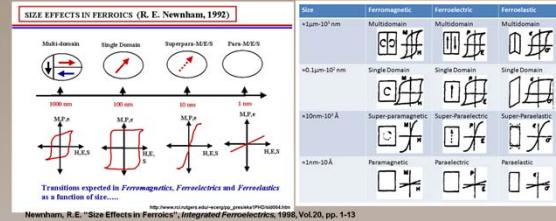


Synthesis and Electrical Analysis of Nano-crystalline Barium Titanate and PLZT Nanocomposites

SAND2012-4676P

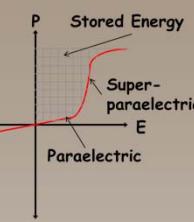
**Tom P. Chavez, Chris B. DiAntonio,
Todd Monson
Sandia National Laboratories,
Albuquerque, New Mexico, USA.**

Ceramic based nanocomposites have recently demonstrated the ability to provide enhanced permittivity, increased dielectric breakdown strength, and reduced electromechanical strain making them potential materials systems for high energy density applications. A systematic characterization and optimization of barium titanate and PLZT based nanoparticle composites employing a glass or polymer matrix to yield a high energy density component will be presented. This work shows the systematic characterization and optimization of barium titanate and lead lanthanum zirconate titanate nanoparticle based ceramics. The nanoparticles have been synthesized using solution and pH-based synthesis processing routes and employed to fabricate polycrystalline ceramic and nanocomposite based components. The dielectric/ferroelectric properties of these various components have been gauged by impedance analysis and electromechanical response. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.


Why Nanoparticle Synthesis??

- Improve the manufacturing and performance of ceramic materials using nanoparticle precursors – nano-enabled technology
- Examples: Nanoparticles often the largest component in the device
- Reduced cost of current ceramic capacitors
- Reduced the size of current ceramic capacitors
- Reduced capacitor size provides both footprint and weight reductions of the device
- Nanoparticle precursors can potentially lead to lower temperature sintering and allow for easier integration in a microelectronic device.
- Development of an engineered glass-polymer-ceramic nanocomposites
 - Decreased sintering temperatures and time
 - Increase in the dielectric properties, electrical breakdown strength and energy density
 - Increased compatibility with on-chip processing, aerosol deposition, robotics
 - Increased compatibility with on-chip processing, aerosol deposition, robotics
 - Aqueous based synthesis process – environmental and cost effective
 - Synthesis is rapid, reproducible, scalable and safe, exact processing control
 - Improved electrical performance

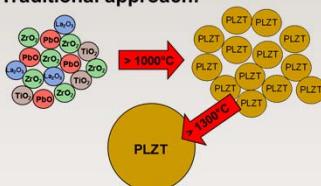
Ying and Hsu, *Mat. Sci. Eng. B* 34 (2007); Wei et al., *Jpn. J. Appl. Phys.* 42 (2003); Turkmen and Rajput, *J. Mater. Sci. Lett.* 15 (1996); Ye et al., "Influence of nanocrystalline grain size on the breakdown strength," 2003


Potential exploitation of size effects in ferroics

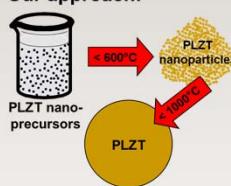
- Efforts on nanoparticle systems to optimize and exploit size effects that could result in enhanced permittivity and/or energy density

Increased Energy Density Through Phase Transformation

- Increased energy storage possible through field induced phase transformation
- Transition from cubic (paraelectric) to tetragonal (ferroelectric)
- Nanoscale ferroelectric domains exhibit superparaelectric effect
- Device hysteresis will allow energy densities > 10 J/cc

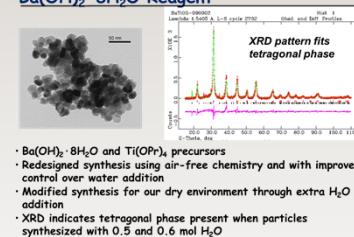


Materials Approach


Approach:

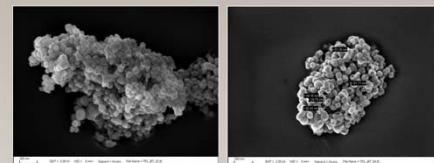
- Synthesize nanoscale precursors for ceramic capacitors using room temperature solution based chemistry
- Develop sintering profile for nanoscale precursors and incorporate grain growth inhibitors and/or sintering aids to decrease firing temperature further and improve device performance

Traditional approach:


Our approach:

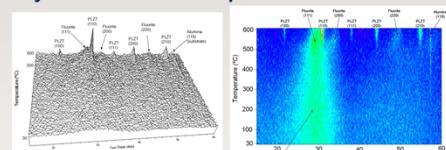
Scalable aqueous PLZT synthesis route by precipitation via rapid pH change

- Pb (NO₃)₂ + ZrO(NO₃)₂
- La₂O₃ dissolved in HNO₃
- diluted TiO₂-Pr
- ammonia hydroxide to rapidly raise the pH
- wash, centrifuge, and filter precipitate
- dry amorphous precipitate with large surface area
- precipitate is weakly aggregated and may be dispersed through high power sonication
- Amorphous precipitate forms a "proto-pyrochlore" phase then converts to phase pure PLZT
- Crystallite size is reliably <100 nm - dry powder is aggregated

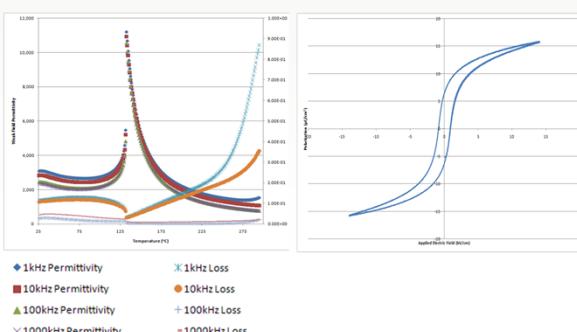

BaTiO₃ Nanoparticle Synthesis, Ba(OH)₂·8H₂O Reagent

- Ba(OH)₂·8H₂O and Ti(OPr)₄ precursors
- Redesigned synthesis using air-free chemistry and with improved control over water addition
- Modified synthesis for our dry environment through extra H₂O addition
- XRD indicates tetragonal phase present when particles synthesized with 0.5 and 0.6 mol H₂O

Yoon et al., *J. Am. Ceram. Soc.* 90 311 (2007)


Commercial BaTiO₃ from TPL

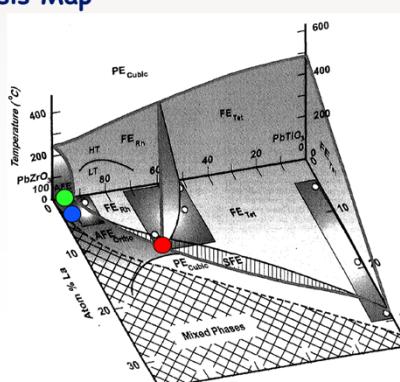
- NanOxide HPB-1000 from TPL
- BET surface area of $16.26 \pm 0.0669 \text{ m}^2/\text{g}$
- Attrited to BET surface area of $18.65 \pm 0.0459 \text{ m}^2/\text{g}$


• TPL, Inc., 3921 Academy Parkway North NE, Albuquerque, NM 87109

In situ high temperature analysis reveals crystallization to PLZT phase

- Rapid pH-induced precipitation synthesis produces an amorphous powder that converts to fluorite and PLZT upon heating.
- Residual fluorite phase still present at 600°C indicating some second phase present.
- Nanoscale starting materials with nearly atomic homogeneity will achieve phase purity.
- Synthesis modifications has improved the kinetics and increased the reaction times.

BaTiO₃ Weak-Field Permittivity and Hysteresis Behavior Analysis


PLZT Synthesis Map

- Phase diagram of the PZT and PLZT solid-solution systems:

– 88/12/70/30

– 100/0/95/5

– 97/3/95/5

Hunting, *Ferroelectric Ceramics: History and Technology*, *J. Am. Ceram. Soc.* 82(4) 707-818 (1999)

Exceptional service in the national interest