
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

System	
 So)ware	
 Challenges	
 for	
 Exascale	
 Systems	

Ron	
 Brightwell,	
 Technical	
 Manager	

Scalable	
 System	
 So)ware	
 Department	

SAND2012-4725P

Outline	

  Sandia	
 system	
 so)ware	
 R&D	
 history	

  Exascale	
 compuCng	

  System	
 so)ware	
 challenges	

  High-­‐performance	
 networking	
 challenges	

  Portals	
 networking	
 programming	
 interface	

www.openfabrics.org 2

System	
 So)ware@Sandia	

•  Established	
 the	
 funcConal	
 parCCon	

model	
 	
 for	
 HPC	
 systems	

•  Tailor	
 system	
 so)ware	
 to	
 funcCon	

(compute,	
 I/O,	
 user	
 services,	
 etc.)	

•  Pioneered	
 the	
 research,	
 development,	

and	
 use	
 of	
 lightweight	
 kernel	
 operaCng	

systems	
 for	
 HPC	

•  Only	
 DOE	
 lab	
 to	
 deploy	
 OS-­‐level	
 so)ware	

on	
 large-­‐scale	
 producCon	
 machines	

•  Provided	
 blueprint	
 for	
 IBM	
 BlueGene	
 OS	

•  Set	
 the	
 standard	
 for	
 scalable	
 parallel	

runCme	
 systems	
 for	
 HPC	

•  Fast	
 applicaCon	
 launch	
 on	
 tens	
 of	

thousands	
 of	
 processors	

•  Significant	
 impact	
 in	
 the	
 design	
 and	
 of	
 	

scalable	
 HPC	
 interconnect	
 APIs	

•  Only	
 DOE	
 lab	
 to	
 deploy	
 low-­‐level	

interconnect	
 API	
 	
 on	
 large-­‐scale	

producCon	
 machines	

AWARDS:
•  1998 Sandia Meritorious Achievement Award,

TeraFLOP Computer Installation Team
•  2006 Sandia Meritorious Achievement Award, Red

Storm Design, Development and Deployment Team
•  2006 NOVA Award Red Storm Design and

Development Team
•  2009 R&D 100 Award for Catamount N-Way

Lightweight Kernel
•  2010 Excellence in Technology Transfer Award,

Federal Laboratory Consortium for Technology
Transfer

•  2010 National Nuclear Security Administration
Defense Programs Award of Excellence

Process	
 for	
 idenCfying	
 exascale	
 applicaCons	
 and	
 technology	
 for	

DOE	
 missions	
 ensures	
 broad	
 community	
 input	

  Town	
 Hall	
 MeeCngs	
 April-­‐June	
 2007	

  ScienCfic	
 Grand	
 Challenges	
 Workshops	
 Nov,	

2008	
 –	
 Oct,	
 2009	

  Climate	
 Science	
 (11/08),	
 	

  High	
 Energy	
 Physics	
 (12/08),	
 	

  Nuclear	
 Physics	
 (1/09),	
 	

  Fusion	
 Energy	
 (3/09),	
 	

  Nuclear	
 Energy	
 (5/09),	
 	

  Biology	
 (8/09),	
 	

  Material	
 Science	
 and	
 Chemistry	
 (8/09),	
 	

  NaConal	
 Security	
 (10/09)	

  Cross-­‐cu^ng	
 technologies	
 (2/10)	

  Exascale	
 Steering	
 Commi_ee	

  “Denver”	
 vendor	
 NDA	
 visits	
 8/2009	

  SC09	
 vendor	
 feedback	
 meeCngs	

  Extreme	
 Architecture	
 and	
 Technology	

Workshop	
 	
 12/2009	

  InternaConal	
 Exascale	
 So)ware	
 Project	

  Santa	
 Fe,	
 NM	
 4/2009;	
 Paris,	
 France	
 6/2009;	

Tsukuba,	
 Japan	
 10/2009	
 4	

MISSION IMPERATIVES

FUNDAMENTAL SCIENCE

DOE	
 mission	
 imperaCves	
 require	
 simulaCon	
 and	

analysis	
 for	
 policy	
 and	
 decision	
 making	

  Climate	
 Change:	
 Understanding,	
 miCgaCng	
 and	

adapCng	
 to	
 the	
 effects	
 of	
 global	
 warming	

  Sea	
 level	
 rise	

  Severe	
 weather	

  Regional	
 climate	
 change	

  Geologic	
 carbon	
 sequestraCon	

  Energy:	
 Reducing	
 U.S.	
 reliance	
 on	
 foreign	
 energy	

sources	
 and	
 reducing	
 the	
 carbon	
 footprint	
 of	

energy	
 producCon	

  Reducing	
 Cme	
 and	
 cost	
 of	
 reactor	
 design	
 and	

deployment	

  Improving	
 the	
 efficiency	
 of	
 combusCon	
 energy	

systems	

  NaConal	
 Nuclear	
 Security:	
 Maintaining	
 a	
 safe,	

secure	
 and	
 reliable	
 nuclear	
 stockpile	

  Stockpile	
 cerCficaCon	

  PredicCve	
 scienCfic	
 challenges	

  Real-­‐Cme	
 evaluaCon	
 of	
 urban	
 nuclear	
 detonaCon	

5	
 Accomplishing these missions requires exascale resources.

Exascale	
 simulaCon	
 will	
 enable	

fundamental	
 advances	
 in	
 basic	
 science	

  High	
 Energy	
 &	
 Nuclear	
 Physics	

  Dark-­‐energy	
 and	
 dark	
 ma_er	

  Fundamentals	
 of	
 fission	
 	
 fusion	
 reacCons	

  Facility	
 and	
 experimental	
 design	

  EffecCve	
 design	
 of	
 accelerators	

  Probes	
 of	
 dark	
 energy	
 and	
 dark	
 ma_er	
 	

  ITER	
 shot	
 planning	
 and	
 device	
 control	

  Materials	
 /	
 Chemistry	

  PredicCve	
 mulC-­‐scale	
 materials	
 modeling:	

observaCon	
 to	
 control	

  EffecCve,	
 commercial	
 technologies	
 in	

renewable	
 energy,	
 catalysts,	
 ba_eries	
 and	

combusCon	

  Life	
 Sciences	

  Be_er	
 biofuels	

  Sequence	
 to	
 structure	
 to	
 funcCon	

Slide	
 6	

ITER

ILC
Hubble image

of lensing

Structure of
nucleons

These breakthrough scientific discoveries
and facilities require exascale applications
and resources.

NaConal	
 Nuclear	
 Security	

  U.S.	
 Stockpile	
 must	
 remain	
 safe,	
 secure	

and	
 reliable	
 without	
 nuclear	
 tesCng	

  Annual	
 cerCficaCon	

  Directed	
 Stockpile	
 Work	

  Life	
 Extension	
 Programs	

  A	
 predicCve	
 simulaCon	
 capability	
 is	

essenCal	
 to	
 achieving	
 this	
 mission	

  Integrated	
 design	
 capability	

  ResoluCon	
 of	
 remaining	
 unknowns	

  Energy	
 balance	

  Boost	
 	

  Si	
 radiaCon	
 damage	
 	

  Secondary	
 performance	

  Uncertainty	
 QuanCficaCon	

  Experimental	
 campaigns	
 provide	
 criCcal	

data	
 for	
 V&V	
 (NIF,	
 DARHT,	
 MaRIE)	

  EffecCve	
 exascale	
 resources	
 are	
 necessary	

for	
 predicCon	
 and	
 quanCficaCon	
 of	

uncertainty	
 7	

Concurrency	
 is	
 one	
 key	
 ingredient	
 in	

ge^ng	
 to	
 exaflop/sec	

8	
 and power, resiliency, programming models, memory bandwidth, I/O, …

CM-5

Red Storm

Increased parallelism
allowed a 1000-fold

increase in
performance while the
clock speed increased

by a factor of 40

Many-­‐core	
 chip	
 architectures	
 are	
 the	

future.	

The shift toward increasing parallelism is not a triumphant stride forward based
on breakthroughs in novel software and architectures for parallelism … instead
it is actually a retreat from even greater challenges that thwart efficient silicon
implementation of traditional uniprocessor architectures.
Kurt Keutzer

9	

What	
 are	
 criCcal	
 exascale	
 technology	
 investments?	

  System	
 power	
 is	
 a	
 first	
 class	
 constraint	
 on	
 exascale	
 system	
 performance	
 and	

effecCveness.	

  Memory	
 is	
 an	
 important	
 component	
 of	
 meeCng	
 exascale	
 power	
 and	
 applicaCons	

goals.	

  Programming	
 model.	
 	
 Early	
 investment	
 in	
 several	
 efforts	
 to	
 decide	
 in	
 2013	
 on	

exascale	
 programming	
 model,	
 allowing	
 exemplar	
 applicaCons	
 effecCve	
 access	
 to	

2015	
 system	
 for	
 both	
 mission	
 and	
 science.	

  Investment	
 in	
 exascale	
 processor	
 design	
 to	
 achieve	
 an	
 exascale-­‐like	
 system	
 in	

2015.	

  OperaCng	
 System	
 strategy	
 for	
 exascale	
 is	
 criCcal	
 for	
 node	
 performance	
 at	
 scale	

and	
 for	
 efficient	
 support	
 of	
 new	
 programming	
 models	
 and	
 run	
 Cme	
 systems.	

  Reliability	
 and	
 resiliency	
 are	
 criCcal	
 at	
 this	
 scale	
 and	
 require	
 applicaCons	
 neutral	

movement	
 of	
 the	
 file	
 system	
 (for	
 check	
 poinCng,	
 in	
 parCcular)	
 closer	
 to	
 the	

running	
 apps.	
 	
 	

  HPC	
 co-­‐design	
 strategy	
 and	
 implementaCon	
 requires	
 a	
 set	
 of	
 a	
 hierarchical	

performance	
 models	
 and	
 simulators	
 as	
 well	
 as	
 commitment	
 from	
 apps,	
 so)ware	

and	
 architecture	
 communiCes.	
 10	

PotenCal	
 System	
 Architecture	
 Targets	

System
attributes

2010 “2015” “2018”

System peak 2 Peta 200 Petaflop/sec 1 Exaflop/sec

Power 6 MW 15 MW 20 MW

System memory 0.3 PB 5 PB 32-64 PB

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)

System size
(nodes)

18,700 50,000 5,000 1,000,000 100,000

Total Node
Interconnect BW

1.5 GB/s 20 GB/sec 200 GB/sec

MTTI days O(1day) O(1 day)

Factors	
 driving	
 up	
 the	
 fault	
 rate	

  Number	
 of	
 components	
 both	
 memory	
 and	
 processors	
 will	
 increase	
 by	
 an	
 order	
 of	
 magnitude	

which	
 will	
 increase	
 hard	
 and	
 so)	
 errors.	

  Smaller	
 circuit	
 sizes,	
 running	
 at	
 lower	
 voltages	
 to	
 reduce	
 power	
 consumpCon,	
 increases	
 the	

probability	
 of	
 switches	
 flipping	
 spontaneously	
 due	
 to	
 thermal	
 and	
 voltage	
 variaCons	
 as	
 well	

as	
 radiaCon,	
 increasing	
 so)	
 errors	

  Power	
 management	
 cycling	
 significantly	
 decreases	
 the	
 components	
 lifeCmes	
 due	
 to	
 thermal	

and	
 mechanical	
 stresses.	

  Resistance	
 to	
 add	
 addiConal	
 HW	
 detecCon	
 and	
 recovery	
 logic	
 right	
 on	
 the	
 chips	
 to	
 detect	

silent	
 errors.	
 Because	
 it	
 will	
 increase	
 power	
 consumpCon	
 by	
 15%	
 and	
 increase	
 the	
 chip	
 costs.	

  Heterogeneous	
 systems	
 make	
 error	
 detecCon	
 and	
 recovery	
 even	
 harder,	
 for	
 example,	

detecCng	
 and	
 recovering	
 from	
 an	
 error	
 in	
 a	
 GPU	
 can	
 involve	
 hundreds	
 of	
 threads	

simultaneously	
 on	
 the	
 GPU	
 and	
 hundreds	
 of	
 cycles	
 in	
 drain	
 pipelines	
 to	
 begin	
 recovery.	

  Increasing	
 system	
 and	
 algorithm	
 complexity	
 makes	
 improper	
 interacCon	
 of	
 separately	

designed	
 and	
 implemented	
 components	
 more	
 likely.	

Programming	
 Model	
 Approaches	

  Hierarchical	
 approach	
 (intra-­‐node	
 +	
 inter-­‐node)	

  Part	
 I:	
 Inter-­‐node	
 model	
 for	
 communicaCng	
 between	

nodes	

  MPI	
 scaling	
 to	
 millions	
 of	
 nodes:	
 Importance	
 high;	
 risk	
 low	

  One-­‐sided	
 communicaCon	
 scaling:	
 Importance	
 medium;	

risk	
 low	

  Part	
 II:	
 Intra-­‐node	
 model	
 for	
 on-­‐chip	
 concurrency	

  Overriding	
 Risk:	
 No	
 single	
 path	
 for	
 node	
 architecture	

  OpenMP,	
 Pthreads:	
 High	
 risk	
 (may	
 not	
 be	
 feasible	
 with	

node	
 architectures);	
 high	
 payoff	
 (already	
 in	
 some	

applicaCons)	

  New	
 API,	
 extended	
 PGAS,	
 or	
 CUDA/OpenCL	
 to	
 handle	

hierarchies	
 of	
 memories	
 and	
 cores:	
 Medium	
 risk	
 (reflects	

architecture	
 direcCons);	
 Medium	
 payoff	
 (reprogramming	

of	
 node	
 code)	

  Unified	
 approach:	
 single	
 high	
 level	
 model	
 for	
 enCre	

system	

  High	
 risk;	
 high	
 payoff	
 for	
 new	
 codes,	
 new	
 applicaCon	

domains	

Slide	

13	

System	
 So)ware	
 Challenges	

  Power/energy	
 as	
 a	
 new	
 fundamental	
 resource	

  Minimizing	
 data	
 movement	
 is	
 key	

  Memory	
 capacity	

  Likely	
 the	
 scarcest	
 resource	

  Resilience	

  ApplicaCon	
 as	
 well	
 as	
 OS/RunCme	

  Heterogeneity	

  Processors,	
 memories,	
 networks,	
 etc.	

  More	
 dynamic	

  IntrospecCve	
 and	
 introspectable	

  Scalability	

  Managing	
 millions	
 of	
 cores	
 rather	
 than	
 thousands	
 of	
 cores	

System	
 So)ware	
 OpportuniCes	

  Need	
 fundamental	
 new	
 interfaces	
 between	
 system	
 so)ware,	

applicaCons,	
 tools,	
 and	
 hardware	

  Power	
 management,	
 memory	
 management,	
 data	
 movement,	
 dynamic	

resource	
 management,	
 etc.	

  Lightweight	
 approaches	
 that	
 minimize	
 memory	
 use	
 and	

reduce	
 complexity	
 will	
 conCnue	
 to	
 be	
 important	

  Some	
 exploraCons	
 may	
 need	
 to	
 be	
 done	
 without	
 hardware	

  SimulaCon	
 	
 and	
 emulaCon	
 environments,	
 virtualizaCon,	
 mini-­‐

applicaCons,	
 syntheCc	
 workloads	
 will	
 be	
 needed	

SimulaCon,	
 emulaCon,	
 and	
 performance	
 modeling	

  Need	
 to	
 develop	
 applicaCons,	
 algorithms,	
 and	
 so)ware	
 for	
 hardware	
 and	

systems	
 that	
 don’t	
 exist	
 yet	

  Exascale	
 systems	
 will	
 be	
 significantly	
 different	
 from	
 today’s	
 systems	

  Massive	
 amounts	
 of	
 on-­‐node	
 parallelism	

  Heterogeneity	

  More	
 layers	
 of	
 memory	
 hierarchy	

  System	
 simulaCon,	
 emulaCon,	
 performance	
 models,	
 and	
 tools	
 are	
 all	

methods	
 that	
 have	
 been	
 employed	
 to	
 predict	
 how	
 algorithms	
 and	

applicaCons	
 perform	
 on	
 future	
 systems	

  Such	
 acCviCes	
 are	
 also	
 useful	
 for	
 feedback	
 to	
 the	
 architecture	
 community	

  Hardware/so)ware	
 co-­‐simulaCon	
 used	
 extensively	
 in	
 embedded	

compuCng	

  Cycle-­‐accurate	
 applicaCon	
 simulaCon	
 at	
 exascale	
 is	
 not	
 feasible	

  MulC-­‐level	
 simulaCon	
 tools	
 may	
 be	
 useful	

  Cycle-­‐accurate	
 simulators	
 or	
 emulaCon	
 might	
 be	
 used	
 to	
 predict	
 node	

performance	

  Less	
 complex	
 models	
 can	
 also	
 provide	
 meaningful	
 insight	

Mini-­‐ApplicaCons	

  Proven	
 to	
 be	
 useful	
 for	
 co-­‐design	
 as	
 proxies	
 of	
 full	
 applicaCons	

  Assessing	
 not	
 only	
 impact	
 of	
 low-­‐level	
 hardware,	
 but	
 also	
 re-­‐design	
 of	
 applicaCon	

or	
 algorithm	

  A	
 well-­‐designed	
 mini-­‐app	

  Contains	
 one	
 or	
 more	
 performance-­‐impacCng	
 features	

  Has	
 a	
 small	
 code	
 base	

  Can	
 be	
 easily	
 re-­‐wri_en	

  Is	
 open	
 source	

  Working	
 with	
 mini-­‐app	
 elevates	
 discussion	
 between	
 various	
 system	

component	
 developers	

  Broadens	
 the	
 scope	
 of	
 contributors	
 who	
 may	
 not	
 have	
 Cme	
 or	
 access	
 to	

work	
 with	
 full	
 applicaCon	

  Mini-­‐apps	
 are	
 expected	
 to	
 lose	
 relevance	
 over	
 Cme	

  Research	
 opportuniCes	

  Automated	
 methods	
 of	
 generaCng	
 mini-­‐apps	

  Determining	
 the	
 most	
 computaConally	
 intensive	
 porCons	
 of	
 a	
 code	
 on	
 future	

systems	

	

	

Co-­‐design	
 is	
 a	
 key	
 element	
 of	
 the	
 Exascale	
 strategy	

  Architectures	
 are	
 undergoing	
 a	
 major	
 change	

  Single	
 thread	
 performance	
 is	
 remaining	
 relaCvely	
 constant	
 and	
 on	
 chip	
 parallelism	
 is	

increasing	
 rapidly	

  Hierarchical	
 parallelism,	
 heterogeneity	

  Massive	
 mulCthreading	

  NVRAM	
 for	
 caching	
 I/O	

  ApplicaCons	
 will	
 need	
 to	
 change	
 in	
 response	
 to	
 architectural	
 changes	

  Manage	
 locality	
 and	
 extreme	
 scalability	
 (billion-­‐way	
 parallelism)	

  PotenCally	
 tolerate	
 latency	

  Resilience?	

  Unprecedented	
 opportunity	
 for	
 applicaCons/algorithms	
 to	
 influence	
 architectures,	

system	
 so)ware	
 and	
 the	
 next	
 programming	
 model	

  Hardware	
 R&D	
 is	
 needed	
 to	
 reach	
 exascale	

  We	
 will	
 not	
 be	
 able	
 to	
 solve	
 all	
 of	
 the	
 exascale	
 problems	
 through	
 architectures	

work	
 only	

  Co-­‐design	
 has	
 become	
 a	
 buzzword	
 for	
 idenCfying	
 challenges	

Fundamental	
 CapabiliCes	
 for	
 Co-­‐Design	

  So)ware	
 agility	

  ApplicaCons	

  Need	
 to	
 idenCfy	
 an	
 important,	
 representaCve	
 subset	

  ApplicaCon	
 code	
 must	
 be	
 small	
 and	
 malleable	

  System	
 so)ware	

  Smaller	
 is	
 be_er	

  Lightweight	
 is	
 ideal	

  Toolchain	
 can	
 be	
 a	
 huge	
 issue	

  Hardware	
 simulaCon	
 tools	

  Sandia	
 SST	

  VirtualizaCon	

  Leverage	
 virtual	
 machine	
 capability	
 to	
 emulate	
 new	
 hardware	
 capability	

  Need	
 mechanisms	
 to	
 know	
 the	
 impact	
 of	
 co-­‐design	
 quickly	

  Integrated	
 teams	

  Co-­‐design	
 centers	

Forces	
 Driving	
 Exascale	
 System	
 So)ware	

  Energy	
 constraints	
 and	
 power	
 management	

  Reduced	
 data	
 movement	

  Resiliency	

  More	
 frequent	
 failures	

  Concurrency	

  O(1k	
 –	
 10k)	
 threads	
 per	
 node	

  Heterogeneity	

  Different	
 types	
 of	
 cores	

  Non-­‐coherent	
 shared	
 memory	

  Deeper	
 memory	
 hierarchies	

  Highly	
 unbalanced	
 systems	

  Compute	
 performance	
 will	
 dominate	

  More	
 complex	
 applicaCons	

  Dynamic,	
 data-­‐dependent	
 algorithms	

  Support	
 for	
 legacy	
 interfaces	
 and	
 tools	

Driving	
 the	
 Need	
 for	
 More	
 Advanced	
 RunCme	
 Systems	

  Dynamic	
 local	
 resource	
 management	

  Massive	
 on-­‐node	
 parallelism	

  Large	
 numbers	
 of	
 threads	
 that	
 must	
 be	
 created,	
 synchronized,	
 and	
 destroyed	

  Resilience	

  Node-­‐level	
 resources	
 may	
 come	
 and	
 go	

  Locality	
 management	

  Reduce	
 data	
 movement	
 to	
 manage	
 power	

  PotenCally	
 moving	
 work	
 to	
 data	

  PotenCally	
 recompuCng	

  Scalability	

  Need	
 to	
 move	
 away	
 from	
 bulk	
 synchronous	
 approach	

  Ji_er	
 will	
 be	
 pervasive	

  Hybrid	
 programming	
 models	

  Interoperability	
 between	
 different	
 models	

–  Distributed	
 memory,	
 shared	
 memory,	
 heterogeneous	
 cores	

  Efficient	
 phase	
 change	

–  Managing	
 resources	
 when	
 moving	
 between	
 models	

  Responding	
 to	
 non-­‐local	
 events	

  Resilience	

  System-­‐level	
 resources	
 may	
 come	
 and	
 go	

OS/R	
 Issues	
 and	
 Challenges	

  Fault	
 tolerance	
 /	
 resilience	

  Programming	
 models	

  OS	
 structure	

  APIs	

  Specific	
 funcConality	

  Scalability	

  InteracCvity	

  Future	
 hardware	

  Hardware	
 support	
 for	
 Oses	

  ApplicaCon	
 requirements	

  Metrics	

  ProgrammaCc	
 challenges	

  Heterogeneity	

  Degree	
 of	
 transparency	

  Infrastructure	
 support	
 for	
 mulCple	
 OS/Rs	

  Vendor	
 proprietary	
 components	

  Tools	
 support/requirements	

  Desktop	
 integraCon	

  Dynamic	
 resource	
 management	

  Vendors	

  Testbeds	

  AdaptaCon	

  Usage	
 models	

  Memory	
 hierarchy	

  Security	

  Standards	

  Portability	

  Culture	

  Non-­‐tradiConal	
 architectures	

  MulCple	
 management	
 policies	

  Mainstream	
 technology	
 overlap	

  Support	
 for	
 introspecCon	

  Interface	
 to	
 RAS	

  TesCng	

  ApplicaCon	
 requirements	

  Intellectual	
 property	

  Sustainability	

  Energy/power	

Linux	
 is	
 the	
 Dominant	
 OS	
 on	
 the	
 Top	
 500	

November	
 2011	
 Top	
 500	
 OperaCng	
 Systems	

Are	
 These	
 Really	
 Linux	
 Supercomputers?	

  #2	
 -­‐	
 Tianhe-­‐1A	

  14,336	
 6-­‐core	
 Intel	
 Xeons	

  86,016	

  3%	

  7168	
 	
 448-­‐core	
 	
 Nvidia	
 GPUs	

  3,211,264	
 total	
 cores	

  97%	

  #10	
 -­‐	
 Roadrunner	

  6120	
 2-­‐core	
 AMD	
 Opterons	

  13,824	
 cores	

  11%	

  12,240	
 9-­‐core	
 	
 IBM	
 PowerXCell	
 8is	

  116,640	
 cores	

  89%	

  Maybe	
 ASCI	
 Red	
 really	
 was	
 a	
 VxWorks	
 machine…	

Challenge	
 areas	
 for	
 HPC	
 networks	

  The	
 tradiConal	
 “big	
 three”	

  Bandwidth	

  Latency	

  Message	
 Rate	
 (Throughput)	

  Other	
 important	
 areas	
 for	
 “real	
 applicaCons”	
 versus	
 benchmarks	

  Allowable	
 outstanding	
 messages	

  Host	
 memory	
 bandwidth	
 usage	

  Noise	
 (threading,	
 cache	
 effects)	

  SynchronizaCon	

  Progress	

  Topology	

  Reliability	

MPI	
 Will	
 Likely	
 Persist	
 Into	
 Exascale	
 Era	

  Number	
 of	
 network	
 endpoints	
 will	
 increase	
 significantly	
 (5-­‐50x)	

  Memory	
 and	
 power	
 will	
 be	
 dominant	
 resources	
 to	
 manage	

  Networks	
 must	
 be	
 power	
 and	
 energy	
 efficient	

  Data	
 movement	
 must	
 be	
 carefully	
 managed	

  Memory	
 copies	
 will	
 be	
 very	
 expensive	

  Impact	
 of	
 unexpected	
 messages	
 must	
 be	
 minimized	

  Eager	
 protocol	
 for	
 short	
 messages	
 leads	
 to	
 receive-­‐side	
 buffering	

  Need	
 strategies	
 for	
 managing	
 host	
 buffer	
 resources	

  Flow	
 control	
 will	
 be	
 criCcal	

  N-­‐to-­‐1	
 communicaCon	
 pa_erns	
 will	
 (conCnue	
 to	
 be)	
 disastrous	

  Must	
 preserve	
 key	
 network	
 performance	
 characterisCcs	

  Latency	

  Bandwidth	

  Message	
 rate	
 (throughput)	

High	
 Message	
 Throughput	
 is	
 Vital	

Message rate determines the minimum message size needed to
saturate the available network bandwidth

Current	
 flow	
 control	
 strategies	
 are	
 not	
 sufficient	

  Credit-­‐based	

  Limit	
 number	
 of	
 outstanding	
 send	
 operaCons	

  Used	
 credits	
 are	
 replenished	
 implicitly	
 or	
 explicitly	

  EffecCveness	
 limited	
 to	
 N-­‐to-­‐1	
 scenario	

  PotenCal	
 performance	
 penalty	
 for	
 well-­‐behaved	
 applicaCons	

  Acknowledgment-­‐based	

  Receiver	
 explicitly	
 confirms	
 receipt	
 of	
 every	
 message	

  Significant	
 per-­‐message	
 performance	
 penalty	

  Round	
 trip	
 acknowledgment	
 doubles	
 latency	

  Performance	
 penalty	
 for	
 well-­‐behaved	
 applicaCons	

  Local	
 copying	
 (bounce	
 buffer)	
 miCgates	
 latency	
 penalty	

  Both	
 strategies	
 limit	
 message	
 rate	
 and	
 effecCve	
 bandwidth	

  Flow	
 control	
 implemented	
 at	
 user-­‐level	
 inside	
 MPI	
 library	

  Network	
 transport	
 usually	
 has	
 its	
 own	
 flow	
 control	
 mechanism	

  No	
 mechanism	
 for	
 back	
 pressure	
 from	
 host	
 resources	
 to	
 network	

ApplicaCons	
 must	
 become	
 more	
 asynchronous	

  ApplicaCons	
 cannot	
 conCnue	
 to	
 be	
 bulk	
 synchronous	

  Overhead	
 of	
 global	
 synchronizaCon	
 will	
 limit	
 scaling	

  Global	
 synchronizaCon	
 increases	
 suscepCbility	
 to	
 noise	

  One-­‐sided	
 communicaCon	
 requires	
 explicit	
 synchronizaCon	

  Network	
 API	
 must	
 provide	
 asynchronous	
 operaCons	
 and	
 progress	

  Data	
 movement	
 must	
 be	
 independent	
 of	
 host	
 acCvity	

  AcCve	
 Messages	

  Polling	
 is	
 fundamental	
 to	
 all	
 AM	
 	

  Progress	
 only	
 when	
 nothing	
 else	
 to	
 do	

  Polling	
 memory	
 for	
 message	
 recepCon	
 is	
 inefficient	

  Needs	
 hardware	
 support	
 to	
 integrate	
 message	
 arrival	
 with	
 thread	
 invocaCon	

  Run-­‐Cme	
 systems	
 will	
 also	
 need	
 to	
 communicate	

  Need	
 to	
 communicate	
 evolving	
 state	
 of	
 the	
 system	

  Need	
 a	
 common	
 portable	
 API	

  Using	
 TCP	
 OOB	
 connecCon	
 will	
 be	
 infeasible	

Resiliency	
 will	
 impact	
 network	
 API	

  Network	
 will	
 need	
 to	
 expose	
 errors	
 to	
 enable	
 recovery	

  ApplicaCons	
 and	
 system	
 components	
 will	
 have	
 different	

resiliency	
 requirements	

  Reachability	
 errors	
 must	
 be	
 handled	
 by	
 run-­‐Cme	
 services	

  Graceful	
 degradaCon	
 may	
 be	
 appropriate	
 for	
 some	
 applicaCons	

  May	
 need	
 OOB	
 mechanism	
 for	
 recognizing	
 network	
 failures	

  AM	
 or	
 event-­‐driven	
 API	
 would	
 be	
 ideal	

  Hardware	
 support	
 for	
 network-­‐level	
 protecCon	

  RAS	
 system	
 invoking	
 OS	
 via	
 network	
 messages	

PORTALS NETWORK
PROGRAMMING INTERFACE

Portals Network Programming Interface

  Network API developed by Sandia, U. New Mexico, Intel
  Previous generations of Portals deployed on several production massively

parallel systems
  1993: 1800-node Intel Paragon (SUNMOS)
  1997: 10,000-node Intel ASCI Red (Puma/Cougar)
  1999: 1800-node Cplant cluster (Linux)
  2005: 10,000-node Cray Sandia Red Storm (Catamount)
  2009: 18,688-node Cray XT5 – ORNL Jaguar (Linux)

  Focused on providing
  Lightweight “connectionless” model for massively parallel systems
  Low latency, high bandwidth
  Independent progress
  Overlap of computation and communication
  Scalable buffering semantics
  Protocol building blocks to support higher-level protocols

  Supports MPI, SHMEM, ARMCI, GASNet, Lustre, etc.

What	
 makes	
 Portals	
 different?	

  One-­‐sided	
 communicaCon	
 with	
 opConal	
 matching	

  Provides	
 elementary	
 building	
 blocks	
 for	
 supporCng	
 higher-­‐level	
 protocols	

well	

  Allows	
 structures	
 to	
 be	
 placed	
 in	
 user-­‐space,	
 kernel-­‐space,	
 or	
 NIC-­‐space	

  Allows	
 for	
 zero-­‐copy,	
 OS-­‐bypass,	
 and	
 applicaCon-­‐bypass	
 implementaCons	

  Scalable	
 buffering	
 of	
 MPI	
 unexpected	
 messages	

  Supports	
 mulCple	
 higher-­‐level	
 protocols	
 within	
 a	
 process	

  Run-­‐Cme	
 system	
 independent	

  Well-­‐defined	
 failure	
 semanCcs	

Portals	
 4.0:	

Applying	
 lessons	
 learned	
 from	
 Cray	
 SeaStar	

  Allow	
 for	
 higher	
 message	
 rate	

  Atomic	
 search	
 and	
 post	
 for	
 MPI	
 receives	
 required	
 round-­‐trip	
 across	
 PCI	

  Eliminate	
 round-­‐trip	
 by	
 having	
 Portals	
 manage	
 unexpected	
 messages	

  Provide	
 explicit	
 flow	
 control	

  Encourages	
 well-­‐behaved	
 applicaCons	

  Fail	
 fast	

  IdenCfy	
 applicaCon	
 scalability	
 issues	
 early	

  Resource	
 exhausCon	
 caused	
 unrecoverable	
 failure	

  Recovery	
 doesn’t	
 have	
 to	
 be	
 fast	

  Resource	
 exhausCon	
 will	
 disable	
 Portal	

  Subsequent	
 messages	
 will	
 fail	
 with	
 event	
 noCficaCon	
 at	
 iniCator	

  Applies	
 back	
 pressure	
 from	
 network	

  Performance	
 for	
 scalable	
 applicaCons	

  Correctness	
 for	
 non-­‐scalable	
 applicaCons	

Portals	
 4.0	
 (cont’d)	

  Enable	
 a	
 be_er	
 hardware	
 implementaCon	

  Designed	
 for	
 intelligent	
 or	
 programmable	
 NICs	

  Arbitrary	
 list	
 inserCon	
 is	
 bad	

  Remove	
 unneeded	
 symmetry	
 on	
 iniCator	
 and	
 target	
 objects	

  New	
 funcConality	
 for	
 one-­‐sided	
 operaCons	

  Eliminate	
 matching	
 informaCon	

  Smaller	
 network	
 header	

  Minimize	
 processing	
 at	
 target	

  Scalable	
 event	
 delivery	

  Lightweight	
 counCng	
 events	

  Triggered	
 operaCons	

  Chain	
 sequence	
 of	
 data	
 movement	
 operaCons	

  Asynchronous	
 collecCve	
 operaCons	

–  MiCgate	
 OS	
 noise	
 effects	

  Triggered	
 rendezvous	
 protocol	

–  Enables	
 progress	
 without	
 bandwidth	
 penalty	

Portals	
 4	
 ImplementaCons	

  OpenFabrics	
 	
 Verbs	

  Provided	
 by	
 System	
 Fabric	
 Works	

  Provides	
 a	
 high-­‐performance	
 reference	
 implementaCon	
 for	
 experimentaCon	

  Help	
 idenCfy	
 issues	
 with	
 API,	
 semanCcs,	
 performance,	
 etc.	

  Independent	
 analysis	
 of	
 the	
 specificaCon	

  Shared	
 memory	

  Offers	
 consistent	
 and	
 understandable	
 performance	
 characterisCcs	

  Provides	
 ability	
 to	
 accurately	
 measure	
 instrucCon	
 count	
 for	
 Portals	
 operaCons	

  Be_er	
 characterizaCon	
 of	
 operaCons	
 that	
 impact	
 latency	
 and	
 message	
 rate	

  EvaluaCon	
 of	
 single-­‐core	
 onloading	
 performance	
 limits	

  Structural	
 SimulaCon	
 Toolkit	

  ParCal	
 implementaCon	
 for	
 exploring	
 NIC	
 structures	
 for	
 offload	

TRIGGERED OPERATIONS
FOR COLLECTIVE
COMMUNICATION

Underwood, et al. “Enabling Flexible Collective Communication Offload with Triggered
Operations,” in Proceedings of the IEEE Symposium on High-Performance Interconnects,
August 2011.

Motivation

  Collectives are important to a broad array of applications
  As node counts grow, it becomes hard to keep collective time

low

  Offload provides a mechanism to reduce collective time
  Eliminates portion of Host-to-NIC latency from the critical path
  Relatively complex collective algorithms are constantly refined

and tuned

  Building blocks provide a better
  Allow algorithm research and implementation to occur on the

host
  Provides a simple set of hardware mechanisms to implement

  A general purpose API is needed to express the building
blocks

Triggered Operations

  Lightweight events are counters of various network
transactions
  One counter can be attached to multiple different operations or

even types of operations
  Fine grained control of what you count is provided

  Portals operation is “triggered” when a counter reaches
a threshold specified in the operations
  Various types of operations can be triggered
  Triggered counter update allows chaining of local operations

Generality of Triggered Operations

  Numerous	
 collecCves	
 have	
 been	
 implemented	
 so	
 far	

  Allreduce	

  Bcast	

  Barrier	

  Numerous	
 algorithms	
 have	
 been	
 implemented	
 for	
 mulCple	

collecCves	

  Binary	
 tree	

  k-­‐nomial	
 tree	

  Pipelined	
 broadcast	

  DisseminaCon	
 barrier	

  Recursive	
 doubling	

Simulation Methodology

  UClized	
 SST	
 simulator	
 developed	
 at	
 Sandia	

  Modeled	
 processor	
 and	
 NIC	
 as	
 separate	
 state	
 machines	

  Fixed	
 delays	
 between	
 states	
 to	
 model	
 delays	
 and	
 overhead	

  Single	
 state	
 machine	
 for	
 processor,	
 mulCple	
 for	
 NIC	
 to	
 model	

concurrent	
 hardware	
 blocks	

  Modeled	
 several	
 combinaCons	
 of	
 parameters	
 defined	
 by	

latency	
 and	
 message	
 rate	

  Allocated	
 delay	
 to	
 various	
 units	
 that	
 were	
 modeled	

High-Level NIC Architecture

Allreduce
500ns, 10 Mmsgs/s

Noise Simulations

  Three	
 noise	
 profiles	
 were	
 simulated	
 (2.5%	
 noise	
 for	
 each)	

  250	
 ns	
 @	
 100KHz	

  25	
 µs	
 @	
 1KHz	

  2.5	
 ms	
 @	
 10Hz	

  Noise	
 events	
 were	
 randomly	
 distributed	

  Stopped	
 all	
 host	
 processing	
 during	
 a	
 noise	
 event	

  NIC	
 processing	
 conCnued	

  Timed	
 individual	
 collecCve	
 operaCons	
 (first	
 entry	
 to	
 last	
 exit)	

Allreduce With Noise
25 us @ 1 KHz

Noise Simulation Results

  Recursive	
 doubling	
 has	
 poor	
 noise	
 tolerance	

  Offload	
 gives	
 significant	
 improvement	
 in	
 noise	
 tolerance	

  Partly	
 from	
 reduced	
 Cme	

  Partly	
 from	
 reduced	
 host	
 parCcipaCon	

  Synchronizing	
 operaCon	
 sCll	
 cannot	
 complete	
 unCl	
 everyone	

contributes	
 a	
 value	

  InteresCng	
 shape	
 of	
 curves	
 in	
 middle	
 noise	
 case	

  Host	
 based	
 latency	
 conCnues	
 to	
 grow	
 with	
 node	
 count	

  NIC	
 based	
 latency	
 plateaus	

Interesting things we learned

  Time to initiate a transaction from the host to the NIC makes things
difficult
  Even with a high NIC rate, can be rate limited by the host
  Limitation of using host to initiate all operations instead of offloading

algorithm
  If transactions are posted in correct order, limitation is effectively

mitigated
  Proper message scheduling is important

  Time between message initiations on the host (gap) matches network
hop latency: send the far away ones first!

  k-nomial trees are better, but the work at the root limits the
maximum value of k

  You can have speed or reproducibility, but…

Triggered collectives summary

  Triggered operations provide a general set of building blocks
  Supports a variety of collective operations
  Supports a variety of algorithms
  Has usage beyond just collectives offload

  Collective offload has limited performance upside versus idealized
host implementation
  2x performance improvement due to improved latency and improved

message rate
  Performance could be improved somewhat by having host “push” data

  Noise sensitivity substantially reduced when operations are
offloaded

TRIGGERED OPERATIONS
FOR A RENDEZVOUS
PROTOCOL

Barrett, Brightwell, Hemmert, Wheeler, Underwood. “Using Triggered Operations to Offload
Rendezvous Messages,” in Proceedings of the European MPI Users’ Group Conference,
September 2011.

Ping-Pong Bandwidth

Ping-Pong Bandwidth

RECEIVER-­‐MANAGED	
 FLOW	

CONTROL	

53	

MPI	
 Requires	
 Flow	
 Control	

  MPI-­‐1	
 Standard	
 mandates	
 that	
 senders	
 cannot	
 overwhelm	
 receivers	
 with	

too	
 many	
 unexpected	
 messages	

  Two	
 main	
 strategies	
 for	
 providing	
 flow	
 control	

  Credit-­‐based	

  A	
 credit	
 is	
 needed	
 to	
 send	
 a	
 message	

  Credits	
 given	
 out	
 at	
 iniCalizaCon	
 or	
 connecCon	
 setup	

  Credits	
 can	
 be	
 staCc	
 or	
 dynamic	
 based	
 on	
 message	
 intensity	

  Credits	
 exchanged	
 through	
 explicit	
 or	
 piggyback	
 messages	

  Acknowledgment-­‐based	

  Wait	
 for	
 receiver	
 to	
 acknowledge	
 message	
 recepCon	

  ACKs	
 can	
 be	
 explicit	
 or	
 piggyback	
 messages	

  Both	
 strategies	
 assume	
 senders	
 need	
 to	
 be	
 constrained	

  Our	
 approach	
 is	
 to	
 recover	
 rather	
 than	
 constrain	

  Emphasize	
 performance	
 for	
 well-­‐designed	
 applicaCons	

  Provide	
 correctness	
 for	
 poorly-­‐designed	
 applicaCons	

54	

Too	
 few	
 credits	
 can	
 reduce	
 message	
 rate	

55	

Too	
 many	
 credits	
 wastes	
 memory	

56	

Ping-­‐pong	
 bandwidth	
 is	
 unimpacted	

57	

Too	
 few	
 credits	
 degrades	
 streaming	
 bandwidth	

58	

Acknowledgments

  DOE Exascale Initiative Steering Committee
  Sandia

  Brian Barrett
  Scott Hemmert
  Kevin Pedretti
  Mike Levenhagen
  Kyle Wheeler

  Intel
  Keith Underwood
  Jerrie Coffman
  Roy Larsen

www.openfabrics.org 59

