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Peridynamics & Nonlocal Advection 

 Peridynamics provides a nonlocal framework for elasticity that naturally admits  

  discontinuous solutions (e.g., fracture) 

 

 Expand peridynamics-based simulation capabilities to include impact, energetic  

  materials, etc. Couple mass, momentum, and energy balance equations with    

  more complex material response. 

 

 Goals:  

 Understand relation between nonlinear advection and peridynamics 

 Develop a peridynamic-inspired approach for nonlocal nonlinear advection 

that captures “shock-like” behavior 

 

 Nonlocal advection not novel; many others have explored nonlocal variants of 

classical advection 

 Nonlocal wavespeed, integral operators (Hilbert transform), fractional 

differential operators, generalized flux, nonlocal regularization, nonlocal 

convection diffusion (Ignat & Rossi)* 

 

* L. I. Ignat and J. D. Rossi. A nonlocal convection-diffusion equation. J. Funct. Anal., 251:399-437, 2007. 



Classical (Local) Advection 

 Classical (local) advection is well-understood. Many, many papers, textbooks, etc. 

 Conservation law (f is flux function): 

 

 

 

 Simple examples: 

 f(u) = cu        linear advection 

 f(u) = u2/2       Burgers equation 

 Linear advection 

 Initial condition propagated along  

  characteristic 

 u(x,t) = u0(x-ct) 

 Burgers’ equation 

 Exact solution via Cole-Hopf transform 

 Inviscid Burgers’ equation exhibits shocks  

  in finite time (crossing characteristics) 

 Viscid Burgers’ equation regularizes solution.  

  No shocks possible! 
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 Posit the integro-differential equation 

 

 

 

 

 

 Points (x,y) interact directly and nonlocally  

 Maximum interaction distance  (peridynamic horizon) 

 Kernel is antisymmetric:  

 

 Contrast with peridynamic models of solids, where kernel is symmetric 

 The kernel is (usually) translation invariant: 

 

 Requirement for consistency with classical (local) advection equation: 

 

 

   (in distributional sense) 

 Contrast with peridynamic models of solids, where this limit (usually) gives  

Nonlocal Advection 





 




  
   

  




x

x

u u(y, t)+u(x, t)
+ (y,x)dy = 0            (x, t) (0, )

t 2

u(x,0) = g(x)        x

  (y,x) (x,y)

    (y,x) (y - x) ( )

0


 






lim ( ) = -

x



2 Bobaru and Duangpanya, The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer. 53: 4047-4059, 2010.  

 Compare forms of equations 

 

 

 

 

 

 What is the nonlocal flux through a surface? (e.g., through x?) 

 

 

 

  

 

 

 Flux carried by infinite number of nonlocal interactions passing through x 

 Many have derived this expression before; See [1,2,3]. 

 Under assumptions, Noll’s lemma [4] can be used to derive flux function. 

 Under assumptions, nonlocal equation converges to local equation as 0. 

Relation to Local Advection 
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3 Lehoucq and Silling, Force flux and the peridynamic stress tensor, J. Mech. Phys. Solids. 56:1566-1577, 2008. 

1 Silling, Zimmerman, and Abeyaratne, Deformation of a Peridynamic Bar, J. Elasticity. 73:173-190, 2003. 

4 Noll, Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik. J. Ration. Mech. Anal. 4:627–646, 1955. 



 Conservation: Instantaneous change in u over [a,b] is balanced by flux in/out of [a,b] 

 

 

 

 

 Integrate nonlocal advection equation over [a,b] for some a<b 

 

 

 

 

 Re-write as  

 

 

 

Conservation Law 
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 Let (u) = u. This give the nonlocal equivalent of ut+ux=0. 

 

 

 

 Plug in traveling wave solution  

 

 

   to analyze speed of individual modes. 

 

 For particular kernel, can show 

 

 

 

 Two important differences from local one-way wave equation 

 Nonlocal wavespeed varies with wavenumber 

 Nonlocal wavespeed slower than classical wavespeed 

 

Nonlocal Linear One-Way Wave Equation 
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 Nonlocal Burgers: (u) = u2/2 

 Conservation:   

 

 

 

 Well-Posedness: 

 Assume   L1(-, ), g  H1(R). Then, there exists a time interval (0, T) such 

that the nonlocal Burgers equation has a unique solution. Moreover, let (0, T) 

be the maximum time interval on which such a solution exists. Then,                    

limsup(t->T) ‖u(.,t)‖L  = . 

 Consequences: 

 If we start with smooth data, solution maintains H1 regularity so long as it is 

pointwise bounded in space and time. Moreover, only finite-time blow-up can 

cause loss of H1 regularity of the solution.  

 If   L1 and initial data smooth, solution maintains H1 regularity for positive 

horizon. There is no shock formation with an L1 kernel!  

 Contrast with local Burgers, where initial smooth data can lead to shock 

 Addition of viscosity forbids shock formation in local case 

 L1 kernel forbids shock formation in nonlocal case  

  (no additional regularization needed) 

Nonlocal Burgers: Theory 
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 Discretize space & time into cells [xi-½ , xi+½] and intervals [tn , tn+1]  

 

 The flux out of cell i is the flux out of [xi-½ , xi+½] through xi-½ and xi+½ 

 

 

 

 

 

 Flux out of [xi-½ , xi+½] through xi+½ (expression for xi-½ similar) 

 

 

 

 Convervative numerical scheme: Change in u over cell [xi-½ , xi+½] in time interval 

[tn , tn+1] must be balanced by flux over that cell over that time interval 

 

 

 

 

Nonlocal Lax-Friedrichs Discretization (1) 
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 Define 

 

 

 

 

 

 

 This gives 

  

 

 

 This is the nonlocal equivalent of FTCS (unconditionally unstable) 

 Stabilization produces nonlocal Lax-Friedrichs: 

Nonlocal Lax-Friedrichs Discretization (2) 
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 Suppose (for convenience) that r x = , r an integer. 

 Quadrature (midpoint in space): 

 

 

 

 

  

 

 

 

 

 

 

 

 

 Stability analysis: Let                  ,   

 

 Then  

Nonlocal Lax-Friedrichs Discretization (3) 
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 There are two primary nondimensional length scales:  

 /L Ratio of PD length scale to problem length scale 

 /x   Ratio of PD horizon to cell size 

 So, perform two independent studies: -refinement and x refinement 

 

 Let t/x = 2/c fixed, c = 80. (i.e., artificial viscosity same for all experiments) 

 min(/L)  0.004 (small horizon) 

 max(/L)  0.1 (large horizon) 

 min(/x)  16 

 max(/x)  256 

 The horizon is typically 3 the mesh spacing in PD solid mechanics. In these 

numerical experiments, nonlocality is well-resolved 

 

 

 

Nonlocal Burgers: Computational Results 



 Domain: -  x < ; N cells with x = L/N; L = .  

 Boundary conditions: u(x + kL, t) = u(x,t); kZ+  

 Initial condition: u0 = -sin(x) 

 

 

 

 

 

 

 

 

 

 

 

 Compare with analytical and numerical for local Burgers’ equation 

 Sinusoid IC leads to shock formation at x=0, t=1. N-wave develops as t . 

 

Nonlocal Burgers: Sine IC 
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 -refinement study (for x  6.28e-4) (fine mesh) 

 

 

 

 

 

 

 

 

 

 

 For small , results qualitatively similar to N-wave 

 Additional oscillations for larger  

 

 

 ∫u dx conserved; Numerical method is conservative (not shown here) 

 ∫u2 dx not conserved (artificial viscosity) 

 

Nonlocal Burgers: Sine IC 



 x - refinement study (for   0.05; /L  1.59e-2) (small ) 

 

 

 

 

 

 

 

 

 

 

 Gibbs-like oscillations around shock-like feature  

 

 

 

 ∫u dx conserved; Numerical method is conservative (not shown here) 

 ∫u2 dx not conserved (artificial viscosity) 

 

Nonlocal Burgers: Sine IC 



 Domain: -  x < ; N cells with x = L/N; L = .  

 Boundary conditions: u(x + 2kL, t) = u(x,t); k   

 Initial condition: u0 = 1 if -1.5  x < 1.5; 0 elsewhere 

 

 

 

 

 

 

 

 

 

 

 

 Compare with analytical and numerical for local Burgers’ equation 

 “Top Hat” IC leads to rarefaction (left) plus shock (right)  

 

Nonlocal Burgers: “Top Hat” IC 
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 -refinement study (for x  6.28e-4) (fine mesh) 

 

 

 

 

 

 

 

 

 

 

 For small , results qualitatively similar to classical results 

 Additional oscillations around shock-like feature for larger  

 

 

 ∫u dx conserved; Numerical method is conservative (not shown here) 

 ∫u2 dx not conserved (artificial viscosity) 

 

Nonlocal Burgers: “Top Hat” IC 



 x - refinement study (for   0.05; /L  1.59e-2) (small ) 

 

 

 

 

 

 

 

 

 

 

 Gibbs-like oscillations around shock-like feature 

 

 

 

 ∫u dx conserved; Numerical method is conservative (not shown here) 

 ∫u2 dx not conserved (artificial viscosity) 

 

Nonlocal Burgers: “Top Hat” IC 



 The Korteweg–de Vries equation produces dispersive shocks1 

 

 

 

 

 

 Dispersive shocks appear (for example) in  

 Rotating Bose-Einstein condensate 

 Collisionless ion-acoustic shock waves observed from interaction of two plasmas  

 Optical wave breaking observed in propagation of light through nonlinear fiber 

 Propagation of intense electromagnetic wave through photorefractive medium 

 

 

 

 

 

 

Relation to Dispersive Shocks (1) 
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to dispersive shock waves. 

2 Hoefer, Ablowitz, Coddington, Cornell, Engels, and Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates 

and gas dynamics, Phys. Rev. A, 74:023623, 2006. 

1 Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009. 



 The Korteweg–de Vries equation produces dispersive shocks1 

 

 

 

 

 

 

 Oscillatory solution reminiscent of solutions to nonlocal Burgers equation 

 

 Compare with leading terms of Taylor series of nonlocal Burgers equation: 

 

 

 

 

 Leading terms match (up to scaling) with KdV 

 Reduces to local Burgers equation in limit as   0 

 In nonlocal Burgers, no shocks possible for >0 and   L1  

 Nonlocal Burgers provides additional regularity beyond KdV  

Relation to Dispersive Shocks (2) 
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1 Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009. 



 Peridynamic-inspired model for nonlocal, nonlinear advection 

 Nonlocal flux and relation to classical flux 

 Conservation law form 

 Nonlocal one-way wave equation 

 Nonlocal Burgers equation 

 Shocks not possible for >0 and   L1 for smooth data 

 Nonlocal Lax-Friedrichs method 

 Computational results (sine IC, “top hat” IC) 

 Relation to dispersive shock waves 

 

 Papers, codes 

 www.sandia.gov/~mlparks; mlparks@sandia.gov 

Summary 


