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Peridynamics & Nonlocal Advection

O Peridynamics provides a nonlocal framework for elasticity that naturally admits
discontinuous solutions (e.g., fracture)

O Expand peridynamics-based simulation capabilities to include impact, energetic
materials, etc. Couple mass, momentum, and energy balance equations with
more complex material response.

O Goals:
O Understand relation between nonlinear advection and peridynamics

O Develop a peridynamic-inspired approach for nonlocal nonlinear advection
that captures “shock-like” behavior

O Nonlocal advection not novel; many others have explored nonlocal variants of
classical advection

O Nonlocal wavespeed, integral operators (Hilbert transform), fractional
differential operators, generalized flux, nonlocal regularization, nonlocal
convection diffusion (Ignat & Rossi)*

Sandia
National
* L. I. Ignat and J. D. Rossi. A nonlocal convection-diffusion equation. J. Funct. Anal., 251:399-437, 2007. Laboratories
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Classical (Local) Advection

O Classical (local) advection is well-understood. Many, many papers, textbooks, etc.

O Conservation law (f is flux function):

6u+ g flu)=0
OX

O Simple examples:
a f(u) =cu — linear advection
Q f(u) =u?/2 — Burgers equation
O Linear advection
A Initial condition propagated along
characteristic
O u(x,t) = uy(x-ct)
O Burgers’ equation
O Exact solution via Cole-Hopf transform
O Inviscid Burgers’ equation exhibits shocks
in finite time (crossing characteristics)

O Viscid Burgers’ equation regularizes solution.

No shocks possible!
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Nonlocal Advection

O Posit the integro-differential equation

ou “t° (uly,t)+u(x,t) _
5+j"”( : jq)(y,x)dy—O (x,t) € Rx (0, 0)

_ u(x,0)=g(x) xeR

O Points (x,y) interact directly and nonlocally
O Maximum interaction distance ¢ (peridynamic horizon)
O Kernel is antisymmetric:
@(y, X) — —¢(X, y)
d Contrast with peridynamic models of solids, where kernel is symmetric
O The kernel is (usually) translation invariant:

oly, x) = ply -x) = (&)

O Requirement for consistency with classical (local) advection equation:

lim (&) = - 0o

-0 8)(

(in distributional sense)
O Contrast with peridynamic models of solids, where this limit (usually) gives &
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Relation to Local Advection

O Compare forms of equations

X+&

ou u(y,t)+u(x,t ou O
—+ j 14 Ly, t) +uf )}p(y,x)dy:O +—f(u)=0
ot 2 / ot oOx
N — W_/
X “gradient of flux” A
O What is the nonlocal flux through a surface? (e.g., through x?)

//71{\\

v

A

E-1L

fi. (X):j‘ I 4 U(X+y’t);LI(X_Z’t)}P(X+y,X-Z)dde

A Flux carried by infinite number of nonlocal interactions passing through x
O Many have derived this expression before; See [1,2,3].
O Under assumptions, Noll’s lemma [4] can be used to derive flux function.

O Under assumptions, nonlocal equation converges to local equation as ¢—0.
1 Silling, Zimmerman, and Abeyaratne, Deformation of a Peridynamic Bar, J. Elasticity. 73:173-190, 2003.
2 Bobaru and Duangpanya, The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transfer. 53: 4047-4059, 2010. Sandia
3 Lehoucq and Silling, Force flux and the peridynamic stress tensor, J. Mech. Phys. Solids. 56:1566-1577, 2008. 1P National ]
4 Noll, Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik. J. Ration. Mech. Anal. 4:627—646, 1955. atories
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% Conservation Law

O Conservation: Instantaneous change in u over [a,b] is balanced by flux in/out of [a,b]

MY
a-g a b b+e

O Integrate nonlocal advection equation over [a,b] for some a<b

© e [ s

a X—&

jca(v,X)dvdx =0

. Flux from [a,b] to
O Re-write as [a-€] through a

%Iu(x,y)dx+j j W(u(y,t)+u(x t)jgp(y, dydx

aa—¢ Flux from [a,b] to

-~ [b+e] through b

b b+e

_[ J‘ W(u(y, )+u(x,t) )qu’x)dydx

This term is zero
(antisymmetry)

le//(u(v,t)w(x t)) oly, x)dydx = 0 @ﬁ‘;{}ﬂﬁm
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Nonlocal Linear One-Way Wave Equation

Q Let y(u) = u. This give the nonlocal equivalent of u,+u,=0.

au X+&
—+ | uly,t)e(y,x)dy =0
~* ] uy tely, x)dy

O Plug in traveling wave solution
u(x, t)=exp (ik(x - c(k)t))

to analyze speed of individual modes.

X=&

O For particular kernel, can show

(k) = sin’ (ke /22) <1
(ke /2)

O Two important differences from local one-way wave equation
O Nonlocal wavespeed varies with wavenumber
O Nonlocal wavespeed slower than classical wavespeed
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Nonlocal Burgers: Theory

O Nonlocal Burgers: y(u) = u?/2
O Conservation:

d d
— |u(x,t)dx =0 — | u’(x,t)dx =0
~Jued dtj (x,t)

0 Well-Posedness:

O Assume ¢ € L'(-¢, €), g € H'(R). Then, there exists a time interval (0, T) such
that the nonlocal Burgers equation has a unique solution. Moreover, let (0, T)
be the maximum time interval on which such a solution exists. Then,
limsup(t->T) JJu(Y)|lL o = .

0 Consequences:
Q If we start with smooth data, solution maintains H' regularity so long as it is

pointwise bounded in space and time. Moreover, only finite-time blow-up can
cause loss of H' regularity of the solution.

Q If ¢ € L' and initial data smooth, solution maintains H' regularity for positive
horizon. There is no shock formation with an L' kernel!

O Contrast with local Burgers, where initial smooth data can lead to shock
O Addition of viscosity forbids shock formation in local case
Q L' kernel forbids shock formation in nonlocal case
ces . . Sandia
(no additional regularization needed) @ National
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Nonlocal Lax-Friedrichs Discretization (1)

O Discretize space & time into cells [x;, , Xi,,] and intervals [t", t"*1]

4 The flux out of cell i is the flux out of [x,., , X;,,,] through x.,, and x;,,

t J ) AX " _ tn+1
” At I G——— | — gn

Xi-1 Xisy

d Flux out of [Xx,, , X;,1,] through x..,. (expression for x,,, similar)

Ax £—z
f (X t) = I j t//(u(x+y't)+u(x_z't)j(p(x+y,x-z)dydz
0 O

[Xis Xis ] 2

O Convervative numerical scheme: Change in u over cell [x;, , X;,1,] in time interval
[tr, t"*1] must be balanced by flux over that cell over that time interval

Xi+Vz

thn
j(u(x,tn+1)_u(x,t”))dx+ I (f[xi_yz,xi%](xi_%,t)+f[xi_yz’xi+yz](xHyz,t))dt=O
t

Xy, n
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National
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“Nonlocal Lax-Friedrichs Discretization (2)

O Define o
— 1
n
1 Xeos I+1/2 A_J- Xig Xisys ) |+Vz’t)dt
u' = u(x, t")dx s
AX b . 1
i-% n
.1/2 A_-.- Xiss 1 |+/] yz’t)dt
O This gives
_ _ . At = —
n+1 n n n
u; =u _—(Fi+1/z T Fi-Vz)
AX

O This is the nonlocal equivalent of FTCS (unconditionally unstable)
O Stabilization produces nonlocal Lax-Friedrichs:

Uin+1 _ Ualzail —i)t( (EZ%"‘Fn’/z)
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Nonlocal Lax-Friedrichs Discretization (3)

O Suppose (for convenience) that r Ax = g, r an integer.
O Quadrature (midpoint in space)

4+ D FuUlx;, 1)
(f[xi_yz,xHyz]( |/' )+f[x|/ Xis | X|+/' ) ZQ)W[ J 2 jgp(xiﬂ'xi)(Ax)z
- :
: 0 j=0
" =41 j=%1,..,%(r-1)
l j=-r,r
a-E+Ax \2 ’
a b . ( 1 y > X
O Stability analysis: Let l//(u):u, (p(y,x)=i2< 0 y=x
2r Tl v

O Then At < —— AXx i
r+l ()
aporatories



Nonlocal Burgers: Computational Results

O There are two primary nondimensional length scales:
Q e/l Ratio of PD length scale to problem length scale
0 e/Ax Ratio of PD horizon to cell size
4 So, perform two independent studies: e-refinement and Ax refinement

O Let At/Ax = 2/c fixed, c = 80. (i.e., artificial viscosity same for all experiments)
O min(e/L) = 0.004  (small horizon)
O max(e/L) = 0.1 (large horizon)
0 min(e/Ax) = 16
O max(e/Ax) = 256

O The horizon is typically 3x the mesh spacing in PD solid mechanics. In these
numerical experiments, nonlocality is well-resolved

Ax-refinement study e-refinement study
N 2000 4000 8000 16000 32000 10000 10000 10000 10000
Ax 3.14e-3 1.57e-3 7.86e-4 3.93e-4 1.97e-4 6.28e-4 6.28e-4 6.28e-4 6.28e-4
£ 5.02e-2 | 5.02e-2 | 5.02e-2 5.02e-2 | 5.02e-2 1.26e-2 6.28e-2 1.57e-1 3.14e-1
e/L 1.60e-2 1.60e-2 1.60e-2 1.60e-2 1.59e-2 4.00e-3 2.00e-2 | 5.00e-2 1.00e-1
e/Ax 16 32 64 128 256 20 100 250 500
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Nonlocal Burgers: Sine IC

O Domain: -t < x < «; N cells with Ax =L/N; L ==.
O Boundary conditions: u(x + kL, t) = u(x,t); keZ*
4 Initial condition: u, = -sin(x)

/N ) //”

s 0 > 0
05 \ / 05 / /
1 N 1 V
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Initial Condition Local Lax-Friedrichs at t=1.5

O Compare with analytical and numerical for local Burgers’ equation
O Sinusoid IC leads to shock formation at x=0, t=1. N-wave develops as t —>w.

Sandia
National
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Nonlocal Burgers: Sine IC

O e-refinement study (for Ax ~ 6.28e-4) (fine mesh)

—Initilal Condition- 2L —Initial Condition_
—ex 1.26e-2 —sx 1.26e-2
—:x628e2 | 1§ —:~6.28e2
—c~1.57e-1 1.6+ —g =~ 1.57e-1
—e = 3. 14e-1 14 —e = 3.14e-1
1.2+
3 3 1
0.5 0.8
1 ' 0.6
15/ 04¢
: 0.2
-2 | :
-3 -2 -1 0 1 2 3 0.2

X

O For small g, results qualitatively similar to N-wave
O Additional oscillations for larger ¢

O fu dx conserved; Numerical method is conservative (not shown here)
QO fu? dx not conserved (artificial viscosity)
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Nonlocal Burgers: Sine IC

a Ax - refinement study (for € = 0.05; ¢/L ~ 1.59e-2) (small ¢)

13 _Initial Gondition| 14 “— Initial Condition]
—Ax~314e-3° —AXx~314e-3
Ui —Ax~157e3 1 12F —Ax~157e-3
—Ax~7.86e-4 : —Ax~7.86e-4
05- Ax=3.93e4 | 1F Ax=3.93e4
' —Ax=197e4 ; —Ax~197e-4
|08
= 0 =
0.6/
05
0.4
A 0.2}
153 2 1 0 1 2 3 3 01 0.2

0 Gibbs-like oscillations around shock-like feature

O fu dx conserved; Numerical method is conservative (not shown here)
QO fu? dx not conserved (artificial viscosity)
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Nonlocal Burgers: “Top Hat” IC

O Domain: -t < x < «; N cells with Ax =L/N; L ==.
O Boundary conditions: u(x + 2kL, t) = u(x,t); kell
Q Initial condition: u, = 1 if -1.5 < x < 1.5; 0 elsewhere

15 15

. J AT
|| \

> 0 =

-0.5 -0.5
1 -1
153 2 -1 0 1 2 3 153 2 K] 0 1 2 3
X X
Initial Condition Local Lax-Friedrichs at t=1.5

O Compare with analytical and numerical for local Burgers’ equation
O “Top Hat” IC leads to rarefaction (left) plus shock (right)

Sandia
National
Laboratories



\

Nonlocal Burgers: “Top Hat” IC

O e-refinement study (for Ax ~ 6.28e-4) (fine mesh)

15 | | 1 1 1 | | 15 T
1 |
05 1 v/,\v
> 0 " _ : s
05- ' 0.5 .
| —Initial Condition _ : —Initial Condition
—c~ 1.26e-2 _ : : —c = 1.266-2
-1t~ 6.28e-2 ' : - —c = 6.28e-2
—e=157e-1 : : : —e = 1.57e-1
15 TER 3.14e|—1 . ; . ‘ | 0 e 3.14&-1i ‘ ‘
T3 -2 -1 0 1 2 3 05 1 1.5 2 25 3
X X

O For small g, results qualitatively similar to classical results
O Additional oscillations around shock-like feature for larger ¢

O fu dx conserved; Numerical method is conservative (not shown here)
QO fu? dx not conserved (artificial viscosity)
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Nonlocal Burgers: “Top Hat” IC

a Ax - refinement study (for € = 0.05; ¢/L ~ 1.59e-2) (small ¢)

1.5

1
Y

-1.5

—Initial Condition
—Ax=3.14e-3
—Ax=157e-3

F—AX = 7.86e-4

AxX=3.93e4
TAX=E 1.9|7e—4

-3 -2

o- -

1.2-

0.8

= 06,

0.

-

0.2¢

| —Initial Condition
—AX~ 3 14e-3
—Ax=x1.57e3
—AX~7.86e-4
AX=x=3.93e-4

O/ =Ax~1.97e4

1.7 18 19

0 Gibbs-like oscillations around shock-like feature

2 21 22 23 24 25 26

O fu dx conserved; Numerical method is conservative (not shown here)
QO fu? dx not conserved (artificial viscosity)
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Relation to Dispersive Shocks (1)

O The Korteweg—de Vries equation produces dispersive shocks?

ou ou ou
—+bu—+ =

AP
ot Ox Ox°

O Dispersive shocks appear (for example) in
O Rotating Bose-Einstein condensate
O Collisionless ion-acoustic shock waves observed from interaction of two plasmas
O Optical wave breaking observed in propagation of light through nonlinear fiber
O Propagation of intense electromagnetic wave through photorefractive medium

Experimental absorption images of Bose-
Einstein condensate blast wave [2].
The oscillatory ring structures correspond
to dispersive shock waves.

1 Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009. Sandia
2 Hoefer, Ablowitz, Coddington, Cornell, Engels, and Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates LNaat}g]rg?tlmes

and gas dynamics, Phys. Rev. A, 74:023623, 2006.



Relation to Dispersive Shocks (2)

O The Korteweg—de Vries equation produces dispersive shocks?

3
Q08,8
ot ox Ox’

O Oscillatory solution reminiscent of solutions to nonlocal Burgers equation

0 Compare with leading terms of Taylor series of nonlocal Burgers equation:

8u+ au 60&” O°u 905 (8uj o°u .20
ot 8x 720 ox° 720 ox )\ ox®

O Leading terms match (up to scaling) with KdV
O Reduces to local Burgers equation in limitas ¢ > 0
A In nonlocal Burgers, no shocks possible for ¢>0 and ¢ € L1
O Nonlocal Burgers provides additional regularity beyond KdV

Sandia
National
1 Hoefer and Ablowitz, Dispersive Shock Waves, Scholarpedia, 4(11):5562, 2009. Laboratories
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Summary

O Peridynamic-inspired model for nonlocal, nonlinear advection
O Nonlocal flux and relation to classical flux
O Conservation law form
O Nonlocal one-way wave equation
O Nonlocal Burgers equation
O Shocks not possible for £>0 and ¢ € L' for smooth data
O Nonlocal Lax-Friedrichs method
O Computational results (sine IC, “top hat” IC)
O Relation to dispersive shock waves

O Papers, codes
O www.sandia.gov/~mlparks; mlparks@sandia.gov
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