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Outline

• Background
– Transport of and through heterogeneous materials

• General mass/charge, momentum, energy balances

• “Anomalous” diffusion

• Particle-based simulations
– Complex, discrete-particle kinematics

– Deployment Mod-Sim tool a case study

• Analysis Macro-scale models 
– Continuous Time Random Walk (CTRW)

• Toward a Meso-to-Macro framework for model 
development
– Non-equilibrium Statistical Physics/Thermodynamics

– What are the component/process scale governing equations in 
complex, far-from-equilibrium systems?



• Need better prediction and control of 

– Ion transport in composite electrodes (microstructure scale)

– Durability of composite electrodes, etc.

• Heterogeneous materials

– Inhomogeneous, ”discontinuous” 

• material properties and microstructure 

– multi-phase, multi-material  interfaces

• “dynamics”

– Discrete particles in polymer matrix or suspending fluid

– Composites

• Generalized, nonequil.

continuum Transport

– Generalized Diffusion

• “Anomalous”

dynamic

struct

Background and Introduction

Static     struct



Project Goals

• Develop models that accurately model the underlying 
events/processes on range of scales
– Models must be amenable to math analysis

– Constitutive relations required to close model equations should be 
directly accessible experimentally

– To be predictive

• Need access to range of length and time scales to close gaps between

– Discrete constituents and component/process scale

– Simulation and experimental run-time and product life span

• Need workflow path to parameterize constitutive relations on relevant 
scales

• Novel models push the boundary of V&V to become 
Discovery tools
– Advance experimental analysis capabilities and elucidate underlying 

phenomena



• Starting point
– Spatially nonlocal model:

• Extensions – what’s new
– Model development

• Stochastic nonlocal equation of motion

• Implement & Validate nonlocal constitutive relations

– Nonlocal time/history

– Model analysis of scale bridging (verification) 

• Microscopic stochastic process to macroscopic balance equations

• Statistical analysis/data mining tool kit for quantitative “prediction”

– Constitutive relations measured by probing range of scales (validation)

Technical Approach
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• Translation of isolated small sphere in Newtonian fluid
– Time dependent Stokes drag force on sphere

• Nonlocal: space  time

• Assume: Steady-state (no history) and Gaussian random 
force

‒ Interactionless, Markovian, SDE  PDE 

Classical Langevin and Diffusion Equations: 
Micro-Macro and “Nonlocal” Connections
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Diffusion in concentrated colloidal 
suspensions



• Brownian Dynamics Simulations
– Markov assumption

– FB assumed Gaussian distributed and self similar

– Colloid inertia is often neglected (we don’t)

• Can we transform spatial interactions into time 
(convolution) integral with memory kernel?
– This is a constitutive relation we can measure

Langevin Equation with Interations
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Simulation Details:  Colloid interactions

• Integrated Lennard-Jones 
potential1

– Repulsive soft-sphere
• a1 = a2 = 5

• A12 = 1

• rc = rmin = 30-1/6



1R. Everaers and M.R. Ejtehadi, Phys. Rev. E 67, 41710 (2003) 



Simulation Details: Hydrodynamic 
Interactions

• Markovian assumption
– Steady state (quasistatic) incompressible Newtonian flow

• Stokesian Dynamics

– PME 

» O(NlogN)

• Fast Lubrication Dynamics

– O(N)

Isotropic Constant 
(mean-field mobility) δ

δ-1 or δ-1+log(δ-1)

Kumar and Higdon, Phys Rev E, 82, 051401 (2010) 
Ball and Melrose, Physica A, 247, 444-472 (1997)

R0 = 3d(1+2.16)I



Simulation Results:  MSD and Validation

MSD

• MSD = f(t) ≠ Dt;  ≠ 1

– Engineer’s temptation
• D = h(t)  MSD = h(t)t

– What does this mean 
physically and 
mathematically?

• Validation & 
Verification

Early
time D

Late
time D

“D(t)”

increasing



(b) implicit(a) explicit



• Fit VACF with 

• Which is a fundamental solution of fBm-type equation

Simulation Resutls:  VACF, Memory Kernel 
and “Microscopic Dynamics”
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• Or, fit VACF with 

• Which leads to

“Microscopic Dynamics”:  Alternate 
Form for VACF and Memory Kernel

 = 0.40
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• Brownian Dynamics Simulations
– Markovian: Langevin with interactions

– Non-Markovian: Generalized Langevin

• Can transform spatial interactions into convolution 
integral + “noise”

Summary: Langevin Equations
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Validation:  DWS



Micro-rheology to Macro-rheology

• Mason and Weitz
– microscopic memory function proportional to macroscopic bulk 

frequency-dependent viscosity (mean-field approximation)

• Relaxation Modulus for Transient BD

• Viscoelastic (complex) modulus
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Linear, Oscillatory Macro-rheology

• Prescribe deformation measure stress

• Green-Kubo – linear response
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Validation: Diffusing-Wave Spectroscopy

• Diffusivity of turbid 
suspensions

• Connect stochastic colloidal 
dynamics to rheology

Laser

Sample

correlator

PMT

Measure:
intensity fluctuations 

vs. time

Autocorrelation :
Transmission-> f(τ, l*)

Backscatter-> f(τ)
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Analysis of Macro models:  
CTRW



• Some possible models – nonlinear FPE, FPPE, etc.

• Consider CTRW with multiple time scales of the form
1

– Assume jump pdf can be decoupled into jump length pdf and waiting 
time pdf

– Assume jump length pdf is Gaussian 

• true for long times in any finite variance jump length distribution

– Waiting time distribution, g(t)

Generalized Diffusion Equation
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• CTRW
‒ Solution 

‒ Choose g(t)

‒ Note: 

Macroscopic, Deterministic Equation for 
NonMarkovian Stochastic Dynamics
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Waiting Time Distribution
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Full Jump Distributions

• Recall
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Green’s Function for CTRW

• Note:
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Developing a Scale Consistent  Meso-to-
Macro Model Development Framework



Defining the Meso-scale: an Example

• “Microscopic” dynamics

– Solve and obtain statistics
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• Recall
– MSD = f(t) ≠ Dt;  ≠ 1

– Engineer’s temptation
• D = h(t)  MSD = h(t)t

– What does this mean 
physically and 
mathematically?



Mass Balance

• Meso-scale

• Macroscopic continuity
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Conclusions

• Solution of Langevin Equation with interactions leads 
to GLE
– Can obtain Memory Kernel of “reasonable” form from VACF

• Comparison to Experiments forthcoming

• Can determine waiting time distribution for CTRW
– Assuming Gaussian Jumps

– Leads to Generalized diffusion equation

• However, CTRW framework not consistent in dilute limit!?

• Sum of exponentials may be “degenerate”

• Developing Meso-to-macroscale Modelling framework
– Nonequilibrium Statistical Physics/Thermodynamics



Outlook

• Prediction – the crystal ball
– Relationship of near equilibrium to far from equilibrium

• Space-time formulations of 

– Statistical analysis tool-kit for numerical and experimental data 
mining

• Stochastic model development from “rare” events

• Validation
– DSC, DWS, Impedance/dielectric Spectroscopy, …

• Applications
– Design and analysis of energy storage/conversion devices

• Electrochemistry and Thermo-mechanics of composite electrodes

• Ionic liquids

– Processing of energetic materials

• Processing-Product/Property-Performance

• Aging
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So what?

• Single particle density of hard-sphere colloid 

– “Light scattering” of single particle trajectory…

• Multiple length and time scales

• ~ Multifractal

–
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Nonlocal Space and Time

• More generally, consider a separable CTRW

– Joint jump distribution, y, x, tgty, x

• Jump length distribution, (y,x) contains spatial correlations

• Waiting time distribution, g(t) contains temporal correlations

• Do the underlying dynamics give rise to this 
macro behavior?
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Fick’s first law                     , or 

• Recall classical “Fickian” Diffusion

• Non-Fickian

Nonlocal Diffusion – “Anomalous” 
Diffusion
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• Transient Brownian Dynamics (Interactionless)
• NonMarkovian Langevin Equation

• If noise is modeled by Gaussian, stationary, self-similar 
processes, we have fBm

• Note Basset-Boussinesq

The “Generalized Langevin Equation” –
Nonlocal-Time SDE
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Non-Markovian Example

• Note, impulsive response of sphere in incompressible, 
Newtonian fluid 
– sphere initially at rest, fluid at rest at infinity – i.e., dilute suspension

• We can use this to derive the memory kernel
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Memory Kernel

• Recall, for spheres in dilute limit

• Impulsive response v(t) ~ h(t)
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Fits of Mittag-Leffler to VACF (various )
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Summary and Outlook

• Recall Mason and Weitz
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Micro-rheology
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