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System	
  So)ware@Sandia	
  
•  Established	
  the	
  funcConal	
  parCCon	
  

model	
  	
  for	
  HPC	
  systems	
  
•  Tailor	
  system	
  so)ware	
  to	
  funcCon	
  

(compute,	
  I/O,	
  user	
  services,	
  etc.)	
  

•  Pioneered	
  the	
  research,	
  development,	
  
and	
  use	
  of	
  lightweight	
  kernel	
  operaCng	
  
systems	
  for	
  HPC	
  
•  Only	
  DOE	
  lab	
  to	
  deploy	
  OS-­‐level	
  so)ware	
  

on	
  large-­‐scale	
  producCon	
  machines	
  
•  Provided	
  blueprint	
  for	
  IBM	
  BlueGene	
  OS	
  

•  Set	
  the	
  standard	
  for	
  scalable	
  parallel	
  
runCme	
  systems	
  for	
  HPC	
  
•  Fast	
  applicaCon	
  launch	
  on	
  tens	
  of	
  

thousands	
  of	
  processors	
  

•  Significant	
  impact	
  in	
  the	
  design	
  and	
  of	
  	
  
scalable	
  HPC	
  interconnect	
  APIs	
  
•  Only	
  DOE	
  lab	
  to	
  deploy	
  low-­‐level	
  

interconnect	
  API	
  	
  on	
  large-­‐scale	
  
producCon	
  machines	
  

AWARDS: 
•  1998 Sandia Meritorious Achievement Award, 

TeraFLOP Computer Installation Team 
•  2006 Sandia Meritorious Achievement Award, Red 

Storm Design, Development and Deployment Team 
•  2006 NOVA Award Red Storm Design and 

Development Team 
•  2009 R&D 100 Award for Catamount N-Way 

Lightweight Kernel 
•  2010 Excellence in Technology Transfer Award, 

Federal Laboratory Consortium for Technology 
Transfer 

•  2010 National Nuclear Security Administration 
Defense Programs Award of Excellence 



Process	
  for	
  idenCfying	
  exascale	
  applicaCons	
  and	
  technology	
  for	
  
DOE	
  missions	
  ensures	
  broad	
  community	
  input	
  

  Town	
  Hall	
  MeeCngs	
  April-­‐June	
  2007	
  
  ScienCfic	
  Grand	
  Challenges	
  Workshops	
  Nov,	
  

2008	
  –	
  Oct,	
  2009	
  
  Climate	
  Science	
  (11/08),	
  	
  
  High	
  Energy	
  Physics	
  (12/08),	
  	
  
  Nuclear	
  Physics	
  (1/09),	
  	
  
  Fusion	
  Energy	
  (3/09),	
  	
  
  Nuclear	
  Energy	
  (5/09),	
  	
  
  Biology	
  (8/09),	
  	
  
  Material	
  Science	
  and	
  Chemistry	
  (8/09),	
  	
  
  NaConal	
  Security	
  (10/09)	
  
  Cross-­‐cu^ng	
  technologies	
  (2/10)	
  

  Exascale	
  Steering	
  Commi_ee	
  
  “Denver”	
  vendor	
  NDA	
  visits	
  8/2009	
  
  SC09	
  vendor	
  feedback	
  meeCngs	
  
  Extreme	
  Architecture	
  and	
  Technology	
  

Workshop	
  	
  12/2009	
  

  InternaConal	
  Exascale	
  So)ware	
  Project	
  
  Santa	
  Fe,	
  NM	
  4/2009;	
  Paris,	
  France	
  6/2009;	
  

Tsukuba,	
  Japan	
  10/2009	
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MISSION IMPERATIVES 

FUNDAMENTAL SCIENCE 



DOE	
  mission	
  imperaCves	
  require	
  simulaCon	
  and	
  
analysis	
  for	
  policy	
  and	
  decision	
  making	
  

  Climate	
  Change:	
  Understanding,	
  miCgaCng	
  and	
  
adapCng	
  to	
  the	
  effects	
  of	
  global	
  warming	
  
  Sea	
  level	
  rise	
  
  Severe	
  weather	
  
  Regional	
  climate	
  change	
  
  Geologic	
  carbon	
  sequestraCon	
  

  Energy:	
  Reducing	
  U.S.	
  reliance	
  on	
  foreign	
  energy	
  
sources	
  and	
  reducing	
  the	
  carbon	
  footprint	
  of	
  
energy	
  producCon	
  
  Reducing	
  Cme	
  and	
  cost	
  of	
  reactor	
  design	
  and	
  

deployment	
  
  Improving	
  the	
  efficiency	
  of	
  combusCon	
  energy	
  

systems	
  

  NaConal	
  Nuclear	
  Security:	
  Maintaining	
  a	
  safe,	
  
secure	
  and	
  reliable	
  nuclear	
  stockpile	
  
  Stockpile	
  cerCficaCon	
  
  PredicCve	
  scienCfic	
  challenges	
  
  Real-­‐Cme	
  evaluaCon	
  of	
  urban	
  nuclear	
  detonaCon	
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  Accomplishing these missions requires exascale resources. 



Exascale	
  simulaCon	
  will	
  enable	
  
fundamental	
  advances	
  in	
  basic	
  science	
  
  High	
  Energy	
  &	
  Nuclear	
  Physics	
  

  Dark-­‐energy	
  and	
  dark	
  ma_er	
  
  Fundamentals	
  of	
  fission	
  	
  fusion	
  reacCons	
  

  Facility	
  and	
  experimental	
  design	
  
  EffecCve	
  design	
  of	
  accelerators	
  
  Probes	
  of	
  dark	
  energy	
  and	
  dark	
  ma_er	
  	
  
  ITER	
  shot	
  planning	
  and	
  device	
  control	
  

  Materials	
  /	
  Chemistry	
  
  PredicCve	
  mulC-­‐scale	
  materials	
  modeling:	
  

observaCon	
  to	
  control	
  
  EffecCve,	
  commercial	
  technologies	
  in	
  

renewable	
  energy,	
  catalysts,	
  ba_eries	
  and	
  
combusCon	
  

  Life	
  Sciences	
  
  Be_er	
  biofuels	
  
  Sequence	
  to	
  structure	
  to	
  funcCon	
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ITER 

ILC 
Hubble image 

of lensing 

Structure of 
nucleons 

These breakthrough scientific discoveries 
and facilities require exascale applications 
and resources. 



NaConal	
  Nuclear	
  Security	
  

  U.S.	
  Stockpile	
  must	
  remain	
  safe,	
  secure	
  
and	
  reliable	
  without	
  nuclear	
  tesCng	
  
  Annual	
  cerCficaCon	
  
  Directed	
  Stockpile	
  Work	
  
  Life	
  Extension	
  Programs	
  

  A	
  predicCve	
  simulaCon	
  capability	
  is	
  
essenCal	
  to	
  achieving	
  this	
  mission	
  
  Integrated	
  design	
  capability	
  
  ResoluCon	
  of	
  remaining	
  unknowns	
  

  Energy	
  balance	
  
  Boost	
  	
  
  Si	
  radiaCon	
  damage	
  	
  
  Secondary	
  performance	
  

  Uncertainty	
  QuanCficaCon	
  
  Experimental	
  campaigns	
  provide	
  criCcal	
  

data	
  for	
  V&V	
  (NIF,	
  DARHT,	
  MaRIE)	
  

  EffecCve	
  exascale	
  resources	
  are	
  necessary	
  
for	
  predicCon	
  and	
  quanCficaCon	
  of	
  
uncertainty	
   7	
  



Concurrency	
  is	
  one	
  key	
  ingredient	
  in	
  
ge^ng	
  to	
  exaflop/sec	
  

8	
  and power, resiliency, programming models, memory bandwidth, I/O, … 

CM-5 

Red Storm 

Increased parallelism 
allowed a 1000-fold 

increase in 
performance while the 
clock speed increased 

by a factor of 40 



Many-­‐core	
  chip	
  architectures	
  are	
  the	
  
future.	
  

The shift toward increasing parallelism is not a triumphant stride forward based 
on breakthroughs in novel software and architectures for parallelism … instead 
it is actually a retreat from even greater challenges that thwart efficient silicon 
implementation of traditional uniprocessor architectures. 
Kurt Keutzer 
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What	
  are	
  criCcal	
  exascale	
  technology	
  investments?	
  

  System	
  power	
  is	
  a	
  first	
  class	
  constraint	
  on	
  exascale	
  system	
  performance	
  and	
  
effecCveness.	
  

  Memory	
  is	
  an	
  important	
  component	
  of	
  meeCng	
  exascale	
  power	
  and	
  applicaCons	
  
goals.	
  

  Programming	
  model.	
  	
  Early	
  investment	
  in	
  several	
  efforts	
  to	
  decide	
  in	
  2013	
  on	
  
exascale	
  programming	
  model,	
  allowing	
  exemplar	
  applicaCons	
  effecCve	
  access	
  to	
  
2015	
  system	
  for	
  both	
  mission	
  and	
  science.	
  

  Investment	
  in	
  exascale	
  processor	
  design	
  to	
  achieve	
  an	
  exascale-­‐like	
  system	
  in	
  
2015.	
  

  OperaCng	
  System	
  strategy	
  for	
  exascale	
  is	
  criCcal	
  for	
  node	
  performance	
  at	
  scale	
  
and	
  for	
  efficient	
  support	
  of	
  new	
  programming	
  models	
  and	
  run	
  Cme	
  systems.	
  

  Reliability	
  and	
  resiliency	
  are	
  criCcal	
  at	
  this	
  scale	
  and	
  require	
  applicaCons	
  neutral	
  
movement	
  of	
  the	
  file	
  system	
  (for	
  check	
  poinCng,	
  in	
  parCcular)	
  closer	
  to	
  the	
  
running	
  apps.	
  	
  	
  

  HPC	
  co-­‐design	
  strategy	
  and	
  implementaCon	
  requires	
  a	
  set	
  of	
  a	
  hierarchical	
  
performance	
  models	
  and	
  simulators	
  as	
  well	
  as	
  commitment	
  from	
  apps,	
  so)ware	
  
and	
  architecture	
  communiCes.	
   10	
  



PotenCal	
  System	
  Architecture	
  Targets	
  

System 
attributes 

2010 “2015” “2018” 

System peak 2 Peta 200 Petaflop/sec 1 Exaflop/sec 

Power 6 MW 15 MW 20 MW 

System memory 0.3 PB 5 PB 32-64 PB 

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF 

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec 

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000) 

System size 
(nodes) 

18,700 50,000 5,000 1,000,000 100,000 

Total Node 
Interconnect BW 

1.5 GB/s 20 GB/sec 200 GB/sec 

MTTI days O(1day) O(1 day) 



Factors	
  driving	
  up	
  the	
  fault	
  rate	
  

  Number	
  of	
  components	
  both	
  memory	
  and	
  processors	
  will	
  increase	
  by	
  an	
  order	
  of	
  magnitude	
  
which	
  will	
  increase	
  hard	
  and	
  so)	
  errors.	
  

  Smaller	
  circuit	
  sizes,	
  running	
  at	
  lower	
  voltages	
  to	
  reduce	
  power	
  consumpCon,	
  increases	
  the	
  
probability	
  of	
  switches	
  flipping	
  spontaneously	
  due	
  to	
  thermal	
  and	
  voltage	
  variaCons	
  as	
  well	
  
as	
  radiaCon,	
  increasing	
  so)	
  errors	
  

  Power	
  management	
  cycling	
  significantly	
  decreases	
  the	
  components	
  lifeCmes	
  due	
  to	
  thermal	
  
and	
  mechanical	
  stresses.	
  

  Resistance	
  to	
  add	
  addiConal	
  HW	
  detecCon	
  and	
  recovery	
  logic	
  right	
  on	
  the	
  chips	
  to	
  detect	
  
silent	
  errors.	
  Because	
  it	
  will	
  increase	
  power	
  consumpCon	
  by	
  15%	
  and	
  increase	
  the	
  chip	
  costs.	
  

  Heterogeneous	
  systems	
  make	
  error	
  detecCon	
  and	
  recovery	
  even	
  harder,	
  for	
  example,	
  
detecCng	
  and	
  recovering	
  from	
  an	
  error	
  in	
  a	
  GPU	
  can	
  involve	
  hundreds	
  of	
  threads	
  
simultaneously	
  on	
  the	
  GPU	
  and	
  hundreds	
  of	
  cycles	
  in	
  drain	
  pipelines	
  to	
  begin	
  recovery.	
  

  Increasing	
  system	
  and	
  algorithm	
  complexity	
  makes	
  improper	
  interacCon	
  of	
  separately	
  
designed	
  and	
  implemented	
  components	
  more	
  likely.	
  



Programming	
  Model	
  Approaches	
  

  Hierarchical	
  approach	
  (intra-­‐node	
  +	
  inter-­‐node)	
  
  Part	
  I:	
  Inter-­‐node	
  model	
  for	
  communicaCng	
  between	
  

nodes	
  
  MPI	
  scaling	
  to	
  millions	
  of	
  nodes:	
  Importance	
  high;	
  risk	
  low	
  
  One-­‐sided	
  communicaCon	
  scaling:	
  Importance	
  medium;	
  

risk	
  low	
  

  Part	
  II:	
  Intra-­‐node	
  model	
  for	
  on-­‐chip	
  concurrency	
  
  Overriding	
  Risk:	
  No	
  single	
  path	
  for	
  node	
  architecture	
  
  OpenMP,	
  Pthreads:	
  High	
  risk	
  (may	
  not	
  be	
  feasible	
  with	
  

node	
  architectures);	
  high	
  payoff	
  (already	
  in	
  some	
  
applicaCons)	
  

  New	
  API,	
  extended	
  PGAS,	
  or	
  CUDA/OpenCL	
  to	
  handle	
  
hierarchies	
  of	
  memories	
  and	
  cores:	
  Medium	
  risk	
  (reflects	
  
architecture	
  direcCons);	
  Medium	
  payoff	
  (reprogramming	
  
of	
  node	
  code)	
  

  Unified	
  approach:	
  single	
  high	
  level	
  model	
  for	
  enCre	
  
system	
  
  High	
  risk;	
  high	
  payoff	
  for	
  new	
  codes,	
  new	
  applicaCon	
  

domains	
  

Slide	
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System	
  So)ware	
  Challenges	
  

  Power/energy	
  as	
  a	
  new	
  fundamental	
  resource	
  
  Minimizing	
  data	
  movement	
  is	
  key	
  

  Memory	
  capacity	
  
  Likely	
  the	
  scarcest	
  resource	
  

  Resilience	
  
  ApplicaCon	
  as	
  well	
  as	
  OS/RunCme	
  

  Heterogeneity	
  
  Processors,	
  memories,	
  networks,	
  etc.	
  

  More	
  dynamic	
  
  IntrospecCve	
  and	
  introspectable	
  

  Scalability	
  
  Managing	
  millions	
  of	
  cores	
  rather	
  than	
  thousands	
  of	
  cores	
  



System	
  So)ware	
  OpportuniCes	
  

  Need	
  fundamental	
  new	
  interfaces	
  between	
  system	
  so)ware,	
  
applicaCons,	
  tools,	
  and	
  hardware	
  
  Power	
  management,	
  memory	
  management,	
  data	
  movement,	
  dynamic	
  

resource	
  management,	
  etc.	
  

  Lightweight	
  approaches	
  that	
  minimize	
  memory	
  use	
  and	
  
reduce	
  complexity	
  will	
  conCnue	
  to	
  be	
  important	
  

  Some	
  exploraCons	
  may	
  need	
  to	
  be	
  done	
  without	
  hardware	
  
  SimulaCon	
  	
  and	
  emulaCon	
  environments,	
  virtualizaCon,	
  mini-­‐

applicaCons,	
  syntheCc	
  workloads	
  will	
  be	
  needed	
  



SimulaCon,	
  emulaCon,	
  and	
  performance	
  modeling	
  

  Need	
  to	
  develop	
  applicaCons,	
  algorithms,	
  and	
  so)ware	
  for	
  hardware	
  and	
  
systems	
  that	
  don’t	
  exist	
  yet	
  

  Exascale	
  systems	
  will	
  be	
  significantly	
  different	
  from	
  today’s	
  systems	
  
  Massive	
  amounts	
  of	
  on-­‐node	
  parallelism	
  
  Heterogeneity	
  
  More	
  layers	
  of	
  memory	
  hierarchy	
  

  System	
  simulaCon,	
  emulaCon,	
  performance	
  models,	
  and	
  tools	
  are	
  all	
  
methods	
  that	
  have	
  been	
  employed	
  to	
  predict	
  how	
  algorithms	
  and	
  
applicaCons	
  perform	
  on	
  future	
  systems	
  
  Such	
  acCviCes	
  are	
  also	
  useful	
  for	
  feedback	
  to	
  the	
  architecture	
  community	
  

  Hardware/so)ware	
  co-­‐simulaCon	
  used	
  extensively	
  in	
  embedded	
  
compuCng	
  
  Cycle-­‐accurate	
  applicaCon	
  simulaCon	
  at	
  exascale	
  is	
  not	
  feasible	
  
  MulC-­‐level	
  simulaCon	
  tools	
  may	
  be	
  useful	
  
  Cycle-­‐accurate	
  simulators	
  or	
  emulaCon	
  might	
  be	
  used	
  to	
  predict	
  node	
  

performance	
  
  Less	
  complex	
  models	
  can	
  also	
  provide	
  meaningful	
  insight	
  



Mini-­‐ApplicaCons	
  

  Proven	
  to	
  be	
  useful	
  for	
  co-­‐design	
  as	
  proxies	
  of	
  full	
  applicaCons	
  
  Assessing	
  not	
  only	
  impact	
  of	
  low-­‐level	
  hardware,	
  but	
  also	
  re-­‐design	
  of	
  applicaCon	
  

or	
  algorithm	
  
  A	
  well-­‐designed	
  mini-­‐app	
  

  Contains	
  one	
  or	
  more	
  performance-­‐impacCng	
  features	
  
  Has	
  a	
  small	
  code	
  base	
  
  Can	
  be	
  easily	
  re-­‐wri_en	
  
  Is	
  open	
  source	
  

  Working	
  with	
  mini-­‐app	
  elevates	
  discussion	
  between	
  various	
  system	
  
component	
  developers	
  

  Broadens	
  the	
  scope	
  of	
  contributors	
  who	
  may	
  not	
  have	
  Cme	
  or	
  access	
  to	
  
work	
  with	
  full	
  applicaCon	
  

  Mini-­‐apps	
  are	
  expected	
  to	
  lose	
  relevance	
  over	
  Cme	
  
  Research	
  opportuniCes	
  

  Automated	
  methods	
  of	
  generaCng	
  mini-­‐apps	
  
  Determining	
  the	
  most	
  computaConally	
  intensive	
  porCons	
  of	
  a	
  code	
  on	
  future	
  

systems	
  
	
  
	
  



Co-­‐design	
  is	
  a	
  key	
  element	
  of	
  the	
  Exascale	
  strategy	
  

  Architectures	
  are	
  undergoing	
  a	
  major	
  change	
  
  Single	
  thread	
  performance	
  is	
  remaining	
  relaCvely	
  constant	
  and	
  on	
  chip	
  parallelism	
  is	
  

increasing	
  rapidly	
  
  Hierarchical	
  parallelism,	
  heterogeneity	
  
  Massive	
  mulCthreading	
  
  NVRAM	
  for	
  caching	
  I/O	
  

  ApplicaCons	
  will	
  need	
  to	
  change	
  in	
  response	
  to	
  architectural	
  changes	
  
  Manage	
  locality	
  and	
  extreme	
  scalability	
  (billion-­‐way	
  parallelism)	
  
  PotenCally	
  tolerate	
  latency	
  
  Resilience?	
  

  Unprecedented	
  opportunity	
  for	
  applicaCons/algorithms	
  to	
  influence	
  architectures,	
  
system	
  so)ware	
  and	
  the	
  next	
  programming	
  model	
  
  Hardware	
  R&D	
  is	
  needed	
  to	
  reach	
  exascale	
  

  We	
  will	
  not	
  be	
  able	
  to	
  solve	
  all	
  of	
  the	
  exascale	
  problems	
  through	
  architectures	
  
work	
  only	
  

  Co-­‐design	
  has	
  become	
  a	
  buzzword	
  for	
  idenCfying	
  challenges	
  



Fundamental	
  CapabiliCes	
  for	
  Co-­‐Design	
  

  So)ware	
  agility	
  
  ApplicaCons	
  

  Need	
  to	
  idenCfy	
  an	
  important,	
  representaCve	
  subset	
  
  ApplicaCon	
  code	
  must	
  be	
  small	
  and	
  malleable	
  

  System	
  so)ware	
  
  Smaller	
  is	
  be_er	
  
  Lightweight	
  is	
  ideal	
  
  Toolchain	
  can	
  be	
  a	
  huge	
  issue	
  

  Hardware	
  simulaCon	
  tools	
  
  Sandia	
  SST	
  
  VirtualizaCon	
  

  Leverage	
  virtual	
  machine	
  capability	
  to	
  emulate	
  new	
  hardware	
  capability	
  

  Need	
  mechanisms	
  to	
  know	
  the	
  impact	
  of	
  co-­‐design	
  quickly	
  
  Integrated	
  teams	
  

  Co-­‐design	
  centers	
  



Forces	
  Driving	
  Exascale	
  System	
  So)ware	
  

  Energy	
  constraints	
  and	
  power	
  management	
  
  Reduced	
  data	
  movement	
  

  Resiliency	
  
  More	
  frequent	
  failures	
  

  Concurrency	
  
  O(1k	
  –	
  10k)	
  threads	
  per	
  node	
  

  Heterogeneity	
  
  Different	
  types	
  of	
  cores	
  
  Non-­‐coherent	
  shared	
  memory	
  
  Deeper	
  memory	
  hierarchies	
  

  Highly	
  unbalanced	
  systems	
  
  Compute	
  performance	
  will	
  dominate	
  

  More	
  complex	
  applicaCons	
  
  Dynamic,	
  data-­‐dependent	
  algorithms	
  

  Support	
  for	
  legacy	
  interfaces	
  and	
  tools	
  



Driving	
  the	
  Need	
  for	
  More	
  Advanced	
  RunCme	
  Systems	
  

  Dynamic	
  local	
  resource	
  management	
  
  Massive	
  on-­‐node	
  parallelism	
  

  Large	
  numbers	
  of	
  threads	
  that	
  must	
  be	
  created,	
  synchronized,	
  and	
  destroyed	
  

  Resilience	
  
  Node-­‐level	
  resources	
  may	
  come	
  and	
  go	
  

  Locality	
  management	
  
  Reduce	
  data	
  movement	
  to	
  manage	
  power	
  
  PotenCally	
  moving	
  work	
  to	
  data	
  
  PotenCally	
  recompuCng	
  

  Scalability	
  
  Need	
  to	
  move	
  away	
  from	
  bulk	
  synchronous	
  approach	
  
  Ji_er	
  will	
  be	
  pervasive	
  

  Hybrid	
  programming	
  models	
  
  Interoperability	
  between	
  different	
  models	
  

–  Distributed	
  memory,	
  shared	
  memory,	
  heterogeneous	
  cores	
  
  Efficient	
  phase	
  change	
  

–  Managing	
  resources	
  when	
  moving	
  between	
  models	
  

  Responding	
  to	
  non-­‐local	
  events	
  
  Resilience	
  

  System-­‐level	
  resources	
  may	
  come	
  and	
  go	
  



OS/R	
  Issues	
  and	
  Challenges	
  

  Fault	
  tolerance	
  /	
  resilience	
  
  Programming	
  models	
  
  OS	
  structure	
  
  APIs	
  
  Specific	
  funcConality	
  
  Scalability	
  
  InteracCvity	
  
  Future	
  hardware	
  
  Hardware	
  support	
  for	
  Oses	
  
  ApplicaCon	
  requirements	
  
  Metrics	
  
  ProgrammaCc	
  challenges	
  
  Heterogeneity	
  
  Degree	
  of	
  transparency	
  
  Infrastructure	
  support	
  for	
  mulCple	
  OS/Rs	
  
  Vendor	
  proprietary	
  components	
  
  Tools	
  support/requirements	
  
  Desktop	
  integraCon	
  
  Dynamic	
  resource	
  management	
  

  Vendors	
  
  Testbeds	
  
  AdaptaCon	
  
  Usage	
  models	
  
  Memory	
  hierarchy	
  
  Security	
  
  Standards	
  
  Portability	
  
  Culture	
  
  Non-­‐tradiConal	
  architectures	
  
  MulCple	
  management	
  policies	
  
  Mainstream	
  technology	
  overlap	
  
  Support	
  for	
  introspecCon	
  
  Interface	
  to	
  RAS	
  
  TesCng	
  
  ApplicaCon	
  requirements	
  
  Intellectual	
  property	
  
  Sustainability	
  
  Energy/power	
  



Linux	
  is	
  the	
  Dominant	
  OS	
  on	
  the	
  Top	
  500	
  



November	
  2011	
  Top	
  500	
  OperaCng	
  Systems	
  



Are	
  These	
  Really	
  Linux	
  Supercomputers?	
  

  #2	
  -­‐	
  Tianhe-­‐1A	
  
  14,336	
  6-­‐core	
  Intel	
  Xeons	
  

  86,016	
  
  3%	
  

  7168	
  	
  448-­‐core	
  	
  Nvidia	
  GPUs	
  
  3,211,264	
  total	
  cores	
  
  97%	
  

  #10	
  -­‐	
  Roadrunner	
  
  6120	
  2-­‐core	
  AMD	
  Opterons	
  

  13,824	
  cores	
  
  11%	
  

  12,240	
  9-­‐core	
  	
  IBM	
  PowerXCell	
  8is	
  
  116,640	
  cores	
  
  89%	
  

  Maybe	
  ASCI	
  Red	
  really	
  was	
  a	
  VxWorks	
  machine…	
  



Challenge	
  areas	
  for	
  HPC	
  networks	
  

  The	
  tradiConal	
  “big	
  three”	
  
  Bandwidth	
  
  Latency	
  
  Message	
  Rate	
  (Throughput)	
  

  Other	
  important	
  areas	
  for	
  “real	
  applicaCons”	
  versus	
  benchmarks	
  
  Allowable	
  outstanding	
  messages	
  
  Host	
  memory	
  bandwidth	
  usage	
  
  Noise	
  (threading,	
  cache	
  effects)	
  
  SynchronizaCon	
  
  Progress	
  
  Topology	
  
  Reliability	
  



MPI	
  Will	
  Likely	
  Persist	
  Into	
  Exascale	
  Era	
  

  Number	
  of	
  network	
  endpoints	
  will	
  increase	
  significantly	
  (5-­‐50x)	
  
  Memory	
  and	
  power	
  will	
  be	
  dominant	
  resources	
  to	
  manage	
  

  Networks	
  must	
  be	
  power	
  and	
  energy	
  efficient	
  
  Data	
  movement	
  must	
  be	
  carefully	
  managed	
  
  Memory	
  copies	
  will	
  be	
  very	
  expensive	
  

  Impact	
  of	
  unexpected	
  messages	
  must	
  be	
  minimized	
  
  Eager	
  protocol	
  for	
  short	
  messages	
  leads	
  to	
  receive-­‐side	
  buffering	
  
  Need	
  strategies	
  for	
  managing	
  host	
  buffer	
  resources	
  
  Flow	
  control	
  will	
  be	
  criCcal	
  
  N-­‐to-­‐1	
  communicaCon	
  pa_erns	
  will	
  (conCnue	
  to	
  be)	
  disastrous	
  

  Must	
  preserve	
  key	
  network	
  performance	
  characterisCcs	
  
  Latency	
  
  Bandwidth	
  
  Message	
  rate	
  (throughput)	
  



High	
  Message	
  Throughput	
  is	
  Vital	
  

Message rate determines the minimum message size needed to 
saturate the available network bandwidth 



Current	
  flow	
  control	
  strategies	
  are	
  not	
  sufficient	
  

  Credit-­‐based	
  
  Limit	
  number	
  of	
  outstanding	
  send	
  operaCons	
  
  Used	
  credits	
  are	
  replenished	
  implicitly	
  or	
  explicitly	
  
  EffecCveness	
  limited	
  to	
  N-­‐to-­‐1	
  scenario	
  
  PotenCal	
  performance	
  penalty	
  for	
  well-­‐behaved	
  applicaCons	
  

  Acknowledgment-­‐based	
  
  Receiver	
  explicitly	
  confirms	
  receipt	
  of	
  every	
  message	
  
  Significant	
  per-­‐message	
  performance	
  penalty	
  

  Round	
  trip	
  acknowledgment	
  doubles	
  latency	
  

  Performance	
  penalty	
  for	
  well-­‐behaved	
  applicaCons	
  

  Local	
  copying	
  (bounce	
  buffer)	
  miCgates	
  latency	
  penalty	
  
  Both	
  strategies	
  limit	
  message	
  rate	
  and	
  effecCve	
  bandwidth	
  
  Flow	
  control	
  implemented	
  at	
  user-­‐level	
  inside	
  MPI	
  library	
  
  Network	
  transport	
  usually	
  has	
  its	
  own	
  flow	
  control	
  mechanism	
  

  No	
  mechanism	
  for	
  back	
  pressure	
  from	
  host	
  resources	
  to	
  network	
  



ApplicaCons	
  must	
  become	
  more	
  asynchronous	
  

  ApplicaCons	
  cannot	
  conCnue	
  to	
  be	
  bulk	
  synchronous	
  
  Overhead	
  of	
  global	
  synchronizaCon	
  will	
  limit	
  scaling	
  
  Global	
  synchronizaCon	
  increases	
  suscepCbility	
  to	
  noise	
  

  One-­‐sided	
  communicaCon	
  requires	
  explicit	
  synchronizaCon	
  
  Network	
  API	
  must	
  provide	
  asynchronous	
  operaCons	
  and	
  progress	
  

  Data	
  movement	
  must	
  be	
  independent	
  of	
  host	
  acCvity	
  

  AcCve	
  Messages	
  
  Polling	
  is	
  fundamental	
  to	
  all	
  AM	
  	
  
  Progress	
  only	
  when	
  nothing	
  else	
  to	
  do	
  
  Polling	
  memory	
  for	
  message	
  recepCon	
  is	
  inefficient	
  
  Needs	
  hardware	
  support	
  to	
  integrate	
  message	
  arrival	
  with	
  thread	
  invocaCon	
  

  Run-­‐Cme	
  systems	
  will	
  also	
  need	
  to	
  communicate	
  
  Need	
  to	
  communicate	
  evolving	
  state	
  of	
  the	
  system	
  
  Need	
  a	
  common	
  portable	
  API	
  
  Using	
  TCP	
  OOB	
  connecCon	
  will	
  be	
  infeasible	
  



Resiliency	
  will	
  impact	
  network	
  API	
  

  Network	
  will	
  need	
  to	
  expose	
  errors	
  to	
  enable	
  recovery	
  
  ApplicaCons	
  and	
  system	
  components	
  will	
  have	
  different	
  

resiliency	
  requirements	
  
  Reachability	
  errors	
  must	
  be	
  handled	
  by	
  run-­‐Cme	
  services	
  
  Graceful	
  degradaCon	
  may	
  be	
  appropriate	
  for	
  some	
  applicaCons	
  

  May	
  need	
  OOB	
  mechanism	
  for	
  recognizing	
  network	
  failures	
  
  AM	
  or	
  event-­‐driven	
  API	
  would	
  be	
  ideal	
  
  Hardware	
  support	
  for	
  network-­‐level	
  protecCon	
  

  RAS	
  system	
  invoking	
  OS	
  via	
  network	
  messages	
  



PORTALS NETWORK 
PROGRAMMING INTERFACE 



Portals Network Programming Interface 

  Network API developed by Sandia, U. New Mexico, Intel 
  Previous generations of Portals deployed on several production massively 

parallel systems 
  1993: 1800-node Intel Paragon (SUNMOS) 
  1997: 10,000-node Intel ASCI Red (Puma/Cougar) 
  1999: 1800-node Cplant cluster (Linux) 
  2005: 10,000-node Cray Sandia Red Storm (Catamount) 
  2009: 18,688-node Cray XT5 – ORNL Jaguar (Linux) 

  Focused on providing 
  Lightweight “connectionless” model for massively parallel systems 
  Low latency, high bandwidth 
  Independent progress 
  Overlap of computation and communication 
  Scalable buffering semantics 
  Protocol building blocks to support higher-level protocols 

  Supports MPI, SHMEM, ARMCI, GASNet, Lustre, etc. 



What	
  makes	
  Portals	
  different?	
  

  One-­‐sided	
  communicaCon	
  with	
  opConal	
  matching	
  
  Provides	
  elementary	
  building	
  blocks	
  for	
  supporCng	
  higher-­‐level	
  protocols	
  

well	
  
  Allows	
  structures	
  to	
  be	
  placed	
  in	
  user-­‐space,	
  kernel-­‐space,	
  or	
  NIC-­‐space	
  
  Allows	
  for	
  zero-­‐copy,	
  OS-­‐bypass,	
  and	
  applicaCon-­‐bypass	
  implementaCons	
  

  Scalable	
  buffering	
  of	
  MPI	
  unexpected	
  messages	
  
  Supports	
  mulCple	
  higher-­‐level	
  protocols	
  within	
  a	
  process	
  
  Run-­‐Cme	
  system	
  independent	
  
  Well-­‐defined	
  failure	
  semanCcs	
  



Portals	
  4.0:	
  
Applying	
  lessons	
  learned	
  from	
  Cray	
  SeaStar	
  

  Allow	
  for	
  higher	
  message	
  rate	
  
  Atomic	
  search	
  and	
  post	
  for	
  MPI	
  receives	
  required	
  round-­‐trip	
  across	
  PCI	
  
  Eliminate	
  round-­‐trip	
  by	
  having	
  Portals	
  manage	
  unexpected	
  messages	
  

  Provide	
  explicit	
  flow	
  control	
  
  Encourages	
  well-­‐behaved	
  applicaCons	
  

  Fail	
  fast	
  
  IdenCfy	
  applicaCon	
  scalability	
  issues	
  early	
  

  Resource	
  exhausCon	
  caused	
  unrecoverable	
  failure	
  
  Recovery	
  doesn’t	
  have	
  to	
  be	
  fast	
  
  Resource	
  exhausCon	
  will	
  disable	
  Portal	
  
  Subsequent	
  messages	
  will	
  fail	
  with	
  event	
  noCficaCon	
  at	
  iniCator	
  
  Applies	
  back	
  pressure	
  from	
  network	
  

  Performance	
  for	
  scalable	
  applicaCons	
  
  Correctness	
  for	
  non-­‐scalable	
  applicaCons	
  



Portals	
  4.0	
  (cont’d)	
  

  Enable	
  a	
  be_er	
  hardware	
  implementaCon	
  
  Designed	
  for	
  intelligent	
  or	
  programmable	
  NICs	
  
  Arbitrary	
  list	
  inserCon	
  is	
  bad	
  
  Remove	
  unneeded	
  symmetry	
  on	
  iniCator	
  and	
  target	
  objects	
  

  New	
  funcConality	
  for	
  one-­‐sided	
  operaCons	
  
  Eliminate	
  matching	
  informaCon	
  

  Smaller	
  network	
  header	
  
  Minimize	
  processing	
  at	
  target	
  

  Scalable	
  event	
  delivery	
  
  Lightweight	
  counCng	
  events	
  

  Triggered	
  operaCons	
  
  Chain	
  sequence	
  of	
  data	
  movement	
  operaCons	
  
  Asynchronous	
  collecCve	
  operaCons	
  

–  MiCgate	
  OS	
  noise	
  effects	
  

  Triggered	
  rendezvous	
  protocol	
  
–  Enables	
  progress	
  without	
  bandwidth	
  penalty	
  



Portals	
  4	
  ImplementaCons	
  

  OpenFabrics	
  	
  Verbs	
  
  Provided	
  by	
  System	
  Fabric	
  Works	
  
  Provides	
  a	
  high-­‐performance	
  reference	
  implementaCon	
  for	
  experimentaCon	
  
  Help	
  idenCfy	
  issues	
  with	
  API,	
  semanCcs,	
  performance,	
  etc.	
  
  Independent	
  analysis	
  of	
  the	
  specificaCon	
  

  Shared	
  memory	
  
  Offers	
  consistent	
  and	
  understandable	
  performance	
  characterisCcs	
  
  Provides	
  ability	
  to	
  accurately	
  measure	
  instrucCon	
  count	
  for	
  Portals	
  operaCons	
  
  Be_er	
  characterizaCon	
  of	
  operaCons	
  that	
  impact	
  latency	
  and	
  message	
  rate	
  
  EvaluaCon	
  of	
  single-­‐core	
  onloading	
  performance	
  limits	
  

  Structural	
  SimulaCon	
  Toolkit	
  
  ParCal	
  implementaCon	
  for	
  exploring	
  NIC	
  structures	
  for	
  offload	
  



TRIGGERED OPERATIONS 
FOR COLLECTIVE 
COMMUNICATION 

Underwood, et al. “Enabling Flexible Collective Communication Offload with Triggered 
Operations,” in Proceedings of the IEEE Symposium on High-Performance Interconnects, 
August 2011. 



Motivation 

  Collectives are important to a broad array of applications 
  As node counts grow, it becomes hard to keep collective time 

low 

  Offload provides a mechanism to reduce collective time 
  Eliminates portion of Host-to-NIC latency from the critical path 
  Relatively complex collective algorithms are constantly refined 

and tuned 

  Building blocks provide a better 
  Allow algorithm research and implementation to occur on the 

host 
  Provides a simple set of hardware mechanisms to implement 

  A general purpose API is needed to express the building 
blocks 



Triggered Operations 

  Lightweight events are counters of various network 
transactions 
  One counter can be attached to multiple different operations or 

even types of operations 
  Fine grained control of what you count is provided 

  Portals operation is “triggered” when a counter reaches 
a threshold specified in the operations 
  Various types of operations can be triggered 
  Triggered counter update allows chaining of local operations 



Generality of Triggered Operations 

  Numerous	
  collecCves	
  have	
  been	
  implemented	
  so	
  far	
  
  Allreduce	
  
  Bcast	
  
  Barrier	
  

  Numerous	
  algorithms	
  have	
  been	
  implemented	
  for	
  mulCple	
  
collecCves	
  
  Binary	
  tree	
  
  k-­‐nomial	
  tree	
  
  Pipelined	
  broadcast	
  
  DisseminaCon	
  barrier	
  
  Recursive	
  doubling	
  



Simulation Methodology 

  UClized	
  SST	
  simulator	
  developed	
  at	
  Sandia	
  
  Modeled	
  processor	
  and	
  NIC	
  as	
  separate	
  state	
  machines	
  

  Fixed	
  delays	
  between	
  states	
  to	
  model	
  delays	
  and	
  overhead	
  
  Single	
  state	
  machine	
  for	
  processor,	
  mulCple	
  for	
  NIC	
  to	
  model	
  

concurrent	
  hardware	
  blocks	
  

  Modeled	
  several	
  combinaCons	
  of	
  parameters	
  defined	
  by	
  
latency	
  and	
  message	
  rate	
  
  Allocated	
  delay	
  to	
  various	
  units	
  that	
  were	
  modeled	
  



High-Level NIC Architecture 



Allreduce 
500ns, 10 Mmsgs/s 



Noise Simulations 

  Three	
  noise	
  profiles	
  were	
  simulated	
  (2.5%	
  noise	
  for	
  each)	
  
  250	
  ns	
  @	
  100KHz	
  
  25	
  µs	
  @	
  1KHz	
  
  2.5	
  ms	
  @	
  10Hz	
  

  Noise	
  events	
  were	
  randomly	
  distributed	
  
  Stopped	
  all	
  host	
  processing	
  during	
  a	
  noise	
  event	
  
  NIC	
  processing	
  conCnued	
  

  Timed	
  individual	
  collecCve	
  operaCons	
  (first	
  entry	
  to	
  last	
  exit)	
  



Allreduce With Noise 
25 us @ 1 KHz 



Noise Simulation Results 

  Recursive	
  doubling	
  has	
  poor	
  noise	
  tolerance	
  
  Offload	
  gives	
  significant	
  improvement	
  in	
  noise	
  tolerance	
  

  Partly	
  from	
  reduced	
  Cme	
  
  Partly	
  from	
  reduced	
  host	
  parCcipaCon	
  
  Synchronizing	
  operaCon	
  sCll	
  cannot	
  complete	
  unCl	
  everyone	
  

contributes	
  a	
  value	
  

  InteresCng	
  shape	
  of	
  curves	
  in	
  middle	
  noise	
  case	
  
  Host	
  based	
  latency	
  conCnues	
  to	
  grow	
  with	
  node	
  count	
  
  NIC	
  based	
  latency	
  plateaus	
  



Interesting things we learned 

  Time to initiate a transaction from the host to the NIC makes things 
difficult 
  Even with a high NIC rate, can be rate limited by the host 
  Limitation of using host to initiate all operations instead of offloading 

algorithm 
  If transactions are posted in correct order, limitation is effectively 

mitigated 
  Proper message scheduling is important 

  Time between message initiations on the host (gap) matches network 
hop latency:  send the far away ones first! 

  k-nomial trees are better, but the work at the root limits the 
maximum value of k 

  You can have speed or reproducibility, but… 



Triggered collectives summary 

  Triggered operations provide a general set of building blocks 
  Supports a variety of collective operations 
  Supports a variety of algorithms 
  Has usage beyond just collectives offload 

  Collective offload has limited performance upside versus idealized 
host implementation 
  2x performance improvement due to improved latency and improved 

message rate 
  Performance could be improved somewhat by having host “push” data 

  Noise sensitivity substantially reduced when operations are 
offloaded 



TRIGGERED OPERATIONS 
FOR A RENDEZVOUS 
PROTOCOL 

Barrett, Brightwell, Hemmert, Wheeler, Underwood. “Using Triggered Operations to Offload 
Rendezvous Messages,” in Proceedings of the European MPI Users’ Group Conference, 
September 2011. 



Ping-Pong Bandwidth 



Ping-Pong Bandwidth 



RECEIVER-­‐MANAGED	
  FLOW	
  
CONTROL	
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MPI	
  Requires	
  Flow	
  Control	
  

  MPI-­‐1	
  Standard	
  mandates	
  that	
  senders	
  cannot	
  overwhelm	
  receivers	
  with	
  
too	
  many	
  unexpected	
  messages	
  

  Two	
  main	
  strategies	
  for	
  providing	
  flow	
  control	
  
  Credit-­‐based	
  

  A	
  credit	
  is	
  needed	
  to	
  send	
  a	
  message	
  
  Credits	
  given	
  out	
  at	
  iniCalizaCon	
  or	
  connecCon	
  setup	
  
  Credits	
  can	
  be	
  staCc	
  or	
  dynamic	
  based	
  on	
  message	
  intensity	
  
  Credits	
  exchanged	
  through	
  explicit	
  or	
  piggyback	
  messages	
  

  Acknowledgment-­‐based	
  
  Wait	
  for	
  receiver	
  to	
  acknowledge	
  message	
  recepCon	
  
  ACKs	
  can	
  be	
  explicit	
  or	
  piggyback	
  messages	
  

  Both	
  strategies	
  assume	
  senders	
  need	
  to	
  be	
  constrained	
  
  Our	
  approach	
  is	
  to	
  recover	
  rather	
  than	
  constrain	
  

  Emphasize	
  performance	
  for	
  well-­‐designed	
  applicaCons	
  
  Provide	
  correctness	
  for	
  poorly-­‐designed	
  applicaCons	
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Too	
  few	
  credits	
  can	
  reduce	
  message	
  rate	
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Too	
  many	
  credits	
  wastes	
  memory	
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Ping-­‐pong	
  bandwidth	
  is	
  unimpacted	
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Too	
  few	
  credits	
  degrades	
  streaming	
  bandwidth	
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