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T ® Outline

. Background
— Transport of and through heterogeneous materials
» General mass/charge, momentum, energy balances
* “Anomalous” diffusion
« Particle-based simulations
— Complex, discrete-particle kinematics
— Deployment Mod-Sim tool a case study

* Analysis Macro-scale models
— Continuous Time Random Walk (CTRW)

« Toward a Meso-to-Macro framework for model
development
— Non-equilibrium Statistical Physics/Thermodynamics

6 — What are the component/process scale governing equations in
|§.|:.| 3 complex, far-from-equilibrium systems®? () s Mool Lo




— lon transport in composite electrodes (microstructure scale)
— Durability of composite electrodes, etc.

 Heterogeneous materials

— Inhomogeneous, "discontinuous”

« material properties and microstructure
— multi-phase, multi-material - interfaces

* “dynamics”
— Discrete particles in polymer matrix or suspending fluid
— Composites

 Generalized, nonequil.

continuum Transport

— Generalized Diffusion
« “Anomalous”

ORd

dynamic Ig

ustruct




events/processes on range of scales
— Models must be amenable to math analysis
— Constitutive relations required to close model equations should be
directly accessible experimentally

— To be predictive
* Need access to range of length and time scales to close gaps between

— Discrete constituents and component/process scale
— Simulation and experimental run-time and product life span

» Need workflow path to parameterize constitutive relations on relevant
scales

 Novel models push the boundary of V&V to become

Discovery tools
— Advance experimental analysis capabilities and elucidate underlying

r"@}’phenomena




Technical Approach

. Startlng point =
— Spatially nonlocal model: p—-u+V-0,(r;f)= _fg(l‘ r')dr’

« Extensions — what’s new

— Model development
« Stochastic nonlocal equation of motion

pDu=[-V-6(r;f)+ j g (r,r')+g,(r,r')dr'1Dt+B(r;1)dW(7)

' FDR

Ve,

* Implement & Validate nonlocal constitutive relations
— Nonlocal time/history
— Model analysis of scale bridging (verification)
» Microscopic stochastic process to macroscopic balance equations
« Statistical analysis/data mining tool kit for quantitative “prediction”

— Constitutive relations measured by probing range of scales (validation)

‘-L,-




e, Classical Langevin and Diffusion Equations:
x5 Micro-Macro and “Nonlocal” Connections

— Time dependent Stokes drag force on sphere
* Nonlocal: space -2 time

[V-6,0dv = o, () tdS > jF(t—t')-Vi(t')dt'; F—1)=y@—-1"I

djz(f) = [y@—r)ve)det ()

—00

 Assume: Steady-state (no history) and Gaussian random
force

*
m

av.(t) 1

| Q-
y(t—t)=y5(t—1t") ” ——gvi(m;E (1)
f(t)=F"(t) (F2 (1)) = 0; (FP (OF2 (1)) = 2k, Ty3 (1 —1')

— Interactionless, Markovian, SDE - PDE 9p(x,1) _ DV’p(x,t)
,,..9}’ ot




Diffusion in concentrated colloidal
suspensions




2 Langevin Equation with Interations

 Brownian Dynamics Simulations
— Markov assumption

v, |
m dVl =—R-v, + > F (g, —r )+ F (1)
[ J#I

(E2(6)) = 0;(F (OF (1)) = 2R 1k, T5,5(¢ 1)

— F? assumed Gaussian distributed and self similar
— Colloid inertia is often neglected (we don't)

« Can we transform spatial interactions into time
(convolution) integral with memory kernel?
— This is a constitutive relation we can measure




» Integrated Lennard-Jones
OQO~H potential
SO0 — Repulsive soft-sphere
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Simulation Details: Hydrodynamic

Interactions

 Markovian assumption

— Steady state (quasistatic) incompressible Newtonian flow
» Stokesian Dynamics

— PME R = (I — R)_lRlB + Riub

» O(NlogN)

« Fast Lubrication Dynamics

— O(N)
R = I/?,(] + Rs
|sotropic Constant \
(mean-field mobility) OjO
R, = 3nud(1+2.16¢)1 51 0r &1 +og(3)

—5 Kumar and Higdon, Phys Rev E, 82, 051401 (2010)
LDRD  Balland Melrose, Physica A, 247, 444-472 (1997)
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Simulation Results: MSD and Validation

_Lat_E-T?mzs | _-
Cage/Potential I
—_ F (T} Inertial
o 10 et
hé 107 QaotE (= ¢ = 0.1, inertial “D(0 7
V10E - [— inertialess
107 | | — 03
10 5 3 | 0% [~ 0 E
10°€ -t = E sl el EPETITE R P
T e L R w' 1w w1 w1 w10
10"10° 10" 10° 10" 10° 1071010 10" 10° 107 10 10 10 1(7)
. MSD :f(t) # Dta; a # 1 d=10c
— Engineer’s temptation ~ * * e osf ;
+ D=h() MSD=h@)r | |
— What does this mean  -.. ] daf i
physically and oo time D 1 o i
mathematically? e e :
&._ * Validation & ¢
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- Simulation Resutls: VACF, Memory Kernel

ey and “Microscopic Dynamics”
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“Microscopic Dynamics”: Alternate

Form for VACF and Memory Kernel
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_Summary Langevin Equations

. Brownlan Dynamics Simulations
— Markovian: Langevin with interactions

m - _R. V 4 Z Fcollozd
t

(F2 (1)) = 0; (F” ()F " (') = 2R, k,T5,5 (¢~ 1')
— Non-Markovian: Generalized Langevin
.
—(k/N)P t/tcon
K(t) ~ 8(t) +NZ Ce/N)P t/
(B (1)) = 0; (E" (OF (¢')) =2k, T5,K(t 1)

(Ir,—r, ‘)+FB(t)

K0, (0t + B )

« Can transform spatial interactions into convolution
integral + “noise”
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Validation: DWS




— microscopic memory function proportional to macroscopic bulk
frequency-dependent viscosity (mean-field approximation)

DD _ [ g—ry,@)dr+Fr ) 1) =) figs) = G (s)
dt ; 6ra
 Relaxation Modulus for Transient BD
e ()
r(S) - 67'[6[ —

* Viscoelastic (complex) modulus |

5(S) = Sér (s); s—iw ° 0:0

G *(a)) - —0.5

p 0.0 0.2 0.4 0.6 0.8 1.0




Linear, Oscillatory Macro-rheology

* Prescribe deformation measure stress

o(t) = Zju(t —t")édt'= —2j d“(;;t ) edt'+o
0 0

 Green-Kubo - linear response

t

u() = [ (7,7, ©)dr

_du@ _ 1 .
GO == =7 w7, )
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g

. Diffusivity of turbid Sample
suspensions

« Connect stochastic colloidal
dynamics to rheology

/‘\

Measure: Autocorrelation : Mean square Rheology

intensity fluctuations Transmission-> f(g, I*) displacement
vs. time Backscatter-> f(1)

correlator

<Ar’ > (nm?)

(s)



Analysis of Macro models:
CTRW




T Generalized Diffusion Equation

. Some possible models — nonlinear FPE, FPPE, etc.
 Consider CTRW with multlple time scales of the form

op(x,1) op(x,t') 0’ p(x,t") .,
- j(t—) thj(t) 2t
— Assume jump pdf can be decoupled into jump length pdf and waiting
time pdf

Ww(k,s)=p(k)g(s)

— Assume jump length pdf is Gaussian
 true for long times in any finite variance jump length distribution

o(k) ~1-Dk* +O(k*)
— Waiting time distribution, g()
1-g(s) Py (k)

k,s)= TF d Mendes (2010), J. Stat. Mech.
S PO oo TR Mendes @10 ot Moo
i HIEs




= Macroscopic, Deterministic Equation for
S5 NonMarkovian Stochastic Dynamics

— Solution

zl—g(S) po(k) AX2 —{Ax2(0 :2Dg(S)
A — $S< O)-(AO)=1Z

— Choose g(1) 0.010—
0.005
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2Dg(s)
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v (k,s)=g(s)p(k)
d(k) =1-c°k’

LARCRATORY DERCTRD FEFEARD & DR ELCFWEAT




Green’s Function for CTRW

* Note: p(k,s)= l_f(S) FT;E?S)
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Developing a Scale Consistent Meso-to-
Macro Model Development Framework
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« “Microscopic” dynamics 1 ot
dl'l. = g, A
di
M = _i Vl' (t) + l FiB (t) 104 ﬁ?;;;ff?’/"::ﬁ/
i ts = A -
(B (1)) =0;(E' OF () =2k, Tys(t -2y e 0T
. — * Recall
— Solve and obtain statistics
— MSD = f(t) # Dt*; o #
<\Ar\ >( )= 6kTrB(z —75(1- —”TB))_{"T TBJTD(t) — Engineer’s temptation
m « D=h(t) 2 MSD = ht)t
op (X, — What does this mean
pér o) =DVp(x.7,) physically and
b mathematically?

cdr,(t—t")e,
6 P =p(x0)+ D[ LU ar
mfﬁ;}; ! dt
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42 Mass Balance

. eso-scale
pi(x, v, 1) = (mS(x—r, ()3 (v—v, () £ (", p":1))

5pi(x,v,t) a 8 (7/ ) )/kT azpi
=——(pv)+—:| Zpv |+
ot OX (pl ) ov P m’> ov’

 Macroscopic continuity
p(x,1) = <Zm5 (x—r,(0)); f N(rN,pN;t)>

op(x,t) _ 0
ot 0).
where, p(X,H)u(x,?) = j vo(X,V,t)dv

(p(x,)u(x,1))
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Conclusions

« Solution of Langevin Equation with interactions leads
to GLE

— Can obtain Memory Kernel of “reasonable” form from VACF
« Comparison to Experiments forthcoming

« Can determine waiting time distribution for CTRW
— Assuming Gaussian Jumps
— Leads to Generalized diffusion equation
 However, CTRW framework not consistent in dilute limit!?
« Sum of exponentials may be “degenerate”
 Developing Meso-to-macroscale Modelling framework
— Nonequilibrium Statistical Physics/Thermodynamics

s




— Relationship of near equilibrium to far from equilibrium
« Space-time formulations of
— Statistical analysis tool-kit for numerical and experimental data
mining
» Stochastic model development from “rare” events

- Validation
— DSC, DWS, Impedance/dielectric Spectroscopy, ...
« Applications
— Design and analysis of energy storage/conversion devices

» Electrochemistry and Thermo-mechanics of composite electrodes
* lonic liquids

— Processing of energetic materials
,.--q}’ » Processing-Product/Property-Performance
[ =

o
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e ’sp

B So what?

. Slngle partlcle density of hard-sphere colloid

pir.0)=(m3(r =R, @): /(R P":0))

— “Light scattering” of single particle trajectory...
« Multiple length and time scales
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' 4 Nonlocal Space and Time

 More generally, consider a separable CTRW
— Joint jump distribution, Y(y, x, t) = g(t) y(y, X)
« Jump length distribution, y(y,x) contains spatial correlations
« Waiting time distribution, g(t) contains temporal correlations

——=[k(t-t)[(p(y.0) = p(x,0) 7 (y,x)dydt'

Y/ J
9,
jé(r—r>j<p<y )= p(x,0) -

=0 (x— y)dydt'

* Do the underlying dynamics give rise to this

macro behavior?
,--i.
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» Nonlocal Diffusion — “Anomalous”

- WE Diffusion

« Recall classical “Fickian” Diffusion
Fick's firstlaw j=—DVp, orj= —%(Vu +(Vu)")

Fick's second law %'D =V-j
t

* Non-Fickian

1
j(X,t) = —%jz X J(p(x— A-A)z,t)— p(x+ Az,t))y(x—(1—-A)z,x+ Az)dAdz
0

O )
L =v-j=[(p(y.0- p(x.0)y(y.x)dy
ot \_Y_I
EE,&?;-_;}, Constitutive relatiogm S




» The “Generalized Langevin Equation” —

5 Nonlocal-Time SDE

 Transient Brownian Dynamics (Interactionless)
 NonMarkovian Langevin Equation

mr VO _ —muaf[(;; 82) +5(1 —r')]vi (1)de'+ B (1)
NG

(E@) =0 cato)
(FfOF (1) = 2k, TE(t ~1')

« If noise is modeled by Gaussian, stationary, self-similar
processes, we have fBm

 Note Basset-Boussinesq

o dvait(t) _ 67T‘uaj'((t—t')l/2 j dvc}l(.ﬂ) R

Jr
LDRD 77 =|m, o m, (7] sandia National Laboratoies
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Iiawag Non-Markovian Example

* Note, impulsive response of sphere in incompressible,
Newtonian fluid
— sphere initially at rest, fluid at rest at infinity — i.e., dilute suspension

1

V(1) = [%El/z(_t/fl)_42E1/2(_t/72)]
2(9,—q,)
1 2mp+mf 5
qd,, = (1iV1_4Z)9 Z = ) 71,2:(%,2) \4
2/a 9mf
E,(y) =
’ e 0F(ﬁ+k)

 We can use this to derive the memory kernel
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42 Memory Kernel

« Recall, for spheres in dilute limit
Vo +ﬁz‘R (s)

(s +7(s))
v.(1) = v, h(t) + jh(r —t"F*(t"dt'

v, (s)=

* Impulsive response v(z) ~ h(1)

R(s)=[s+7G)] =[s+(h + )82+ 44| Mo =470

AMt+A, (312
2f

oAb

V()= +2)s"" + 44, > y(O) =277 + 4,4,6()
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S N 1 = P
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Fig. 4. The elastic, &', and the viscous, G*, components of the complex modulus for the CTAB/NaSal /water system at different

temperatures and fived W = 1.5 (a). Inset: Cole-Cole plot from DWS microrheology (line: best fit for Maxwel
different W values and fixed T = 22°C.
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