SAND2012-4725P

Sandia

Exceptional service in the national interest @ National
Laboratories

System Software Challenges for Exascale Systems

Ron Brightwell, Technical Manager
Scalable System Software Department

P U.S. DEPARTMENT OF o ’sl
A0 EN ERGY //;NAVDZQ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
7 ‘National Nuclear Security Administration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

= Sandia system software R&D history

= Exascale computing

= System software challenges

= High-performance networking challenges
= Portals networking programming interface

WWW.0pe al) OI'J

System Software@Sandia

Established the functional partition

model for HPC systems

* Tailor system software to function
(compute, /0, user services, etc.)

Pioneered the research, development,

and use of lightweight kernel operating

systems for HPC

* Only DOE lab to deploy OS-level software
on large-scale production machines

* Provided blueprint for IBM BlueGene OS

Set the standard for scalable parallel

runtime systems for HPC

e Fast application launch on tens of
thousands of processors

Significant impact in the design and of

scalable HPC interconnect APIs

* Only DOE lab to deploy low-level

interconnect APl on large-scale
production machines

AWARDS
1998 Sandia Meritorious Achievement Award,
TeraFLOP Computer Installation Team
« 2006 Sandia Meritorious Achievement Award, Red
Storm Design, Development and Deployment Team
« 2006 NOVA Award Red Storm Design and
Development Team
« 2009 R&D 100 Award for Catamount N-Way
Lightweight Kernel
2010 Excellence in Technology Transfer Award,
Federal Laboratory Consortium for Technology
Transfer
2010 National Nuclear Security Administration
Defense Programs Award of Excellence

I

CM-2 nCUBE-2
1989 1990

Red Storm

ASCI Red

Paragon
1996

1993

1987 1989 1991 ’—J993 1995 1997

Cplant

1998
| -

1PSC-860
1992

2005

1996 1998 2000

ﬁH

Portals Partition Model Puma Cougar
1992 — 1993 -

Computational Plant
Cplant
1997 — 2005

SUNMOS
1991 - 1997

Catamount
1993 —

Process for identifying exascale applications and technology for
DOE missions ensures broad community input

= Town Hall Meetings April-June 2007 odeingand
Exascale for

= Scientific Grand Challenges Workshops Nov, [Efts
2008 — Oct, 2009
= Climate Science (11/08),
= High Energy Physics (12/08),
= Nuclear Physics (1/09),
= Fusion Energy (3/09),
= Nuclear Energy (5/09),
= Biology (8/09),
= Material Science and Chemistry (8/09),
= National Security (10/09)
= Cross-cutting technologies (2/10)

ntific Grand Challenges

= Exascale Steering Committee
= “Denver” vendor NDA visits 8/2009
= SC09 vendor feedback meetings
= Extreme Architecture and Technology
Workshop 12/2009
= International Exascale Software Project

= Santa Fe, NM 4/2009; Paris, France 6/2009; FUNDAMENTAL SCIENCE
Tsukuba, Japan 10/2009 4

DOE mission imperatives require simulation and
analysis for policy and decision making

= (Climate Change: Understanding, mitigating and
adapting to the effects of global warming

= Sealevel rise

= Severe weather
= Regional climate change
= Geologic carbon sequestration

= Energy: Reducing U.S. reliance on foreign energy
sources and reducing the carbon footprint of
energy production

= Reducing time and cost of reactor design and
deployment

= |Improving the efficiency of combustion energy
systems

= National Nuclear Security: Maintaining a safe,

secure and reliable nuclear stockpile
= Stockpile certification

= Predictive scientific challenges
= Real-time evaluation of urban nuclear detonation

Accomplishing these missions requires exascale resources. ’ >

Exascale simulation will enable
fundamental advances in basic scien

= High Energy & Nuclear Physics
= Dark-energy and dark matter
= Fundamentals of fission fusion reactions

= Facility and experimental design
= Effective design of accelerators
= Probes of dark energy and dark matter
= |TER shot planning and device control

= Materials / Chemistry

= Predictive multi-scale materials modeling:
observation to control

= Effective, commercial technologies in
renewable energy, catalysts, batteries and
combustion

= Life Sciences
= Better biofuels
= Sequence to structure to function

These breakthrough scientific discoveries
and facilities require exascale applications
and resources.

Slide 6

Hubble image |
of lensing

Structure of
nucleons

Scientific Grand Challenges

FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND
THE ROLE OF COMPUTING AT THE EXTREME SCALE

Thermonuclear SN

January 26-28, 2009 - Washington, D.C.

e U.S, DEPARTMENT OF

National Nuclear Security

= U.S. Stockpile must remain safe, secure
and reliable without nuclear testing
= Annual certification
= Directed Stockpile Work
= Life Extension Programs
= A predictive simulation capability is
essential to achieving this mission

= Integrated design capability

= Resolution of remaining unknowns
= Energy balance
= Boost
= Siradiation damage
= Secondary performance
= Uncertainty Quantification

= Experimental campaigns provide critical
data for V&V (NIF, DARHT, MaRIE)
= Effective exascale resources are necessary
for prediction and quantification of
uncertainty

Concurrency is one key ingredient in
getting to exaflop/sec

® parallel system performance (GF/sec)

1000000 -
M Clock Frequency (GHz) Red Storm
100000 PP
- -
10000 - _ _._.—' Increased parallelism
1000 - CM-5 ’__,.0— aIIovyed a 100_0-fo|d
g T > increase in
= 100 o performance while the
= clock speed increased
10 by a factor of 40
1 ————j————
______ R =
0.1 g
0.01 - \
1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
and power, resiliency, programming models, memory bandwidth, I/0O, ... 8

Many-core chip architectures are the
future.

S
// P Design
g 701 || A RS
= A V| /&
o 601 L1 - : ~ <
& Verification
é 501 || | /§ G
= 40 4 xap
3 301 L1 - P
4§) 204 : 4 - o ///
a g Source: SIA
0- Roadmanp, 2001
1988 1992 1996 2000 2004

The shift toward increasing parallelism is not a triumphant stride forward based
on breakthroughs in novel software and architectures for parallelism ... instead
it is actually a retreat from even greater challenges that thwart efficient silicon
implementation of traditional uniprocessor architectures.

Kurt Keutzer

9
|

What are critical exascale technology investments?

= System power is a first class constraint on exascale system performance and
effectiveness.

= Memory is an important component of meeting exascale power and applications
goals.

= Programming model. Early investment in several efforts to decide in 2013 on
exascale programming model, allowing exemplar applications effective access to
2015 system for both mission and science.

= |nvestment in exascale processor design to achieve an exascale-like system in
2015.

= QOperating System strategy for exascale is critical for node performance at scale
and for efficient support of new programming models and run time systems.

= Reliability and resiliency are critical at this scale and require applications neutral
movement of the file system (for check pointing, in particular) closer to the
running apps.

= HPC co-design strategy and implementation requires a set of a hierarchical
performance models and simulators as well as commitment from apps, software

and architecture communities. 10

Potential System Architecture Targets

System

“2015”

“2018”

attributes

Node performance | 125 GF 0.5TF 7TF 1TF 10 TF
Node memory BW | 25GB/s | 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec
Node concurrency 12 0O(100) 0O(1,000) 0O(1,000) 0(10,000)
System size 18,700 50,000 5,000 1,000,000 100,000
(nodes)

Total Node 1.5 GB/s 20 GB/sec 200 GB/sec
Interconnect BW

MTTI days O(1day) O(1 day)

Factors driving up the fault rate

= Number of components both memory and processors will increase by an order of magnitude
which will increase hard and soft errors.

= Smaller circuit sizes, running at lower voltages to reduce power consumption, increases the

probability of switches flipping spontaneously due to thermal and voltage variations as well
as radiation, increasing soft errors

= Power management cycling significantly decreases the components lifetimes due to thermal
and mechanical stresses.

= Resistance to add additional HW detection and recovery logic right on the chips to detect
silent errors. Because it will increase power consumption by 15% and increase the chip costs.

= Heterogeneous systems make error detection and recovery even harder, for example,
detecting and recovering from an error in a GPU can involve hundreds of threads
simultaneously on the GPU and hundreds of cycles in drain pipelines to begin recovery.

= Increasing system and algorithm complexity makes improper interaction of separately
designed and implemented components more likely.

Programming Model Approaches

= Hierarchical approach (intra-node + inter-node)

= Part I: Inter-node model f icating bet e
art I: Inter-node model Tor communicating between processor chip
nodes Infrastructure chip

= MPI scaling to millions of nodes: Importance high; risk low

* One-sided communication scaling: Importance medium;
risk low

= Part ll: Intra-node model for on-chip concurrency

= Qverriding Risk: No single path for node architecture

= OpenMP, Pthreads: High risk (may not be feasible with
node architectures); high payoff (already in some
applications)

= New API, extended PGAS, or CUDA/OpenCL to handle
hierarchies of memories and cores: Medium risk (reflects
architecture directions); Medium payoff (reprogramming
of node code)

= Unified approach: single high level model for entire

system L e
= High risk; high payoff for new codes, new application '._'._'._'._'._'._'.-'
dormains L

Slide

System Software Challenges

= Power/energy as a new fundamental resource
= Minimizing data movement is key

= Memory capacity
= Likely the scarcest resource
= Resilience

= Application as well as OS/Runtime

= Heterogeneity
= Processors, memories, networks, etc.

= More dynamic
" |ntrospective and introspectable

= Scalability

= Managing millions of cores rather than thousands of cores

System Software Opportunities

= Need fundamental new interfaces between system software,
applications, tools, and hardware

"= Power management, memory management, data movement, dynamic
resource management, etc.

= Lightweight approaches that minimize memory use and
reduce complexity will continue to be important
= Some explorations may need to be done without hardware

= Simulation and emulation environments, virtualization, mini-
applications, synthetic workloads will be needed

Simulation, emulation, and performance modeling

= Need to develop applications, algorithms, and software for hardware and
systems that don’t exist yet
= Exascale systems will be significantly different from today’s systems
= Massive amounts of on-node parallelism
= Heterogeneity
= More layers of memory hierarchy
= System simulation, emulation, performance models, and tools are all

methods that have been employed to predict how algorithms and
applications perform on future systems

= Such activities are also useful for feedback to the architecture community
= Hardware/software co-simulation used extensively in embedded
computing
= Cycle-accurate application simulation at exascale is not feasible
= Multi-level simulation tools may be useful

= (Cycle-accurate simulators or emulation might be used to predict node
performance

= Less complex models can also provide meaningful insight

Mini-Applications

Proven to be useful for co-design as proxies of full applications

= Assessing not only impact of low-level hardware, but also re-design of application
or algorithm

A well-designed mini-app
= Contains one or more performance-impacting features
= Has a small code base
= Can be easily re-written
= |sopen source

Working with mini-app elevates discussion between various system
component developers

Broadens the scope of contributors who may not have time or access to
work with full application

Mini-apps are expected to lose relevance over time

Research opportunities
= Automated methods of generating mini-apps

= Determining the most computationally intensive portions of a code on future
systems

Co-design is a key element of the Exascale strategy

Architectures are undergoing a major change

= Single thread performance is remaining relatively constant and on chip parallelism is
increasing rapidly

= Hierarchical parallelism, heterogeneity

= Massive multithreading

= NVRAM for caching I/O
Applications will need to change in response to architectural changes

= Manage locality and extreme scalability (billion-way parallelism)

= Potentially tolerate latency

= Resilience?
Unprecedented opportunity for applications/algorithms to influence architectures,
system software and the next programming model

= Hardware R&D is needed to reach exascale

We will not be able to solve all of the exascale problems through architectures
work only

Co-design has become a buzzword for identifying challenges

Fundamental Capabilities for Co-Design

= Software agility
= Applications
= Need to identify an important, representative subset
= Application code must be small and malleable

= System software
= Smaller is better
= Lightweight is ideal
= Toolchain can be a huge issue

= Hardware simulation tools

= Sandia SST

= Virtualization
= Leverage virtual machine capability to emulate new hardware capability

= Need mechanisms to know the impact of co-design quickly

" |Integrated teams
= Co-design centers

Forces Driving Exascale System Software

= Energy constraints and power management
= Reduced data movement
= Resiliency
= More frequent failures
= Concurrency
= O(1lk —10k) threads per node
= Heterogeneity
= Different types of cores
= Non-coherent shared memory
= Deeper memory hierarchies
= Highly unbalanced systems
= Compute performance will dominate
= More complex applications
= Dynamic, data-dependent algorithms

= Support for legacy interfaces and tools

Driving the Need for More Advanced Runtime Systems

= Dynamic local resource management
= Massive on-node parallelism
= Large numbers of threads that must be created, synchronized, and destroyed
= Resilience
= Node-level resources may come and go
" Locality management
* Reduce data movement to manage power
= Potentially moving work to data
= Potentially recomputing
= Scalability
= Need to move away from bulk synchronous approach
= Jitter will be pervasive
= Hybrid programming models
= Interoperability between different models
— Distributed memory, shared memory, heterogeneous cores
= Efficient phase change

— Managing resources when moving between models

= Responding to non-local events

= Resilience
= System-level resources may come and go

OS/R Issues and Challenges

Fault tolerance / resilience
Programming models

OS structure

APIs

Specific functionality
Scalability

Interactivity

Future hardware
Hardware support for Oses
Application requirements
Metrics

Programmatic challenges
Heterogeneity

Degree of transparency

Infrastructure support for multiple OS/Rs

Vendor proprietary components
Tools support/requirements
Desktop integration

Dynamic resource management

Vendors

Testbeds

Adaptation

Usage models

Memory hierarchy

Security

Standards

Portability

Culture

Non-traditional architectures
Multiple management policies
Mainstream technology overlap
Support for introspection
Interface to RAS

Testing

Application requirements
Intellectual property
Sustainability

Energy/power

Linux is the Dominant OS on the Top 500

Operating System Share Over Time
1993-2010

Linux
W AIX
B UNICOS
B HP Unix (HP-UX)
B RIX
B Solaris
B CMOST
B UXP/V
B Super-Ux
B OSF/1
B Unix
B CNK/SLES 9
B EWS-UX/V
HI-UX/MPP
P Others

Performance Share

M T 1D O N OO O -~ (N MO T 1D O N OO O
OO OO OO O O O O O O O O O O v
OO OO OO O O O OO O O O O O O
™Y = - - - SN AN AN NN AN NN NN NN
i e Bt et e i et et e i ettt i e e et ot
O O W W W W W W W W WW W W W OWOW W
O O O O O OO0 O O O OO0 O O O O O O

TOP500 Releases

November 2011 Top 500 Operating Systems

Linux

Others
Unix
Mixed

Are These Really Linux Supercomputers?

= #2-Tianhe-1A
= 14,336 6-core Intel Xeons
= 86,016
= 3%
= 7168 448-core Nvidia GPUs

= 3,211,264 total cores
= 97%

= #10 - Roadrunner

= 6120 2-core AMD Opterons
= 13,824 cores
= 11%
= 12,240 9-core IBM PowerXCell 8is
= 116,640 cores
= 89%

= Maybe ASCI Red really was a VxWorks machine...

Challenge areas for HPC networks

= The traditional “big three”
= Bandwidth
= Latency
= Message Rate (Throughput)

= QOther important areas for “real applications” versus benchmarks
= Allowable outstanding messages
= Host memory bandwidth usage
= Noise (threading, cache effects)
= Synchronization
= Progress
= Topology
= Reliability

MPI Will Likely Persist Into Exascale Era

= Number of network endpoints will increase significantly (5-50x)
= Memory and power will be dominant resources to manage
= Networks must be power and energy efficient
= Data movement must be carefully managed
= Memory copies will be very expensive
= |mpact of unexpected messages must be minimized
= Eager protocol for short messages leads to receive-side buffering
= Need strategies for managing host buffer resources
= Flow control will be critical
= N-to-1 communication patterns will (continue to be) disastrous

= Must preserve key network performance characteristics
= Latency
= Bandwidth
= Message rate (throughput)

High Message Throughput is Vital

35000

i L T —TT r
1M Messages/second
5M Messages/second --------
10M Messages/second ---------
30000 15M MeSSages/second R
20M Messages/second —-=—--
et il ——

T e -_—"
//" v'__..-“ P /,’ /
s ra it ’
25000 R
4 & e -
Va - e
e 3 o /

20000 ARV /

7 S /
S
- 7
noF ." /
0o s /
H _-': ," I’
15000 R 7+
P /
L , 7
I '-" /
ft .'. ; l/
10000 .

L I/
l! - s I'4
il /
R 7 /
E _."' a /’
5000 ity
;5
s

ol P e ey SR H B
1 10 100 1000 10000 100000 1e+06 1e+07
Message Size (bytes)

Bandwidth (MB/s)

Message rate determines the minimum message size needed to
saturate the available network bandwidth

Current flow control strategies are not sufficient

Credit-based

= Limit number of outstanding send operations

= Used credits are replenished implicitly or explicitly

= Effectiveness limited to N-to-1 scenario

= Potential performance penalty for well-behaved applications
Acknowledgment-based

= Receiver explicitly confirms receipt of every message

= Significant per-message performance penalty
Round trip acknowledgment doubles latency

= Performance penalty for well-behaved applications
Local copying (bounce buffer) mitigates latency penalty
Both strategies limit message rate and effective bandwidth
Flow control implemented at user-level inside MPI library

Network transport usually has its own flow control mechanism
= No mechanism for back pressure from host resources to network

Applications must become more asynchronous

Applications cannot continue to be bulk synchronous
= Qverhead of global synchronization will limit scaling
= Global synchronization increases susceptibility to noise

= One-sided communication requires explicit synchronization

= Network API must provide asynchronous operations and progress
= Data movement must be independent of host activity
= Active Messages
= Polling is fundamental to all AM
= Progress only when nothing else to do
= Polling memory for message reception is inefficient
= Needs hardware support to integrate message arrival with thread invocation
= Run-time systems will also need to communicate
= Need to communicate evolving state of the system
= Need acommon portable API
= Using TCP OOB connection will be infeasible

Resiliency will impact network API

= Network will need to expose errors to enable recovery

= Applications and system components will have different
resiliency requirements
= Reachability errors must be handled by run-time services
= Graceful degradation may be appropriate for some applications

= May need OOB mechanism for recognizing network failures

= AM or event-driven APl would be ideal

= Hardware support for network-level protection
RAS system invoking OS via network messages

PORTALS NETWORK
PROGRAMMING INTERFACE

Portals Network Programming Interface

= Network API developed by Sandia, U. New Mexico, Intel
* Previous generations of Portals deployed on several production massively
parallel systems
= 1993: 1800-node Intel Paragon (SUNMOS)
= 1997: 10,000-node Intel ASCI Red (Puma/Cougar)
= 1999: 1800-node Cplant cluster (Linux)
= 2005: 10,000-node Cray Sandia Red Storm (Catamount)
= 2009: 18,688-node Cray XT5 — ORNL Jaguar (Linux)

= Focused on providing
= Lightweight “connectionless” model for massively parallel systems
= Low latency, high bandwidth
* |ndependent progress
= Qverlap of computation and communication
= Scalable buffering semantics
= Protocol building blocks to support higher-level protocols

= Supports MPI, SHMEM, ARMCI, GASNet, Lustre, etc.

What makes Portals different?

= One-sided communication with optional matching

= Provides elementary building blocks for supporting higher-level protocols
well

= Allows structures to be placed in user-space, kernel-space, or NIC-space
= Allows for zero-copy, OS-bypass, and application-bypass implementations

= Scalable buffering of MPI unexpected messages

= Supports multiple higher-level protocols within a process
= Run-time system independent

= Well-defined failure semantics

Portals 4.0:
Applying lessons learned from Cray SeaStar

= Allow for higher message rate
= Atomic search and post for MPI receives required round-trip across PCl
= Eliminate round-trip by having Portals manage unexpected messages

= Provide explicit flow control

= Encourages well-behaved applications
Fail fast
Identify application scalability issues early

= Resource exhaustion caused unrecoverable failure

= Recovery doesn’t have to be fast

= Resource exhaustion will disable Portal

= Subsequent messages will fail with event notification at initiator

= Applies back pressure from network
Performance for scalable applications
Correctness for non-scalable applications

Portals 4.0 (cont’d)

= Enable a better hardware implementation

= Designed for intelligent or programmable NICs
= Arbitrary list insertion is bad
= Remove unneeded symmetry on initiator and target objects

= New functionality for one-sided operations

= Eliminate matching information
Smaller network header
Minimize processing at target

= Scalable event delivery
Lightweight counting events

= Triggered operations
Chain sequence of data movement operations

Asynchronous collective operations
— Mitigate OS noise effects

Triggered rendezvous protocol
— Enables progress without bandwidth penalty

Portals 4 Implementations

= OpenFabrics Verbs

= Provided by System Fabric Works
= Provides a high-performance reference implementation for experimentation

= Help identify issues with API, semantics, performance, etc.
= |Independent analysis of the specification
= Shared memory
= Offers consistent and understandable performance characteristics
= Provides ability to accurately measure instruction count for Portals operations
= Better characterization of operations that impact latency and message rate
= Evaluation of single-core onloading performance limits

= Structural Simulation Toolkit
= Partial implementation for exploring NIC structures for offload

Underwood, et al. “Enabling Flexible Collective Communication Offload with Triggered
Operations,” in Proceedings of the IEEE Symposium on High-Performance Interconnects,
August 2011.

TRIGGERED OPERATIONS
FOR COLLECTIVE
COMMUNICATION

Motivation

Collectives are important to a broad array of applications

= As node counts grow, it becomes hard to keep collective time
low

Offload provides a mechanism to reduce collective time
= Eliminates portion of Host-to-NIC latency from the critical path
= Relatively complex collective algorithms are constantly refined

and tuned

Building blocks provide a better

= Allow algorithm research and implementation to occur on the
host

= Provides a simple set of hardware mechanisms to implement
= A general purpose API is needed to express the building
blocks

Triggered Operations

= Lightweight events are counters of various network
transactions

= One counter can be attached to multiple different operations or
even types of operations

= Fine grained control of what you count is provided
= Portals operation is “triggered” when a counter reaches
a threshold specified in the operations

= Various types of operations can be triggered
= Triggered counter update allows chaining of local operations

Generality of Triggered Operations

* Numerous collectives have been implemented so far
= Allreduce
= Bcast

= Barrier

* Numerous algorithms have been implemented for multiple
collectives
= Binary tree
= k-nomial tree

= Pipelined broadcast
= Dissemination barrier
= Recursive doubling

Simulation Methodology

e Utilized SST simulator developed at Sandia
* Modeled processor and NIC as separate state machines

= Fixed delays between states to model delays and overhead

= Single state machine for processor, multiple for NIC to model
concurrent hardware blocks

* Modeled several combinations of parameters defined by
latency and message rate

= Allocated delay to various units that were modeled

High-Level NIC Architecture

200ns / 20% _300ns/30% | .
______________ ’
From
Network
1
1
1
_____ Match/Event 1 FIFO Portals Cmds
Offload 1S 300ns/30%| O
' 3
! by
1]
,,,,,,,,,,,, 1 pe
1 (]
““““““““““““ 1 2
:SOOns / 30%
1
1
 e————Fro ™ o 500ms /50% | o

Allreduce

500ns, 10 Mmsgs/s

25000 T T T T T T T T
Host Tree: Radix-8 ——+—
Host Tree: Radix-16 —>¢—
Triggered Tree: Radix-8 ——
Triggered Tree: Radix-16 —+—
Recursive Doubling —#—
20000 - Triggered Recursive Doubling —&— 1
2 15000 |- -
Q
£
=
[}
Q —
p=} —
o
2
Z 10000 |-
5000 P —t =]
/M
0 l !]] ! ! ! !
64 128 256 512 1024 2048 4096 8192 16384 32768

Nodes

Noise Simulations

* Three noise profiles were simulated (2.5% noise for each)
= 250 ns @ 100KHz
= 25 us @ 1KHz
= 2.5ms @ 10Hz
* Noise events were randomly distributed
= Stopped all host processing during a noise event
= NIC processing continued

 Timed individual collective operations (first entry to last exit)

Allreduce With Noise

25 us @ 1 KHz

T T T T
Host Tree: Radix-8 ——+—

140000 [~ Host Tree w/ Noise: Radix-8 —¢— .
Triggered Tree: Radix-16 ——
Triggered Tree w/ Noise: Radix-16 —+—
Recursive Doubling —#—

120000 [~ Recursive Doubling w/ Noise —&—
Triggered Recursive Doubling —£—
Triggered Recursive Doubling w/ Noise

100000 |-

80000 (-

Allreduce Time (ns)

60000 -

40000 |-

20000 | e
f — B—
——
@;—fﬁg b
0 1 | | | | | | |
64 128 256 512 1024 2048 4096 8192 16384 32768
Nodes

Noise Simulation Results

* Recursive doubling has poor noise tolerance
* Offload gives significant improvement in noise tolerance

= Partly from reduced time

= Partly from reduced host participation
= Synchronizing operation still cannot complete until everyone
contributes a value

* |[nteresting shape of curves in middle noise case
= Host based latency continues to grow with node count

= NIC based latency plateaus

Interesting things we learned

= Time to initiate a transaction from the host to the NIC makes things
difficult
= Even with a high NIC rate, can be rate limited by the host

= Limitation of using host to initiate all operations instead of offloading
algorithm

= [f transactions are posted in correct order, limitation is effectively
mitigated
= Proper message scheduling is important

= Time between message initiations on the host (gap) matches network
hop latency: send the far away ones first!

= Kk-nomial trees are better, but the work at the root limits the
maximum value of k

= You can have speed or reproducibility, but...

Triggered collectives summary

= Triggered operations provide a general set of building blocks
= Supports a variety of collective operations
= Supports a variety of algorithms
= Has usage beyond just collectives offload
= (Collective offload has limited performance upside versus idealized
host implementation

= 2x performance improvement due to improved latency and improved
message rate

= Performance could be improved somewhat by having host “push” data

= Noise sensitivity substantially reduced when operations are
offloaded

Barrett, Brightwell, Hemmert, Wheeler, Underwood. “Using Triggered Operations to Offload

Rendezvous Messages,” in Proceedings of the European MPI Users’ Group Conference,
September 2011.

TRIGGERED OPERATIONS
FOR A RENDEZVOUS
PROTOCOL

Ping-Pong Bandwidth

3000 T T T T T T T T T T T T T T T T T 1
0% Unexpected —+—
6.25% Unexpected ——
12.5% Unexpected —¥—
25% Unexpected —5—
2500 50% Unexpected

100% Unexpected —&—

2000

1500

1000

Bandwidth (megabyte/second)

500

1 32 1K 32K iM

Message size (bytes)

Ping-Pong Bandwidth

3000 — T T T T T T T T T T T T T T T T T 1
Eager Protocol ——
Rendezvous Protocol —<¢—
Triggered Protocol —%—
2500

2000

1500

1000

Bandwidth (megabyte/second)

500

1 32 1K 32K iM

Message size (bytes)

RECEIVER-MANAGED FLOW
CONTROL

53

MPI Requires Flow Control

MPI-1 Standard mandates that senders cannot overwhelm receivers with
too many unexpected messages

Two main strategies for providing flow control

= Credit-based
A credit is needed to send a message
Credits given out at initialization or connection setup
Credits can be static or dynamic based on message intensity
Credits exchanged through explicit or piggyback messages

= Acknowledgment-based
Wait for receiver to acknowledge message reception
ACKs can be explicit or piggyback messages

Both strategies assume senders need to be constrained
Our approach is to recover rather than constrain

= Emphasize performance for well-designed applications
= Provide correctness for poorly-designed applications

54

Too few credits can reduce message rate

800000 1 1 1 1 T 1 T Ll T 1] 1 1 | 1 T ||] l. T 1
o -4 1 credits -
e g o 2 credits <
- 8- . 4 credits +
700000 | N A | 8 credits .
! 16 credits
3 32 credits -- -o-- -
e T B 4 64 credits — ®
~. 600000 -) 128 credits = -
3 *\.
8 x4
£ 500000 |- = .
o 4
[1+])
3 i
© 400000 | 3 -
‘g SEEE TR * xxxx :é
(] - ~x""'><.. “.‘\ -
S 300000 “x N
§ hS 8.
= . ..
200000 | , X... 8)
% _— Q.:._
Ky
8,
100000 y) ™ .
_— \\
..\‘
0 1 L] 1] [L L1 L] 1 ?\"“.:J.___‘_‘
1 32 1K 32K 1M

Message size (bytes)

55

Too many credits wastes memory

Message rate (messages/second)

800000

700000

600000

500000

400000

300000 -/

200000 |

100000

' 7 10000
e —t ——————— S
4 1000
7 100
4 10
Message rate —+ :
Memory usage, 1 PPN -------- |
Memory usage, 4 PPN
. Memory usage 16 PPN 1
16 3
Number of credits

Memory usage (megabytes/process)

56

Ping-pong bandwidth is unimpacted

10000 i I 1] 1 1 I 1 T Ll T I 1 l 1 T I 1 I 1 Ll I T
No flow control -+
Receiver-managed flow control = 1
Credit-based flow control with 8 credits I |
1000 |- -
=
3 ,
2 100 », -
s :
L
m rd
g ,‘f"'l'.
£
T 10 -
©
o
1+ ‘/,,:" 4
L ‘.:/'/V
0.1 1 1 L 1 1 1 1 L 1 1 1 1 L 1 1 1 1 L 1 1 1 1
1 32 1K 32K 1M

Message size (bytes)

57

Too few credits degrades streaming bandwidth

10000 [T T T 1 1 1 T I I I 1 1 T T I I 1 1 1 T I

IR . e |
e
._—f""*

1000 | o

1
o1

-
o
o
1
*
1

Bandwidth (megabyte/second)
=
—
'
*
1

1 No flow control -+]

Receiver-managed flow control ———
Credit-based flow control with 2 credits -~ *--- 1
oy o]Creqn-balsed lflowlcontlrol vgith 81cre<l:Iits X

1 32 1K 32K 1M
Message size (bytes)

58

Acknowledgments

= DOE Exascale Initiative Steering Committee

= Sandia
= Brian Barrett
= Scott Hemmert
= Kevin Pedretti
= Mike Levenhagen
= Kyle Wheeler

= |ntel
= Keith Underwood
= Jerrie Coffman
= Roy Larsen

WWW.0pe al) OI'J

