

Using limited data to construct Bayesian Networks for Human Reliability Analysis


Early Career R&D Program

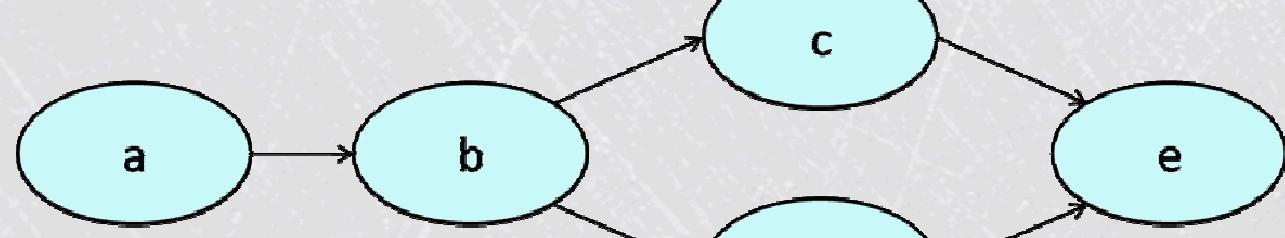
Sandia National Laboratories

Katrina M. Groth, 6231 (PI)
Laura P. Swiler, 1441 (mentor)

Problem

Building a data-informed model to assess human error probability (HEP) as part of safety assurance for nuclear power plants.

Current Human Reliability Analysis (HRA) methods use models to infer HEP for use in Probabilistic Risk Assessment. However:


1. Existing HRA methods are heavily reliant on expert judgment due to lack of data – this results in models that are subjective.
2. Current HRA models can only be used by analysts with complete information – partial information (epistemic uncertainty) cannot be used, despite being prevalent in HRA applications.
3. International HRA data-collection efforts offer the opportunity to improve HRA, but data is sparse.

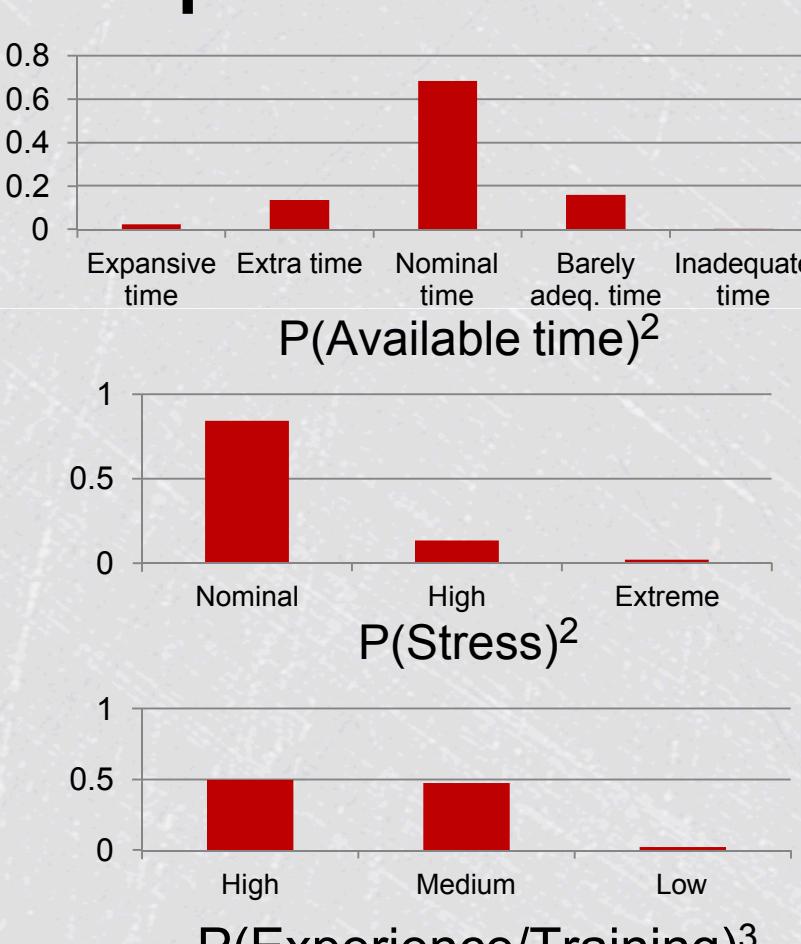
Approach

- Combine a current HRA method with expert information and HRA data to produce a robust model for estimating HEP.
- Use a Bayesian Network (BN) model – integrates multiple types of information and permits expansion as knowledge increases.

Modeling framework: Bayesian Network

- A tool for encoding the knowledge base (probability distribution), in terms of:
 - Relevant variables and states
 - Dependency among variables
 - The simplified joint probability distribution of the system

$$P(a, b, c, d, e) = P(e|a, b, c, d) * P(d|a, b, c) * P(c|a, b) * P(b|a) * P(a) = P(e|c, d) * P(d|b) * P(c|b) * P(b|a) * P(a)$$


Existing method: SPAR-H¹

1. Assess context in terms of 8 Performance Shaping Factors (PSFs) – Select one state for each factor in table at right.

PSFs	PSF Levels	Multipplier for Action
Available Time	Inadequate time	P(failed) = 1.0
	Time available is < the time required	10
	Nominal time	1
	Time available is > the time required	0.1
	Time available is > 50% the time required	0.01
Stressors	Inadequate Information	1
	High	2
	Nominal	1
	Insufficient Information	1
Complexity	Highly complex	5
	Complex	2
	Nominal	1
	Insufficient Information	1
Expert Training	Low	5
	Nominal	1
	High	0.5
	Insufficient Information	1
Procedures	Not available	50
	Inadequate, but poor	20
	Nominal	5
	Good	1
	Insufficient Information	1
Ergonomics HMI	Minor Mistakes	50
	Poor	10
	Nominal	1
	Good	0.5
	Insufficient Information	1
Errors for Day	High	P(failed) = 1.0
	Degraded Fitness	5
	Nominal	1
	Insufficient Information	1
Work Process	Poor	5
	Nominal	1
	Good	1
	Insufficient Information	1

Where NHEP = 0.001 for action and 0.01 for diagnosis tasks

Expert information*:

HRA data: Halden Reactor Project simulator data

Experiment	SGTR Complexity Study	
Scenario	Basic SGTR	Complex SGTR
Variant	None	Clear Indicators
Crew	1 – 10	1 – 5
		6 – 10

*Information for remaining PSFs available from (2)

1. Gertman, D. et al. *The SPAR-H Human Reliability Analysis Method*. NUREG/CR-6883, Nuclear Regulatory Commission, 2005.
2. Hallbert, B. & Kolaczowski, A. *The Employment of Empirical Data and Bayesian Methods in Human Reliability Analysis: A Feasibility Study*. NUREG/CR-6949, Nuclear Regulatory Commission, 2007.
3. Extrapolated from Spurigin, A.J., et al., "Operator Reliability Experiments Using Power Plant Simulators," EPRI NP-6937, Vol. 1, Electric Power Research Institute, Monterey, CA, 1990.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000."

SAND 2012-xxxP

