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 Peridynamics is a nonlocal extension of classical solid  

   mechanics that permits discontinuous solutions 

  

 Peridynamic equation of motion (integral, nonlocal) 

 

 
 

 Replace PDEs with integral equations  

 Utilize same equation everywhere; nothing “special” about cracks 

 No assumption of differentiable fields (admits fracture) 

 When bonds stretch too much, they break 

 No obstacle to integrating nonsmooth functions 

 f(·, ·) is “force” function; contains constitutive model 

 f = 0 for particles x,x’ more than  apart (like cutoff radius in MD!) 

 PD is “continuum form of molecular dynamics” 

 

 Impact 
 Nonlocality 

 Larger solution space (fracture) 

 Account for material behavior at small & large length scales  

  (multiscale material model) 

 

 Ancestors 
 Kröner, Eringen, Edelen, Kunin, Rogula, etc. 

 

What is Peridynamics? 
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Peridynamic Domain 

“It can be said that all 
physical phenomena are 
nonlocal. Locality is a  
fiction invented by 

idealists.” 

A. Cemal Eringen 



Local vs. Nonlocal Models 

 What does it mean to have a length scale? 
 What does it mean to be multiscale? 

 Example #1: ϋ(x) = au ’’(x) 
 Equation has no length scale; same dynamics at all scales  

 Example #2: ϋ(x) = au ’’(x) + bu   ’’’’ (x)  
 Dimensional analysis gives that sqrt(b/a) has units of length 

 Rescaling x can make first term dominant or second term dominant  

 Scaling of x changes behavior of equation 

 Peridynamic horizon  represents a length scale 
 Behavior (dynamics) of EOM vary with length scale 

 Exhibit desired physics on applied length scale 

 Peridynamics can provide desired dynamics at multiple length scales! 
 Rescaling space (equivalent to rescaling ) provides transition from microscale to  

  macroscale (classical) models! 

 Connection between nonlocal models and higher-gradient models 
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Part I 

Brief Overview of Peridynamics 

 



 Horizon and family 

 Point x interacts directly with all  

    points with distance  (horizon) 

 Material within distance   

    of x is denoted Hx (family of x) 

 

 Bonds and bond forces 

 Vector between x and any point in its family is called a bond:  = x’ – x 

 Each bond has pairwise force density vector applied at both points: f(x’, x, t) 

 This vector is determined jointly by collective deformation of Hx and collective  

     deformation of Hx’ 

 Bond forces are antisymmetric: f(x’, x, t) = - f(x, x’, t) 

 

 Deformation state 

 Deformation state operator Y maps each bond  into its deformed image 

 

 

 

Peridynamics: The Basics 
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 Bonds and states 

 f(x’, x) has contributions from material models at both x and x’ 

 

 

 T[x] is the force state – it maps bonds onto bond force densities 

 T[x] is determined by the constitutive model               , where    maps deformation 

    state to force state 

 For elastic materials, T[x] = WY (Fréchet derivative) 

 

 

 Peridynamics vs. standard equations 

 Peridynamic operators and relationships between them are nonlocal analogues of 

standard theory 

 

 

 

 

 

 
 

 

 

 

 

Peridynamics: The Basics 

 ˆT T(Y) T̂
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 Linear Peridynamic Solid (LPS)* 

 Nonlocal analog to linear isotropic elastic solid 

 k is bulk modulus,  is shear modulus 

 

 

 

 

 

 

 

 

 

 Many other peridynamic material models available: elastic-plastic, viscoelastic, etc. 

 

 

 Can wrap classical material models (existing material libraries) in peridynamic “skin” 

 

 

Peridynamic Material Modeling 

*S.A. Silling, M. Epton, O. Weckner, J. Xu, & E. Askari, Peridynamic States and Constitutive Modeling, 

J. Elasticity, 88, pp. 151-184, 2007. 
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 Fracture 

 Break bond if bond stretch s exceeds  

 critical stretch s* 

 If work to break bond  is w0(), then energy  

 release rate found by summing this work per  

 unit crack area 

 

 

 

 

 Can then get the critical strain s* for bond  

 breakage in terms of G (strain energy release 

 rate), an experimentally measurable quantity 

 

 

 

Peridynamic Fracture Modeling 
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Part II 

Demonstration Computations



 Splitting and fracture mode changes in fiber-reinforced composites* 

 Fiber orientation between plies strongly influences crack growth 

 

 

 

Failure in Fiber-Reinforced Composites 

Typical crack growth in notched laminate 
(photo courtesy Boeing) 

Peridynamic Model 

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O.Weckner, Peridynamics for multiscale materials modeling, in SciDAC 

2008, Seattle, Washington, vol. 125 of Journal of Physics: Conference Series, (012078) 2008. 

Simulation performed 

with EMU Fortran 90 

code (Silling) 



 Example Simulation: Hard sphere impact on brittle disk* 

 Spherical Projectile 
 Diameter: 0.01 m 

 Velocity: 100 m/s 

 Target Disk  
 Diameter: 0.074 m,  

 Thickness: 0.0025 m 

 Elastic modulus: 14.9 Gpa 

 Density: 2200 kg/m3 

 Discretization 
 Mesh spacing: 0.005 m 

 100,000 particles 

 Simulation time: 0.2 milliseconds 

 
 

Hard Sphere Impact on Brittle Disk 

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comp. and Struct., 83, pp. 1526-1535, 2005. 

Side View Top Monolayer 

Results 

Simulation performed with 

PDLAMMPS code (Parks)  



 Example simulation: Dynamic brittle fracture in glass 
 Joint with Florin Bobaru, Youn-Doh Ha (Nebraska), & Stewart Silling (SNL) 

 

 Soda-lime glass plate (microscope slide) 

 Dimensions: 3” x 1” x 0.05”  

 Density: 2.44 g/cm3 

 Elastic Modulus: 79.0 Gpa 

Fracture in Glass Plate 

 

 Glass microscope slide 

 Dimensions: 3” x 1” x 0.05” 

 Notch at top, pull on ends 

 

Peridynamics Physical Experiment* 

Setup 

Results 

*S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967. 

Strain Energy  

Density 

 Discretization (finest) 

 Mesh spacing: 35 microns 

 Approx. 82 million particles 

 Time: 50 microseconds (20k timesteps) 

Simulation performed with 

PDLAMMPS code (Parks)  



 Dawn (LLNL): IBM BG/P System 

 500 teraflops; 147,456 cores 

 Part of Sequoia procurement  

 20 petaflops; 1.6 million cores 

 Discretization (finest) 

 Mesh spacing: 35 microns 

 Approx. 82 million particles 

 Time: 50 microseconds (20k timesteps) 

 6 hours on 65k cores 

 Largest peridynamic simulations in history 

 

 

 

 

 

 

 

 

Fracture in Glass Plate 

# Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512) 

512 262,144 4096 14.417 1.000 

4,096 2,097,152  4096 14.708 0.980 

32,768 16,777,216  4096 15.275  0.963 

Dawn at LLNL 

Weak Scaling Results 

Simulation performed with 

PDLAMMPS code (Parks)  



 Offset notches thin rectuangular elastic plate  

 Uniaxial strain applied from sides  

 Approaching cracks produce “en passant” crack pattern 

Two Interacting Cracks 

* M. Fender, F. Lechenault, and K. Daniels, Universal Shapes Formed by Two Interacting Crack, Phys. Rev. Lett. 105, 125505 (2010) . 

Simulation performed with 

PDLAMMPS code (Parks)  

Pre-notch 

Pre-notch 

Peridynamics Physical Experiment* 



* D. Grady, D. Benson, Fragmentation of metal rings by electromagnetic loading, Experimental Mechanics, 23(4), pp. 393-400, 1983 

** J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, SAND2011-3166, 2011. 

Fragmenting Metal Ring 

Simulation performed 

with Peridigm 

 Motivated by ring fragmentation experiments of Grady & Benson* 

 Note regions of necking and failure 

 Utilized peridynamic plasticity model** 

 

Fracture and arrested neck region 

from dynamic expansion of ring* 

necking 

necking +  failure 



 

 

 

Part III 

Peridigm: A Computational Peridynamics Code 



 Peridigm (Open Source, C++) 

 Developers: Parks, Littlewood, Mitchell, Silling 

 Intended as Sandia’s primary open-source PD code 

 Built upon Sandia’s Trilinos Project  (trilinos.sandia.gov) 

 Massively parallel, Exodus mesh input, Multiple material blocks 

 State-based linear elastic, elastic-plasticity, viscoelastic models  

 DAKOTA interface for UQ/optimization/calibration, etc. (dakota.sandia.gov) 

 

 Solvers 

 Explicit time integration (Velocity-Verlet) 

 Implicit time integration (Newmark-beta method) 

 Quasistatics 

 Nonlinear (Newton/Krylov, nonlinear CG) 

 Linear (preconditioned Krylov subspace methods) 

 

Peridigm: A Computational Peridynamics Code 



Peridigm: Peridynamics via Agile Components   

Software Quality Tools 

Mailing Lists 

Version Control 

Build System 

Testing (CTest) 

Project Management 

Issue Tracking 

Wiki 

UQ 

Optimization 

Error Estimation 

Calibration 

Load Balancing (Zoltan) 

Parallelization Tools 

Data Structures (Epetra) 

Solver Tools 

Iterative Solvers (Belos) 

Direct Solvers (Amesos) 

Eigensolvers (Anasazi) 

Preconditioners (IFPack) 

Multilevel (ML) 

Nonlinear Solvers (NOX) Analysis Tools 

UQ (Stokhos) 

Optimization (MOOCHO) 

Services 

Interfaces (Thyra) 

Tools (Teuchos, TriUtils) 

Field Manager (Phalanx) 

DAKOTA Interface (TriKota) 

Visualization 

Service Tools 



H

f(u(x ,t) u(x,t),x x)dV   

H

x

Continuum 

 Spatial Discretization 
 Approximate integral with sum* 

 Midpoint quadrature 

 Piecewise constant approximation 

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005. 
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Discrete 

Discretizing Peridynamics 
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Discrete 

 Spatial Discretization 
 Approximate integral with sum* 

 Midpoint quadrature 

 Piecewise constant approximation 

*S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005. 

 Temporal Discretization  
 Explicit central difference in time  

 

 

 

 
 Velocity-Verlet 

 

 

 

 

 

 

 

 

 

 

 

 Must satisfy nonlocal CFL condition 

 Allows larger timesteps than local models 
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 Peridigm designed to be user extensible 

 User defined material models, compute classes, etc.  

 

 Compute class: Compute any user-defined quantity 

 Class must declare what data it needs allocated  

 Examples: per-element or per-node scalar, vector, tensor, etc.  

 Class must provide routine that computes user-defined quantity 

 User writes only serial code -- parallel communication handled “auto-magically”  

 Example: Compute Acceleration (for output) 
 
int PeridigmNS::Compute_Acceleration::compute(const int numOwnedPoints, 
                                              const int* ownedIDs, 
                                              const int* neighborhoodList, 
                                              PeridigmNS::DataManager& dataManager) const { 
  int retval; 
  Teuchos::RCP<Epetra_Vector> force, acceleration; 
  force        = dataManager.getData(Field_NS::FORCE_DENSITY3D, Field_ENUM::STEP_NP1); 
  acceleration = dataManager.getData(Field_NS::ACCEL3D, Field_ENUM::STEP_NP1); 
  *acceleration = *force; 
 
  double density = peridigm->getMaterialModels()->operator[](0)->Density(); 
  retval = acceleration->Scale(1.0 / density); 
 
  return retval; 
} 
 

 Declare “acceleration” as output field in input deck  

 Only specified fields are computed 
 

Peridigm: Structure & User Interface 



 Peridigm material models: Create your own! 

 
 //! Returns a vector of field specs that specify the variables associated with the material 
 virtual Teuchos::RCP< std::vector<Field_NS::FieldSpec> > VariableSpecs() const = 0; 
 
//! Initialize the material model. 
virtual void initialize(const double dt, 
                        const int numOwnedPoints, 
                        const int* ownedIDs, 
                        const int* neighborhoodList, 
                        PeridigmNS::DataManager& dataManager) const {} 
 
//! Update the constitutive data based on the current configuration. 
virtual void updateConstitutiveData(const double dt, 
                                    const int numOwnedPoints, 
                                    const int* ownedIDs, 
                                    const int* neighborhoodList, 
                                    PeridigmNS::DataManager& dataManager) const = 0; 
 
//! Evaluate the forces on the cells 
virtual void computeForce(const double dt, 
                          const int numOwnedPoints, 
                          const int* ownedIDs, 
                          const int* neighborhoodList, 
                          PeridigmNS::DataManager& dataManager) const = 0; 
 
//! Evaluate the jacobian 
virtual void computeJacobian(const double dt, 
                             const int numOwnedPoints, 
                             const int* ownedIDs, 
                             const int* neighborhoodList, 
                             PeridigmNS::DataManager& dataManager, 
                             PeridigmNS::SerialMatrix& jacobian) const; 
 

 
 

Peridigm: Structure & User Interface 



 

 

 

Part IV 

Peridigm: Tutorial and Example



* D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006. 

Fragmenting Cylinder 

 Fragmenting Brittle Cylinder 

 Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)* 

 

 Material properties 

 Inner radius r1 = 0.020 m 

 Outer radius r2 = 0.025 m 

 Length 2a = 0.1 m  

 Density  = 7800 kg/m3 

 Bulk modulus k = 130 GPa 

 Shear modulus  = 78 GPa 

 Yield stress Y = 500 GPa 

 Ultimate stress  = 700 GPa 

 Elongation at failure  = 0.02 

 

 Initial Velocity 

 v(r) = Vr0 – Vr1(a/z)2 

 v(z) = Vz0(a/z) 

 v() = 0 

       where Vr0 = 200 m/s, Vr1 = 50 m/s, Vz0 = 100 m/s 

 

 

 

 

 

 

 

 

 

 



 Usage:  
 Peridigm Input.xml  
 
  where Input.xml is a properly formatted input deck using Trilinos/Teuchos      

    XML ParameterList : 
 
 <ParameterList>  
  ... input section here...  
 </ParameterList>  

 

 An input deck contains three sections: 

 
<ParameterList>  
 [Problem Section] 
 [Solver Section] 
 [Output Section] 
</ParameterList>  

 
  

 
 

Running Peridigm 



 Problem section 
 
<ParameterList name="Problem"> 
        <Parameter name="Verbose" type="bool" value="false"/> 
        <ParameterList name="Discretization"> 
                <Parameter name="Horizon" type="double" value="0.00417462" /> 
                <Parameter name="Type" type="string" value="PdQuickGrid" /> 
                <Parameter name="NeighborhoodType" type="string" value="Spherical" /> 
                <ParameterList name="TensorProductCylinderMeshGenerator"> 
                        <Parameter name="Inner Radius" type="double" value="0.020" /> 
                        <Parameter name="Outer Radius" type="double" value="0.025" /> 
                        <Parameter name="Cylinder Length" type="double" value="0.100" /> 
                        <Parameter name="Ring Center x" type="double" value="0.0" /> 
                        <Parameter name="Ring Center y" type="double" value="0.0" /> 
                        <Parameter name="Z Origin" type="double" value="0.0" /> 
                        <Parameter name="Number Points Radius" type="int" value="5" /> 
                </ParameterList> 
        </ParameterList> 
        <ParameterList name="Material"> 
                <ParameterList name="Linear Elastic"> 
                        <Parameter name="Density" type="double" value="7800.0"/> 
                        <Parameter name="Bulk Modulus" type="double" value="130.0e9"/> 
                        <Parameter name="Shear Modulus" type="double" value="78.0e9"/> 
                        <ParameterList name="Damage Model"> 
                                <Parameter name="Type" type="string" value="Critical Stretch"/> 
                                <Parameter name="Critical Stretch" type="double" value="0.02"/> 
                        </ParameterList> 
                </ParameterList> 
        </ParameterList> 
 
        .... 

  .... 
 

Running Peridigm 

Alternative: Read from 

Exodus/Genesis 

mesh generated by 

meshing tool 

(example: CUBUIT) 



 Problem section 
 
        .... 

  .... 
 
 <ParameterList name="Boundary Conditions"> 
                <ParameterList name="Initial Velocity X"> 
                        <Parameter name="Type" type="string" value="Initial Velocity"/> 
                        <Parameter name="Node Set" type="string" value="All"/> 
                        <Parameter name="Coordinate" type="string" value="x"/> 
                        <Parameter name="Value" type="string"  
          value="(200 - 50*((z/0.05)-1)^2)*cos(atan2(y,x)) + rnd(5)"/> 
                </ParameterList> 
                <ParameterList name="Initial Velocity Y"> 
                        <Parameter name="Type" type="string" value="Initial Velocity"/> 
                        <Parameter name="Node Set" type="string" value="All"/> 
                        <Parameter name="Coordinate" type="string" value="y"/> 
                        <Parameter name="Value" type="string"  
                 value="(200 - 50*((z/0.05)-1)^2)*sin(atan2(y,x)) + rnd(5)"/> 
                </ParameterList> 
                <ParameterList name="Initial Velocity Z"> 
                        <Parameter name="Type" type="string" value="Initial Velocity"/> 
                        <Parameter name="Node Set" type="string" value="All"/> 
                        <Parameter name="Coordinate" type="string" value="z"/> 
                        <Parameter name="Value" type="string" value="(100*((z/0.05)-1)) + rnd(5)"/> 
                </ParameterList> 
        </ParameterList> 
</ParameterList> 
 

 

Running Peridigm 

User-defined function. 

Define your own and 

reference them in the 

input deck 

Function parser: Enter any 

mathematical function to 

specify initial velocities or 

boundary conditions as a 

function of space & time 

Alternative: 

Specify nodesets 

in exodus/genesis 

database 



 Fragmenting Brittle Cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 What about ductile failure? 

 

 

 

 

 

 

 

 

 

 

 

The Results… 

Simulation performed 

with Peridigm 

After 

(brittle) 

Before 
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 Modify the problem section 
 
<ParameterList name="Problem"> 
        <Parameter name="Verbose" type="bool" value="false"/> 
        <ParameterList name="Discretization"> 
                <Parameter name="Horizon" type="double" value="0.00417462" /> 
                <Parameter name="Type" type="string" value="PdQuickGrid" /> 
                <Parameter name="NeighborhoodType" type="string" value="Spherical" /> 
                <ParameterList name="TensorProductCylinderMeshGenerator"> 
                        <Parameter name="Inner Radius" type="double" value="0.020" /> 
                        <Parameter name="Outer Radius" type="double" value="0.025" /> 
                        <Parameter name="Cylinder Length" type="double" value="0.100" /> 
                        <Parameter name="Ring Center x" type="double" value="0.0" /> 
                        <Parameter name="Ring Center y" type="double" value="0.0" /> 
                        <Parameter name="Z Origin" type="double" value="0.0" /> 
                        <Parameter name="Number Points Radius" type="int" value="5" /> 
                </ParameterList> 
        </ParameterList> 
        <ParameterList name="Material"> 
                <ParameterList name="Elastic Plastic"> 
                        <Parameter name="Density" type="double" value="7800.0"/> 
                        <Parameter name="Bulk Modulus" type="double" value="130.0e9"/> 
                        <Parameter name="Shear Modulus" type="double" value="78.0e9"/> 
                        <Parameter name="Material Horizon" type="double" value="0.00417462"/> 
                        <Parameter name="Yield Stress" type="double" value="176.0e6"/> 
                        <ParameterList name="Damage Model"> 
                                <Parameter name="Type" type="string" value="Critical Stretch"/> 
                                <Parameter name="Critical Stretch" type="double" value="0.12"/> 
                        </ParameterList> 
                </ParameterList> 
        </ParameterList> 
        .... 

  .... 
 

Running Peridigm 

Change material type 

and parameters 



The Results… 

Simulation performed 

with Peridigm 

 Fragmenting Cylinders 

 Brittle fracture characteristically different from ductile fracture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After 

(brittle) 

Before After 

(ductile) 
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 Peridynamics overview 

 Theory 

 Material models 

 Fracture 

 Demonstration computations 

 Peridigm overview 

 Open source 

 Massively parallel 

 Based upon Trilinos software components 

 Peridigm tutorial 

 Cylinder setup 

 Input deck 

 Results: brittle, ductile failure 

 

 Codes, Papers: www.sandia.gov/~mlparks, mlparks@sandia.gov 

 

 Thank you! 

 

Summary 


