose-to-Equivalent Damage @
DED is assumed to be Eg = 100%

(IEEE Standards Define End-of-Life when a cable achieves Egz = 50%)
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Tensile Properties — Thermal Aging
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Tensile Properties — Thermal Aging @&
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Time-Temperature Superposition

Does mechanism change as a function of temperature?

If same mechanism:

» same shape (log graph)
» should be constant acceleration (multiple)

—

Pick a reference temperature

2. Multiply the time at each temperature by the constant that gives the best
overlap with the reference temperature data

Define that multiple as ‘a;’ (a; = 1 for ref. temp.)

Find a; for each temperature

B W

Plot log(at) vs 1/T linear if Arrhenius

Gillen, K. T.; Celina, M.; Clough, R. L.; Wise, J. Trends in Polymer Science, Extrapolation of Accelerated Aging Data -Arrhenius or Erroneous? 1997, 5, 250-257.

Arrhenius equation: Empirical equation

k =AeEalRT In(k) = In(A) — Ea/RT
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Time-Temperature Superposition
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Eaton Dekoron Ellastoset EPR Cable Insulatlion
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Time-Temperature Superposition
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Time-Temperature Superposition @

Eaton Dekoron Ellastoset EPR Cable Insulatlion
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Arrhenius Plot )

Eaton Dekoron Elastoset ElPR Cable Insulation
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Arrhenius Plot )

Eaton Dekoron Elastoset EPR Cable Insulatlon
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Thermal-Oxidative Prediction ),

Eaton Dekoron Elastoset EPR Cable Insulation
Predicted Time in Years at 50 °C
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Gamma Irradiation + Thermal Effects (5.

Eaton Dekoron Elastoset EPR Cable Insulatlon
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Gamma Irradiation + Thermal Effects h) i,

Eaton Dekoron Elastoset EPR Cable Insulation
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Ongoing NPP Cable Research

= |nvestigate Inverse Temperature Effects at varying low dose-
rates and low temperatures for EPR and XLPO materials

= Experiments are planned out through FY15

= Validate predictive models

= Received a ~30 year old SiR cable from Argentina, CNEA
(environmental conditions include gamma irradiation at elevated

temperatures)

= New interest in submerged cables...

h
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A Basis for Detecting and Mitigating Aging

UNDERSTANDING UNDERLYING
AGING MECHANISMS
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= Nylonis used in a wide variety of
products

=  Oxidation reduces the overall
lifetime of nylon which directly
alters performance

= Underlying mechanisms must be
understood to predict degradation
product formation and serves as
the foundation for future sensor
development for condition
monitoring
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Karstens Makromol m. 1989, 190, 3033-3053.
Groning et al. J. Appl. Polym. Sci. 2002, 86, 3396-3407.
Shamey et al. Rev. Prog. Color 2003, 33, 93-107.
Bernstein et al. Polym. Degrad. Stab. 2005, 88, 480-488.
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H o) White Il et al. Polym. Degrad. Stab. 2012 In Press.




Nylon 6.6 Accelerated Aging Studies @&,

Predicted results for 23 °C in years
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Lifetime Prediction Validation with Field Aged Data
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¢ Field Aged Data
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Polymer Aging - Approaches/Goals

Macroscopic level
Physical Properties

Tensile Property

Permeation Elongation

Dimensional changes
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Molecular Level

Chemical Properties
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Goals

* Prediction of physical properties vs. time
* Predict remaining physical properties of field materials
e Develop condition monitoring method
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Caveat: It is critical to employ well characterized polymers in your aging studies”
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Nylon degradation follows similar mechanism for all variants.

Chromatograms show high reproducibility.




Example: Carbon Dioxide ) .

Intensity

0=C=0

4

2 43 44 45 46 47 48 49 50
m/z

8 H
MN/{C\/\/\C/N\/\/\/\N%”W
H I H

100
0=C=0
80+
>
=
» 60
c
L 40
£
20+
07\ T T T T T T 1
42 43 44 45 46 47 48 49 50
m/z

Mass spectrum of carbon dioxide from
the NIST Spectral database




Example: Carbon Dioxide
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Carbon dioxide mass spectrum from oxidation of
unlabeled nylon 6.6 in an 80 enriched environment
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Carbon dioxide mass spectrum from oxidation of 3C labele

nylon 6.6 in an air environment
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Quantitative Analysis of CO, Formation

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6+0.5 Chain End
46  CO"™0" 42.3+2.7 Amide Carbonyl
48 C"o"™0™ 40.1+3.3 Methylene

CO, Products formed when aged in 1802
0 [ -

A C~ic  Chain End > Unlabeled CO,

H I

©_1 0=C=0

MH{CV\AC NWHJ@“ Amide Carbonyl = mono-labeled CO,

o
18 =Cc=0
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Quantitative Analysis of CO, Formation ®:.

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6 £0.5 Chain End m/z Assignment Relative MS Intensity (%)  Functional Group
46  CO"™0" 423+2.7 Amide Carbonyl 44 Cco,” 854+0.2 Methylene
48 C'o"o™ 40.1+£3.3 Methylene 45 Bco,” 14.6+0.2 N-Vicinal Methylene

CO2 Products formed when aged in air

0="3Cz0
”ﬁgwg H”C'CJH\/\F/LC\HQNJ[ N-Vicinal Methylene - 13C labeled CO,
0="3Ccz0
—C O
o MH{CWC ﬂSCHWCHQHJ[ Methylene - Unlabeled CO,

l_'_l
0O=C=0




Quantitative Analysis of CO, Formation ®:.

m/z Assignment Relative MS Intensity (%) Functional Group

44 Cco,"” 17.6 £0.5 Chain End m/z Assignment Relative MS Intensity (%)  Functional Group
46  CO"™0" 423+2.7 Amide Carbonyl 44 Cco,” 854+0.2 Methylene
48 C'o"o™ 40.1+£3.3 Methylene 45 Bco,” 14.6+0.2 N-Vicinal Methylene

CO2 Products formed when aged in air

0="3Cz0
MH{(@V\/\S H\E'CJH\/\F/LC\HQNJf N-Vicinal Methylene - 13C labeled CO,
0="3Ccz0
O= C O
MH{CWC ﬂSCHWCHQ Jr Methylene - Unlabeled CO,
l_'_l
0O=C=0

40% of CO, comes from the methylene groups
15% of all CO, comes from the N-Vicinal methylene groups
25% of all CO, comes from all other methylene groups




Quantitative Analysis of CO, Formation ®:.

m/z Assignment Relative MS Intensity (%) Functional Group

44 Co,"” 17.6 £0.5 Chain End m/z Assignment Relative MS Intensity (%)  Functional Group
46 Cco"™0™ 423+2.7 Amide Carbonyl 44 Cco,” 85.4+0.2 Methylene
48 C'o"o™ 40.1+£3.3 Methylene 45 Bco,” 14.6+0.2 N-Vicinal Methylene

CO2 Products formed when aged in air

0="3Cz0
MH{(@V\/\S “ﬂqSH\/vrlgHzNJ( N-Vicinal Methylene - 13C labeled CO,
0="3Ccz0
O= C O
MH{CWC ﬂSCHWCHQ Jr Methylene - Unlabeled CO,
l_'_l
0O=C=0

40% of CO, comes from the methylene groups

15% of all CO, comes from the N-Vicinal methylene groups

25% of all CO, comes from all other methylene groups

N-Vicinal methylene groups contribute 36% of CO, formed from the methylene groups. The other four
types of methylene groups contrlbute an average of 16% each to the CO, formed from the methylene
groups. The m

aroup.




Initiation at the N-Vicinal Methylene Group (8.

1) 80,
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Note that the '3C and 180 experiments o . . .
were run separately. Outcomes are 42 43 44 45 46 47 48 49 50
shown together in this presentationin m/z

order to save space.
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Initiation at the N-Vicinal Methylene Group @

------------------------------- \ 18
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Initiation at the N-Vicinal Methylene Group (8.

18 ‘ 18
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Initiation Adjacent to the Carbonyl Carbon (M.

H I H )180
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Initiation Adjacent to the Carbonyl Carbon &
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Degradation at the End Groups T .

NN/C\/\/\C/OH R "'N/C\/\/\C/O.

O
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H o) H o) H Unlabeled CO,
Bo=Cc=0
100+ 180=c =180
80+
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e
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42 43 44 45 46 47 48 49 50
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18 1818
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o 18A. © 18
H H

13
%(I?/N\BCHZ\/\/CH\NHZ

%C/NM]aCH’Z\/\BCH + NH2 RH NH3]

0O Ammoni
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Degradation at the End Groups T .
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Other Key Labeled Species Identified
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Conclusions )

= By leveraging cryo-GC/MS in conjunction with isotopically
labeled air, we have demonstrated the novel ability to
discriminate between oxygen originating from the polymer
backbone and oxygen from the environment.

= Experiments employing isotopically labeled and unlabeled
nylon afforded the opportunity to propose the underlying
formation mechanisms of carbon dioxide, ammonia, and
cyclopentanone

= We have identified and are proposing degradation
mechanisms for other low molecular weight thermal-
oxidative and hydrolytic degradation products




Future Development of this Research &,

= Other Degradation Pathways
= Hydrolytic Degradation of Nylon

= QOther Polymers
= EVA
= Detecting Aging
= Sensor Development (Effort led by Cody Washburn, 1821)

Photograph Courtesy of Cody Washburn




The basis for up-scaling nanoparticle processing

PREDICTING NANOPARTICLE
DISPERSIBILITY IN SOLUTION



Nanomaterial Applications o ey e

Hydrophilic Heads

= Targeted Drug Delivery Lipid Vesicle

= QOptical/Chemical Sensors
= Biomedical Imaging
= (Catalysts

Nanoparticle Hydrophobic Tails

= Electronic Devices R ite ot al. ACS Nano 2012, ASAP

= Thin Film Applications

0.20 After protein binding
e efore protein binding
£ 015
Light -g |
9 5 010
-g 0.05 4
< La Londe et al. J. Mater. Res., 2005 Vol. 20, No. 11
0.00-
Biomolecular binding event 300 400 500 600 700 800 900
on sensor chip detected by Wavelength (nm)
absorbance change
Nath et al. Anal. Chem. 2002, 74, 504-509 White et al. J. Nanomat. 2012, 730746, 1-12




Total Interaction Energy Model ).

= Aim to predict nanoparticle dispersibility

qj:mlMaf‘é%ﬂbgi@éma{lﬁe(gon&%nt) P e by ]

= Nanopatrticle si

Eﬁ Z h rent interaction energy models
O = «_ Dfttnce he Vq’eﬁr}frﬂ% E[pglru'és 111 Eﬂ:}ssumeJ’&dnfstant ligand shell
= Sofvé‘nt propetties ckness and solvation, i.e. they
. Ligan d ISEPaf,]atlon Distance over predict dispersibility
R=P rt1cle Radius

= Ligand solvation
l = Ligand Length

" Ligand surface coverage
Center to Center

Separation

- Osmotic
- Elastic
- - -Van der Waals
Total

3/2k T

A = '
. . 40l . 12l I
0 10 20 30 40 50

Separation Distance (A)
SANS IS THE ONLY WAY TO MEASURE THESE VALUES  Anand etal. Ind. Eng. Chem. Res. 2008, 47, 553-559




Traditional Processing ) 2.

= Purification/lIsolation

= Removal of surfactants and excess ligands from dispersions which may impact
final application ex. biocompatibility, altering phase behavior, etc.

= Sjze-selective fractionation

= Solvent/anti-solvent system combined with recursive centrifugation to obtain
monodisperse populations of nanoparticles

3.6 £ 0.9nm Ethanol Additio

t B Y 3

Dodecanethiol capped
Gold nanoparticles




Gas-Expanded Liquids (GXLs) ) .

CO,

P (psi) x, CO2 % Volume Expansion
0 0% 0
P (psi) x, CO2 % Volume Expansion
407 36% 21%
P (psi) x, CO2 % Volume Expansion
717 81% 190%

Solvent properties change as
a function CO, pressure

Volume fractions of n-hexane d14/CO, determined
n-hexane, d14 using the Patel-Teja Equation of state at 25°C




“Green” Processing with GXLs L

'H]
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Small-Angle Neutron Scattering (SANS) ) i,
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Small-Angle Neutron Scattering T .
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Small-Angle Neutron Scattering T s

= Scattering Length Density (SLD)
= Dependent on atomic number/composition
= Allows for great contrast between hydrogen and deuterium

Material SLD (A?)
Gold 4.50E-06
Dodecanethiol
(C12SH) -3.67E-07
1-Octadecanethiol
(C18SH) -3.49E-07
n-hexane, d14 6.14E-06
n-hexane -5.71E-07

toluene, d8 5.66E-06 [RARARC




Core-Shell Fit of SANS Data ) &=,

SANS Curves for GNPs
capped by C12SH

® 0% EtOH

® 10% EtOH
20% EtOH
30% EtOH
40% EtOH
50% EtOH




Diameter of Dispersed Nanoparticles

Diameter (nm)
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SHELL THICKNESS ) e,
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Flory-Huggins Interaction Parameters @&z
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Sandia

Curvature Effects at Ambient Pressu et

Mean (nm) AL (A) % Surface Coverage Curvature (A?) %Ligand Solvation

5.9 2.6 60 0.339 26.9%
6.6 5.3 62 0.303 16.6%
6.9 6.3 55 0.290 18.7%
7.1 5.7 44 0.282 19.4%

= Similar Surface Coverage, Varying Curvature
= P Curvature = P Ligand Solvation

= Similar Curvature, Varying Surface Coverage

" ']‘Surface Coverage = \l' Ligand Solvation




More Accurate Models and Extension ),
to Non-Spherical Particles

Vent to
Atmosphere
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Saunders et al. J. Phys. Chem. C 2011, 115, 4603-4610

Saunders et al. Nanotechnology 2009,475605
PatentNo.: US 2007/0243716, US2010/0323527
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White et al. Ind. Eng. Chem Res. 2012, 51, 5181-5189




I " ﬁgggir?al
Future Directions ) e,
= Neutron Irradiation Effects to Organic Materials of Interest

= Development of Passive Sensors (nanocomposites) which
Identify Aging

= Development of More Efficient Oxygen Consumption
Measurements to Reduce Accelerated Aging Experiment
Times
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