

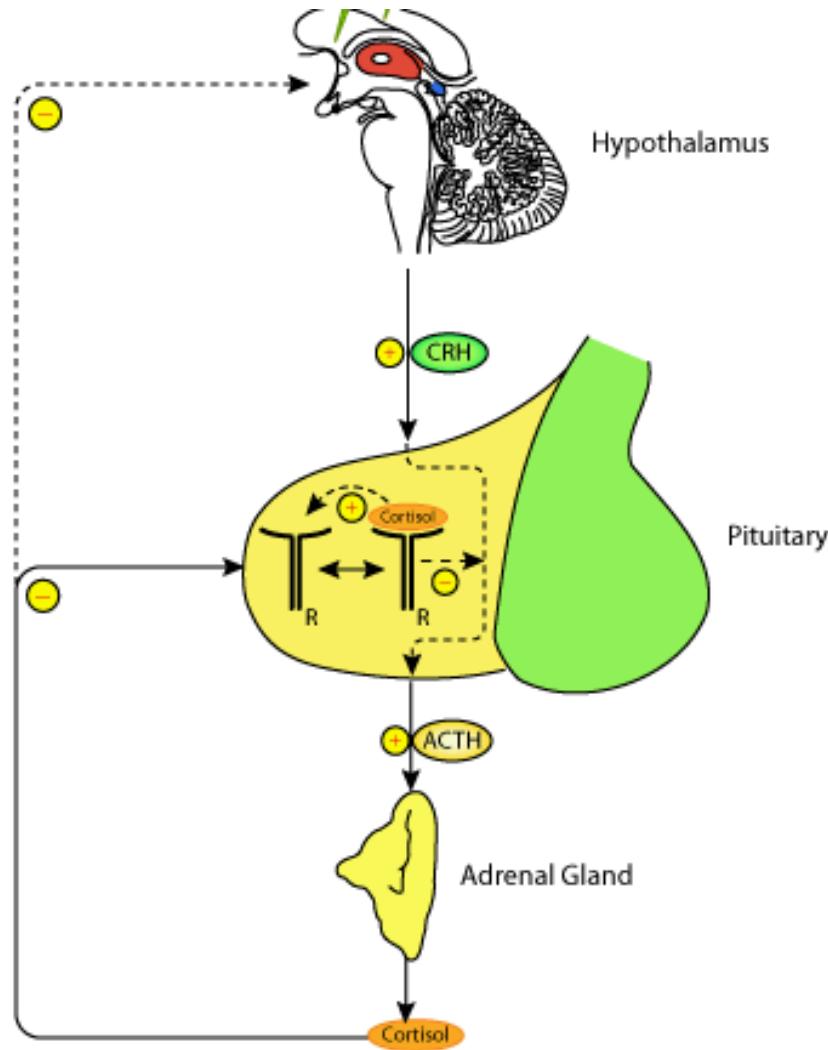
Veterinary Pharmacology

ANTI-INFLAMMATORY AGENTS

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. **SAND**

Anti-inflammatory Agents: Introduction

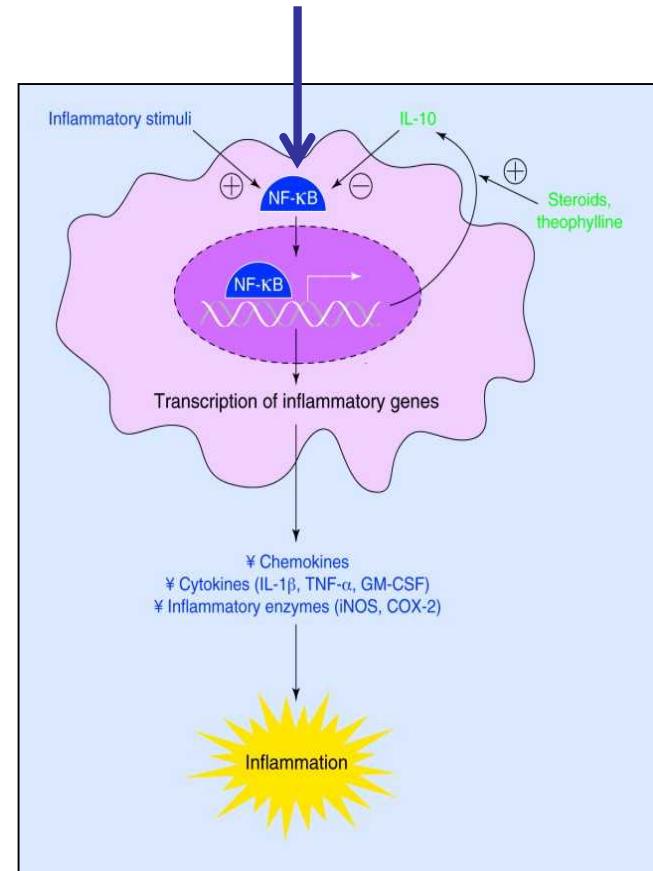
- **Anti-inflammatory agents are widely use in veterinary medicine and are characterized based on their mechanism of action**
 - Steroidal anti-inflammatory agents
 - **Corticosteroids**
 - Nonsteroidal anti-inflammatory agents
 - **Prostaglandin inhibitors**
 - Selective and nonselective prostaglandin inhibitors
 - **Leukotriene inhibitors**
- **New generation anti-inflammatory agents have been developed in recent years due to the adverse reactions caused by long term use**
 - Horses and dogs seem to be especially sensitive to the adverse effects of anti-inflammatory agents



Corticosteroids

- **Corticosteroids or glucocorticoids are produced by the adrenal glands in response to signals from the hypothalamus and pituitary gland**
 - Potent inhibitors of inflammation and are widely used in veterinary medicine to reduce the inflammatory response
 - Play significant roles in the metabolism of carbohydrates, proteins, and lipids
 - Increased in response to stress
 - Affect fluid and electrolyte balance
 - Modulate the immune response
 - **Increases in glucocorticoids reduce the immune response by reducing the production of inflammatory mediators**
 - Inflammatory mediators regulate the immune response

Production of Glucocorticoids



Corticosteroids: Anti-inflammatory Activity

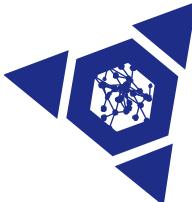
• Mechanism of action

- Corticosteroids act on inflammatory cells to inhibit the production of inflammatory mediators
 - **Corticosteroids bind to glucocorticoid receptors on the cell surface**
 - **Activation of the glucocorticoid receptor initiates a series of events leading to the inactivation of the gene transcription factor that encodes pro-inflammatory mediators**
 - **Reduced production inflammatory mediators that activate the immune response dramatically reduces inflammation**
 - Reduction is highly dose dependent

Steroids inhibit the activity of NF- κ B

Corticosteroids

- **Absorption**


- Many formulations of corticosteroids are available for use in animals and humans
 - **Orally administered formulations are not absorbed in ruminants**
 - **Ruminants can only be given injectable forms**

- **Distribution**

- Corticosteroids are well distributed through the body
 - Effect of the drug is dependent on the formulation

- **Elimination**

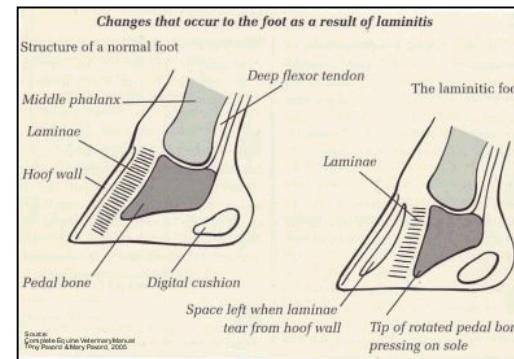
- Corticosteroids are metabolized by the liver and eliminated by the liver and kidneys



Corticosteroids

• Potency

- Corticosteroid potency varies depending on the drug formulation
 - **Betamethasone is about 30 times more potent than cortisol**
 - Betamethasone is primarily used topically
 - **Dexamethasone is about 30 times more potent than cortisol**
 - **Prednisolone is about 4 times more potent than cortisol**
 - **Triamcinolone is about 5 times more potent than cortisol**
 - Mostly used topically or in ocular formulations to reduce inflammation of the eye or for intra-articular injections in horses


Corticosteroids

- Precautionary information

- Adverse reactions and side effects
 - Do not use in pregnant animals – can cause induction of parturition or abortions
 - Long-term use can result in polyphagia, polydipsia and polyuria
 - Gastric ulceration, delayed wound healing, diabetes, and weakened immunity can occur with long-term use
 - Corticosteroid use in horses can cause laminitis – must use corticosteroids with caution in horses
 - Use sparingly in animals with infectious diseases as immune suppression can worsen the course of disease

7

Corticosteroids: Dexamethasone

• Clinical use

- Dexamethasone is used to reduce inflammation in large animals
 - **Infectious and allergic diseases**
- Treat and test for endocrine disorders in small animals
- Treat autoimmune and allergic disorders
- Induce parturition in cattle – may enhance surfactant production in calves of near term cows

• Formulations

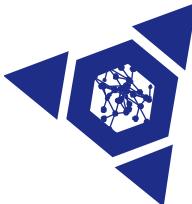
- Dexamethasone sodium phosphate (4 mg/ml)
 - **The only injectable form that can be administered intravenously – it is water soluble**
- Dexamethasone
 - **Injectable form (2 mg/ml) that can only be administered subcutaneously or intramuscularly – not for intravenous use because it contains propylene glycol**
 - **Oral tablets are available for use in small animals**

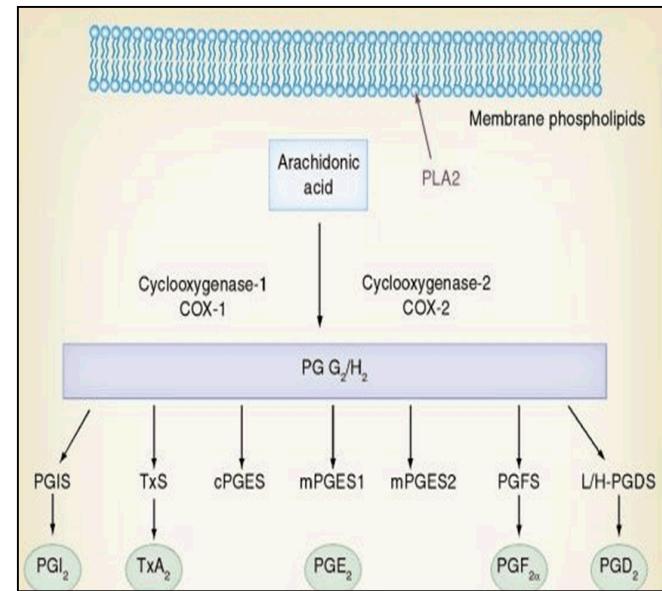
Dexamethasone

- **Dose**
 - Cattle and Horses
 - **0.04 – 0.15 mg/kg, given intramuscularly**
 - Dexamethasone sodium phosphate can be given intravenously at the same dose
 - Specific dose is based on clinical presentation
 - Chronic airway disease in horses: 0.05 – 0.1 mg/kg every 24 hours or 0.165 mg/kg orally every 24 hours for 2 – 3 days
 - Induction of parturition in cattle: 0.05 mg/kg (25 mg/animal) as a single dose during the last week of pregnancy
 - Sheep
 - **Induction of parturition: 0.15 mg/kg intramuscularly for 1 – 5 days during the last week of gestation**
 - **Always use steroids with caution**
 - Immunosuppression
 - Laminitis in horses

Dexamethasone

- **Withdrawal times**


- Withdrawal times have not been established in cattle
 - **Use 4 – 5 days for meat and 96 hours for milk**


Nonsteroidal Anti-inflammatory Agents

- Nonsteroidal anti-inflammatory agents act by inhibiting the production of prostaglandins
 - Prostaglandins are produced from cell membranes
 - Prostaglandin PGE₂, PGD₂, PGF_{2α}, thromboxane, and prostacyclin
 - Prostaglandins are important for normal cellular and physiological processes, and also for pathological processes including:
 - Protection of the stomach lining
 - Maintenance of renal blood flow
 - Maintaining normal platelet function
 - Erosions of cartilage
 - Modulation of the inflammatory response
 - Prostaglandin inhibition can reduce inflammation but at the same time disrupt normal physiological processes that are damaging to the patient

Nonsteroidal Anti-inflammatory Agents: Prostaglandin Production

- Break down of cell membranes results in release of arachidonic acid
- Arachidonic acid is an intermediate in the cellular pathway that results in the production of prostanoids
- Cyclooxygenase-1 and cyclooxygenase-2 are enzymes that convert arachidonic acid into prostanoids
 - Cyclooxygenase-1 is primarily involved in producing prostanoids that support normal physiological processes
 - Cyclooxygenase-2 is primarily involved in producing prostanoids that cause inflammation

Nonsteroidal Anti-inflammatory Agents: Mechanism of Action

- **Nonsteroidal anti-inflammatory agents act by inhibiting cyclooxygenase**
 - Older anti-inflammatory agents are not selective and inhibit both cyclooxygenase-1 (COX1) and cyclooxygenase-2 (COX2)
 - **Adverse affects such as gastric ulcers and kidney failure results because of inhibition of cyclooxygenase-1**
 - **COX1 and COX2 inhibitors include: aspirin, flunixin meglumine, ibuprofen, phenylbutazone**
 - New generation anti-inflammatory agents selectively inhibit cyclooxygenase-2
 - **Reduced adverse affects by maintaining the activity of cyclooxygenase-1**
 - **COX2 inhibitors: carprofen and meloxicam**
- **Horses and dogs are very susceptible to ulceration caused by use of nonselective cyclooxygenase inhibitors**
 - Gastric ulceration and renal failure are associated with adverse side effects associated with use

Nonsteroidal Anti-inflammatory Agents: Adverse Effects

- **Gastric ulcers**

- COX1 is required for production of mucous and bicarbonate in the stomach, which protects the stomach lining from stomach acid
- COX1 maintains blood flow to the stomach which supports the production of stomach bicarbonate and mucous
- Inhibition of COX1 reduces the mechanisms in the stomach that are protective against the stomach acid
 - **Gastric ulcers result**

- **Renal failure**

- COX1 maintains blood flow to the kidneys even during times of dehydration
 - **Renal tubular cells are very vulnerable to damage caused from reduced blood flow**
- COX1 inhibition greatly reduces the body's ability to maintain blood flow to the kidneys, especially during times of dehydration
 - **When blood flow is reduced, renal tubular cells undergo necrosis**

Aspirin

- **Mechanism of action and use**
 - Aspirin is a nonselective inhibitor of cyclooxygenase
 - Used to treat inflammation and pain, also inhibits platelet aggregation
- **Absorption**
 - Aspirin is absorbed from the stomach of most species including ruminants
- **Formulations**
 - 81 mg, 325 mg, 3.9 gram, 15.6 gram, and 31.2 gram tablets and 240 grain boluses (1 grain = 65 mg)
- **Dose**
 - Dogs: 20 – 25 mg/kg, orally every 12 hours
 - Ruminants: 100 mg/kg, orally every 12 hours
 - Horses: 25 – 50 mg/kg orally every 12 hours
- **Withdrawal time**
 - 1 day for meat and 1 day for milk

Flunixin Meglumine

- **Mechanism of action**
 - Nonselective COX1 and COX2 inhibition
 - Treats inflammation, pain, and inhibits some of the effects of endotoxin
 - **Treatment of signs caused by bronchopneumonia and colic**
- **Absorption**
 - Oral absorption occurs in horses and cattle, injectable is preferred in cattle
- **Formulation:**
 - Oral granules, paste, and injectable
- **Dose**
 - Dogs and cats: 1.1 mg/kg once intravenously, intramuscularly, or subcutaneously
 - Horses: 1.1 mg/kg every 24 hours for five days, can be given intravenously, intramuscularly, or orally
 - Cattle: 1.1 to 2.2 mg/kg once a day for 3 days, can be given intravenously or subcutaneously
 - **Is often given in combination with fluorfenicol**

Meloxicam

- **Mechanism of action and use**
 - Primarily inhibits COX2
 - Used to treat pain and fever in animals
- **Formulations**
 - 0.5 and 1.5 mg/ml oral suspensions, 5 mg/ml injection, and 7.5 and 15 mg tablets
- **Dose**
 - Dogs: 0.2 mg/kg initially and then 0.1 mg/kg once daily after the loading dose
 - Horses: 0.6 mg/kg every 24 hours, given orally or intravenously
 - Cattle: 0.5 mg/kg every 24 hours, given intramuscularly, intravenously, or subcutaneously
- **Withdrawal time**
 - Cattle: the recommended withdrawal time is 15 days for meat and 5 days for milk

Phenylbutazone

- **Mechanism of action and use**
 - Inhibits COX1 and COX2
 - Primarily used to treat musculoskeletal pain
- **Formulation**
 - Oral tablets and paste and injectable form for intravenous use only
 - **Perivascular injections are severe – critical not get outside of the vein**
- **Dose**
 - Horses: 4.4 to 8.8 mg/kg every 24 hours orally or intravenously, should not exceed 3 days treatment
 - Cattle: 17 – 25 mg/kg loading dose, then 2.5 – 5 mg/kg every 24 hours or 10-14 mg/kg every 46 hours, can be given orally or intravenously
- **Withdrawal time**
 - Prohibited from use in female dairy cattle
 - Recommended meat withdrawal times are 50 - 55 days in cattle
 - **Has been associated with aplastic anemia in humans**