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Abstract

In this paper we introduce a method to compare sets of full-field data using Alpert tree-wavelet
transforms. The Alpert tree-wavelet methods transform the data into a spectral space allowing the
comparison of all points in the fields by comparing spectral amplitudes. The methods are insensitive
to translation, scale and discretization and can be applied to arbitrary geometries. This makes them
especially well suited for comparison of field data sets coming from two different sources such as when
comparing simulation field data to experimental field data. We have developed both global and local
error metrics to quantify the error between two fields. We verify the methods on two-dimensional and
three-dimensional discretizations of analytical functions. We then deploy the methods to compare

full-field strain data from a simulation of elastomeric syntactic foam.
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1 Introduction

Simulation is a critical part of the development of new designs because simulations can predict the
performance of the designs in expected environments. These predictions can then be used to improve
different aspects of the design and guarantee all requirements for the design are met. The models behind
these simulations frequently require calibration and validation to ensure the accuracy and predictivity of
their results. During the calibration and validation processes, quantitative comparisons are made between
simulations results and experimental results of a system representative of the problem of interest.

Typically, these quantitative comparisons have been done using point-wise local data from local sensors
or global data from point sensors that measure a global characteristic of a system (e.g. mass, external load,
etc.). A small number of local and global quantities-of-interest are identified and measured for model
calibration or validation activities. Comparing a small number of these measurements to simulation
results is done by comparing the measured quantities to the simulations as a function of a common
dependent variable such as time. This results in a sets of data where the model error can be easily
calculated by interpolating the measured and simulated quantities of interest to common intervals on the
independent variable space.

With the development and wide-spread adoption of full-field experimental techniques (e.g. digital
image correlation, digital volume correlation, infrared cameras, etc.), a single experiment can provide a
great deal of data for validation and calibration. [1] However, several challenges exist when making a
quantitative comparison between full-field simulation results and corresponding experimental data. A
point-wise comparison of results can be difficult to make due to the fact that the simulation and exper-
imental results will most likely exist in different coordinate systems and at different points within their
respective coordinate systems. This requires translating and rotating results into a common coordinate
system, and interpolating the results onto a common set of points in space for direct comparison. Gen-
eral interpolation of three dimensional experimental data with noise is non-trivial [2], while interpolating
simulation results may not always be straight forward. For example, interpolating finite element results
that lie on element integration points can introduce errors unless specialized methods are used [3]. Even
interpolating nodal quantities from finite element simulations when using commercial software can pose
a challenge because direct access to element shape functions and mesh connectivity may not be available.
An additional challenge when working with full-field data, is that large data sets are usually produced and
extracting meaningful error metrics can be a challenge. While point-wise comparisons natively provide an
error field and a total global error metric can be calculated from this error field, further post processing

is required to determine the nature of the error such as distinguishing between high frequency, local error



or low frequency, global error.

Methods have been proposed to deal with these issues by comparing the fields through moment-
based shape descriptors. The first to propose using shape descriptors, also referrred to as shape features,
in such a way was Wang, et. al. [4] They present the following as the primary benefits of using these
techniques for full-field data comparison: (1) shape features do not require that the data exist at the same
locations in space, (2) the large full-field data sets can be represented and compared by a small number
of shape features and (3) by using shape features the images are effectively filtered by the underlying
polynomials used for the shape descriptor calculations. Many follow-on efforts have focused on using
moment-based shape features for model validation and model calibration work flows. [5-7] These works
use either Tchebichef or Zernike polynominals as an orthogonal basis for the calculation of moment
shape descriptors suitable for field data represented on circular and rectangular subdomains on the entire
domain of interest, respectively [8]. By projecting the fields onto a common set of basis functions, a
point-wise comparison is not needed and the fields can be directly compared in the projected space.
A benefit of using Zernike polynomial basis functions is that the resulting shape descriptors from the
projection are invariant to rotation. However, a disadvantage is that numerical errors when integrating
a discrete image to calculate the Zernike moments can lead to numerical instabilities. [9, 10] Tchebichef
polynomials are discrete polynomials that avoid the numerical instabilities when being integrated on a
discrete data set. [11] Other discrete polynomials, such as the Krawtchouk, Hahn, dual Hahn and Racah
polynomials, have been used for image reconstruction and classification, but not applied to full-field data
comparison. [12-15]

Some of the works using Zernike or Tchebichef shape descriptors cite the invariance of these shape
features to scaling, rotation and translation as a benefit of their use for comparison of field data. [16—
18] It should be noted that these shape feature methods were originally developed for machine vision
applications where the unique identification of field values was not the goal. Instead, these original works
were interested in uniquely identifying shapes within an image. [19] As a result, the scaling, rotational
and translational invariance is only guaranteed for certain types of shape descriptors under specific
conditions. [20-22] When applied to general full-field data for field comparison, there is no guarantee
of invariance for scaling, rotational and translation transformations for moment-based shape descriptors
using Zernike or Tchebichef orthogonal basis functions. Therefore, using these shape features for field
data comparisons still requires the proper alignment and selection of regions within the compared data
sets. Methods to guarantee invariance for Tchebichef [23,24] and Zernike [25] shape descriptors have been
derived but these specific methods have not been used in full-field data comparisons. These methods rely

on coordinate system transformations and normalization techniques to achieve invariance to rotation,



translation and scale.

Regardless of which orthogonal polynomial set is used or if the shape descriptors are invariant to scale,
rotation or translation, a common disadvantage of using these shape features is that they cannot inherently
represent fields on irregular geometry. Work has been done to extend moment based shape features to
more general geometries. In [26], Zernike polynomials were mapped from circular to rectangular domains
using the Schwarz-Christoffel transform. Thus, a method was developed allowing the use of Zernike shape
descriptors on field-data represented on both circular and rectangular geometries.Wang et.al. [7] extended
Zernike polynomials to a rectangular plate with circular hole located at the plate center. They used Gram-
Shmidt orthogonalization to ensure the orthogonality of the adapted polynomials. A general set of shape
descriptors can be derived for any geometry using the adaptive geometric moment descriptor (AGMD)
technique also developed by Wang. [27]. The AGMD was recently improved using basis-updating to
address its limitation in handling large full-field images [28]. However, a new set of basis functions must
be derived for each geometry investigated. This complexity lead Lampeas [18] to use several sub-domains
with the fields identified using Zernike shape descriptors instead of the AGMD technique.

The last shortcoming of the moment-based shape features is that these techniques are restricted to
two-dimension (2D) field data. A general technique applicable to three-dimensional (3D) data, such as
digital volume correlation data, is still needed due to the massive data size and large difference in the

field data representation (mesh) between experiments and simulations [29, 30].

1.1 Proposed Method

We present a systematic method to compare N-dimensional data fields sampled at arbitrary locations
with no geometric constraints. This is accomplished by comparing the data fields in a unified spectral
space using Alpert multi-wavelet (AMW) [31] transforms of the data. Similar to the methods using
moment based-shape descriptors, the differences in the spatial discretization of the fields, the existence of
noise and issues arising due to missing points are all bypassed when using our method. However, by using
AMW for the spectral representation of the data, numerical instabilities are avoided, data can natively
be represented on irregular geometry, the proposed methods can be applied to N-dimensional data and
the comparisons are insensitive to translation and scale.

While in our previous paper [32], the work focused on data compression of scientific data using
AMW in order to reduce storage size, our current work focuses on extending the capabilities of AMW to
verification and validation, that is by comparing two field datasets represented on irregular meshes and
geometries.

We first start by a brief mathematical background on wavelets. Second, we describe the forward and



inverse wavelet transforms along with the truncation that results in a unified spectral space for field data
comparison. Third, we present the comparison method based on the wavelet representation of the data.
Finally, we apply our methods to two 3D problems. The first is an analytical verification problem on an
irregular 3D domain. The second is a realistic test case involving an irregular 3D geometry in a solid
mechanics application. For both of these problems, we also create error fields for the comparisons and
introduce a new wavelet-based method for projecting the field data from two different irregular sets of

locations onto a common set of spatial points.

2 Background on Wavelets

Wavelets consist of multi-resolution bases suitable to represent any function in a spectral domain [33].
One major benefit of wavelets is their ability to transform different spatial sampling of the same data
into a unified space. Let f be a vector of dimensionality N representing a data field, e.g. a displacement
field in a solid mechanics finite element simulation. Here N can be the number of mesh points in the
simulation, it also can be the number of pixels in an image. f can be transformed back and forth from
the physical and spectral domains using a wavelet operator [¥]. During the transforms, the spectral
representation is often truncated for compression and filtering purposes [34].

Several types of wavelet bases exist in the literature. The majority of these wavelets (Daubechies,
Meyer, Biorthogonal, etc.) can only be applied to data represented on regular grids, such as images.
Such wavelets are known as first generation wavelets [35]. Wavelets that generalize to irregular grids
such unstructured meshes are called second generation wavelets or tree-wavelets [34,36]. In fact, the
multi-wavelets developed by Alpert [31] have been found in a recent study [37] to be a suitable basis for
data represented on unstructured meshes. Hence, we use Alpert multi-wavelets (AMW) in this paper
to transform data represented on unstructured grids such as results from large engineering simulations
and digital image correlation data sets. More information on the mathematics of wavelets are given in

Appendix A.

2.1 Wavelet Transforms

Similarly to any basis transform, a wavelet transform can be cast as a matrix-vector product, where the
matrix and vector contain the wavelet bases and the data, respectively. Wavelet transforms can also be
performed in a matrix-free fashion. For convenience purposes, we will present our wavelet tranforms and

comparison algorithms in matrix-vector products form.



In the forward wavelet transform, f is transformed into a spectrum wy using a matrix operator [¥]

consisting of functional bases following:

wp=[V]f (1)

This transformation requires building the full wavelet operator [¥] when f is represented on an
unstructured mesh [32] which is often the case in engineering simulations. We build [¥] according to
Alpert multi-wavelets (AMW) described in [38] and outlined in our recent study [37]. The rows of the
matrix [¥] contain the different wavelet function bases for all wavelet modes. The major advantage of
AMW is that their computation does not require any special treatment of the domain boundaries or any
irregularities present in the domain and they avoid them by construction [36]. AMW are also able to
ignore missing points during the forward transform and recover their values during an inverse wavelet

transform. During the inverse transform, the data f is reconstructed using:

F=0" w (2)

2.2 Data compression and filtering through wavelet truncation

Since the data is transformed into a spectral space using the AMW, truncation of the non-dominant
AMW modes can provide data compression and filtering. After applying the operation in Eq. 1 on the
data f, we truncate w; as follows. We first sort the amplitude (absolute value) of w¢ in descending
order then truncate the latter part of the sorted entities i.e. the entities with lower magnitude. We can

decide where to truncate wy using either of the following approaches:
1. Truncating by keeping a given number M of large amplitude coefficients.
2. Truncating by keeping the coefficients that are larger than a given threshold 6 [32] (see Eq. 9).

The resulting truncated vector ¢ is of size M < N. Hence, truncation induces compression. The
compression ratio is defined as:

R= 3)

Along with ¢, the indices Z of the sorted and retained large coefficients also have to be stored to be able

to reconstruct an approximation of the original function f through the inverse wavelet transform:



We define the reconstruction error of the compressed function f as the normalized relative mean

squared error (NRMSE) given by:

If = Fll2

NRMSE; = VN [max(f) — min(f)]

(5)

Data reconstruction using Eq. 4 and the associated NRMSE have been discussed in details in [32]
where it is found from the considered examples that the error can be estimated before truncation by
a suitable selection of the truncation threshold coefficient 6 (see Eq. 9). Filtering is accomplished by
truncating the modes with higher spatial frequency. In general, these high frequency modes are the modes
with low amplitude coefficients. As a result, compression and filtering are accomplished together. Some

formal works on filtering and compressing with wavelets are [39-42].

2.3 Comparing Wavelet Spectra as a Global Error Metric

As stated previously, a quantitative error metric is required for calibration and validation purposes. AMW
enable such a comparison through their unified spectral space and wavelet mode magnitudes. Consider
two data vectors f and g that we wish to compare. f and g are field data and they are, in general,
defined on different meshes M; and My, and involves different number of points NV; and N, respectively.

We first perform a forward wavelet transform on f and g following:

wy = [V f

wy = [V]>-g (6)

where the wavelet operators [¥]; and [¥]; are computed based on the meshes M; and Ma, respectively.
The resulting vectors wy and w, contain both positive and negative entities. We truncate the amplitude
(i.e. absolute value) of these two vectors and sort their amplitudes into ¢¢z and ¢4 7 both of size
M < Ny and M < Ny. M is chosen such that the error between the error in f and g before and after
truncation is below a given tolerance (see Eq. 5). The choice of a truncation threshold that controls
the resulting error is described in [32]. Z and J are the sorting indices, they should be consistent with
the wavelet mode functions. This condition is automatically satisfied if the meshes M; and My are
the same. If not, mode switching could occur with respect to the amplitude sorting. The reason why
mode switching occurs is an interesting mathematical question that is beyond the scope of this paper.

Although a minor error can result if the mode switching is neglected, we choose to correct it by finding



the inconsistent indices wherever Z — J # 0 and suitably flipping them resulting in Z' and J'. Now ¢y
and ¢, are of the same size and exist in a unified spectral domain. We define the global error metric as
the norm of the difference between ¢y and ¢,. In general, the trends of the wavelets amplitudes span
several orders of magnitudes. Thus, a convenient approach is to compute the difference € as the difference

between the logarithms of ¢y and ¢, following:

__ INog(@y//Ny) — log(¢/v/Ny)lla
VMmax{log(¢5//Ny)

(7)

where /N; and /N, account for the difference in the number of points in the field meshes. Although
there can be several ways to normalize the global error, we choose the maximum wavelet coefficient as

the normalization factor. The procedure to compute the global error € is presented in Algorithm 1.

Algorithm 1 Steps to compute the Ly difference between two vector fields f and g (of sizes Ny and N,
respectively) in the wavelet domain.

1: Transform f and g using wavelets into w; and w, (see Eq. 1)

2: Find a truncation at M wavelet coefficients where NRMSEy and NRMSE, are both below a given
tolerance

3: Sort and truncate |wy| and |w,| into ¢z and ¢4 7

4: Correct the consistency of the indices wherever Z — J # 0.

Hlog(‘i’f/\/ Nf)_IOg(d’g/\/ Ng)ll2
vV Mmax[log(¢s/+1/Ny)]

5: Compute € =

Different logarithm bases can be used when ¢ is computed, as suitable to the given problem. Its choice
depends on the ability to pre-estimate the trends and decay rate of the wavelet spectrum. Small and large
decay rates would require smaller and larger logarithm bases, respectively. However, it could be likely
that the metric € is insensitive to the selected logarithm base since we truncate the spectrum using Eq. 9
as described below, such that only the large dominant wavelet coefficients are included in the metric.

In addition to the Lo error metric €, we can devise other error metrics. For example, we can compute
the element-wise relative error between ¢ and ¢, then obtain the resulting average. Such error metric

would be expressed as:

M ‘ o i -
BES> log(61.://N7) ~ 108(y.1//No) o

log(éy,:/+/Ny)l

In practice, we seek to develop a systematic method for error estimation that is insensitive to the
choice of M. Furthermore, we seek to minimize M in order to maximize the compression of the data
arrays representing the compared functions. In other words, we seek finding the minimal value of M

above which the corresponding error metric does not change. Thus, the error metric € seems to be a



suitable choice as we will show in Section 4.1. We also set M using the threshold developed by Salloum

et.al [32] retaining the coefficients larger than:

mean | ||wy| — mean(|wy|)
0 = ot Imax(f) ~ min(f)] { mzamwm ) - \2log(Ny) )

where we fix 6y = 0.01. When comparing two functions f and g, the computed thresholds 6; and 6,

results in My and M,;. We choose the optimal number of retained coefficients as M = max(My, M,).

3 Error Field Construction

In addition to the global error metric, AMW can be used as an interpolation method between discretiza-
tions of a domain. Once results from two sources are interpolated onto a common set of spatial points,
an error field between the two data sets can be used to understand and identify model form error. As a
result, we seek to compute the spatial error field between two field vectors f; and g, defined on different
meshes M7 and My of sizes N7 and N,. The resulting error field can be defined on two different meshes
My or Ms. At a first glance, the straightforward way to compute the error field e appears to directly

compute the difference:

e=[¥] (w —w2) (10)
wi = [V fi
wo = [\I/]Q g2 (11)

where w; and wy are the wavelet transforms of f; and g, respectively according to Eq. 11. The wavelet
matrix [¥] can be the one corresponding to either mesh M; or Ma, depending on the intended mesh
representation of the error field e. Eq. 10 holds if w; and ws are obtained with matrices [¥]; and
[¥]; containing wavelet function bases of consistent directions. While this consistency is guaranteed
in the case of regular grid data (e.g. images), it might not always hold for unstructured meshes. In
fact, the wavelet basis direction inconsistency arises in unstructured meshes due to the need of Gram-
Shmidt orthogonalization in Alpert multi-wavelets [37] which is sensitive to the underlying mesh, i.e. the
position of the mesh points. This results in orthogonal vectors of inconsistent directions. Thus, when
forward wavelet transform is performed on the same function using two different unstructured meshes,

the resulting coefficients are expected to have inconsistent signs.



3.1 Enforcing Wavelet Coefficient Signs

There are several ways to correct for the sign inconsistency ocurring in matrix operations involving
eigenvectors [43,44]. Such operations are encountered when building the Alpert wavelet operator through
the Gram-Shmidt orthogonalization [38]. In order to enforce a wavelet coefficient sign consistency (resp.
a wavelet basis direction consistency), we propose two methods: a direct method that acts directly on the
wavelet matrix and suitably updates the wavelet functions sign. The second method acts on the wavelet

coefficients and iteratively updates their sign.

3.1.1 Direct Method

Let [¥]; and [¥]s be the wavelet matrices corresponding to the My or My meshes with N; and N,
mesh points, respectively. We consider in our derivation the case where Ny > Ns. The first Ny wavelet
functions in [¥]; and [¥], are essentially the same but the sign of some of them are flipped.

In order to find the wavelet functions with sign inconsistency, we compute a scalar global measure
on the wavelet functions that indicates their sign. Our initial choice is to compute the integral of the
wavelet functions v; over the spatial domain. However such integral is equal to zero due to the vanishing

moment property of wavelets [34] where:
/ Yi(x)x®1dQ =0 (12)
Q
where O is the Alpert wavelet polynomial order. Therefore we choose to compute the sign indicator as:
Q
Numerically we approximate these integrals for [¥]; and [¥]s as:

d
S = [ []af
=1

P

(W], - Hwo (14)

where d is the number of spatial dimensions and .J indicates the first Ny rows of [¥];. We correct the

signs of the wavelet functions in [¥], following:

[P]2,s = [¥]2 ® sign(S1 ® S2) (15)

10



that is, we multiply each column in [¥]s by the sign of the product of the two vectors 81 and S2. Hence,

the projection of the function f; on the mesh My is:

f3 =[V3, w1y /Na/Ny (16)

where the factor \/N3/N; accounts for the difference in mesh size. Thus results in the following error
field on Ms:

e=f1—9 (17)
Remark: A derivation similar to Egs. 13-17 holds for the case when N7 < Ns.

3.1.2 Iterative Method

In the derivation below, the error field will be represented on Msy. Our approach is to find f5, the
representation of f on the mesh My using wavelet transforms. As such, computing the error field can
be performed in a straightforward manner as fo — go on the mesh M.

Let M, = M3 U M, be the combined mesh with [¥], its corresponding wavelet operator. In order
to combine the two meshes, they have to be aligned to the same range e.g. to the [0,a] hypercube. Let

fo € RN1+N2 he the joint vector of the unknown f» and the given f; following:

fa, = f2 (18)
f

[¥], transforms f, into a vector wy, € RN1+N2 of corresponding amplitude vector ¢, . Since all f1, fo
and f, represent the same function, their truncated wavelet transforms should be the same in amplitude,
up to a multiplication factor accounting for the sizes of each vector (see Eq. 7). Thus, ¢y, can be written

as:

by, = o (N1®+N2)/N1 (19)

where ¢y, € RM is the truncated wavelet transform of f; and the the rest of ¢, contains zeros. The

entities in ¢y, are the amplitude of those in wy,, the wavelet transform of fa. wy, and ¢y, can be

11



written as:

fa, = [\Ij]aT ’ ’li]fa
¢fa = ‘ [\I]]a : fa
br. = Wy, (20)

Our goal is to find f> which is a subset of fa We note that the last equation in 20 signifies that ¢y,
is not exactly equal to Wy, because some of the coefficients in Wy, might be negative whereas all of them
are positive in ¢¢, . Therefore, we have to find an accurate estimation of w¢,. The entities in ¢ are all
positive and their signs should be adjusted such that fa reflects an approximation of f, with minimal
error. Hence, we perform a series of inverse wavelet transform iterations on wy, to minimize the error
between fi and its approximate f1 C f'a, i.e. the latter part of fa (see Eq. 18). We loop over the M
entities in ¢y, C Wy, starting with the one of largest amplitude. We flip the sign of the element and
compute f, using Eq. 20. If || f1 — fi||2 decreases, we keep the sign change; if not, we keep the original

sign. These steps are summarized in the following algorithm:

12



Algorithm 2 Steps to compute the error field e between two functions f; and g represented on two
different meshes M; and My, respectively. The error field is calculated on My, so we must calculate fo
where fy C f, and is the function f; interpolated onto M.

1: Given 6y, f1 and go, find N = max(M;, Ms) where M;, My are the number of points in the grids M,

and My
2: Form the joint grid M, = M3 U M; and compute its corresponding wavelet operator [¥],
3: Form the joint vector f, according to Eq. 18
4: Transform f; into ¢y, € RM and form ¢ t, according to Eq. 19 as an initial approximation of wy,
5: Compute fo o= [¥]T - ¢s, where ¢y, is the initial approximation of P
6: Compute the initial error gy = ||f1 — f170||2 where f10 C fao
7. for i=1 to M do
8:  Flip the sign of wy, , € wy, , ,
9:  Compute f,; = [¥]T - wy,
10:  Compute 1; = || f1 — fl,z‘||2 where fl,i C fa,i

11: if M > Ni—1 then

12: Flip the sign of wy, , back
13:  end if
14: end for

15: fo = fo n where fo ny C fan

16: e = fo — go

Practically, both the direct and iterative methods can be used in any application according to their
characteristics. The iterative method is easy to program in any language but it requires iterations which
may make it relatively slow. The direct method is faster and consists of less steps in its algorithm. How-
ever it requires building and manipulating sparse matrices that are not straightforward in programming
languages and avalaible matrix libraries. Thus, the choice of a method depends on the availability of
computing platform. For example, if the error field estimation takes place in situ during a simulation
where the cost of any post-processing has to be minimized then the direct method is a suitable choice.
If the error field is estimated outside a simulation where the computational time is not an issue then the

iterative method is more appropriate.

3.2 Optimal Wavelet Order Selection

A challenge encountered in the two field comparison method we developed is that they both require the

wavelet order as input. Selecting the optimal order is common topic in machine learning that is usually
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treated using cross-validation [45]. However, our methods have intrinsic indicator that allow for optimal
wavelet order selection. Both methods result in the approximate projection f2 of the field f; on the
mesh My. Thus, an appropriate error inicator is the global error metric € between the fields f; and fg
represented on the meshes M7 and M, respectively. These two fields are supposed to be the same thus
7 should approach zero. It follows that the wavelet order that results with the lowest 7 is the optimal
one. Moreover, The iterative method we derived has another error indicator n which also can be used as
a metric to assess the most adequate wavelet order used in the comparison.

Practically, the either method would be run for different wavelet orders and the one that gives the

lowest 7 or € would correspond to the most accurate estimation of the error field e.

3.3 Performance Improvement

The procedures for error field estimation derived in both the direct and iterative methods contain ex-
pensive numerical operations such as wavelet transforms. These operations are essentially equivalent to
the product of a vector and a sparse matrix. The cost of such numerical operations grows with the size
of the meshes involved in the comparison. We propose a simple technique to reduce this cost, that is by
subdividing the meshes, performing the comparison on smaller subdomains, then combine the obtained
smaller error fields into the full one. Typically, large simulations are already solved across multiple pro-
cessors and the discretizations are already subdivided. If this is the case, a comparison to experimental
data could be done by finding the experimental data points within the simulation subdomains.

If there is no pre-existing subdivision of the geometry of interest, subdivision can be performed using
a variety of methods. We explain two possible approaches here. The first is simply dividing the spatial
ranges of the domain into N,, N, and N, intervals in the z, y and z directions, respectively. With
unstructured meshes, especially with domains containing holes such as the ones in Figures 1 and 5, this
subdivision might result in empty subdomains that can be easily skipped during the computations. But,
the main benefit here is that the spatial ranges of the subdomains is guaranteed to be consistent among
the two mesh fields intended to be compared. The second approach is based on any mesh subdivision
technique found in the machine learning community such as k-means clustering [46]. These methods
result in equal subdomains but they require special attention to ensure that the subdomain borders are
consistent in space between the two mesh fields intended to be compared. This condition is usually
automatically met if the two meshes are uniform over the whole domain.

The benefit of subdivision is two-fold. First it substantially reduces the overall cost of the comparison
by allowing parallelism on multi-core and multi-threaded systems that are ubiquitous in the current

computing platforms. In fact, the subdomains formed after subdivision can be considered independent of

14



each others and can be compared separately. Quantifying this cost improvement is an interesting exercise
but it is beyond the scope of this paper. The second benefit is that subdivision reduces the number of
features (e.g. oscillations in the field) in each subdomain allowing lower wavelet orders for an accurate

comparison. This in turn participates in further reducing the cost of the field comparison.

4 Results and Discussion

In this section, we will apply our AMW algorithms to three different sets of field data. The first set
of field data is three two-dimensional analytical functions calculated on a single set of arbitrary spatial
locations. We use this set of data to demonstrate the AMW transformation on an irregular grid and to
evaluate the global error metrics proposed earlier. We also demonstrate the insensitivty of the global
metrics to scale and translation for one of the functions on this grid. The second set of data includes two
arbitrary three-dimensional functions evaluate on two different irregular grids. We use these functions
an grids to verify the direct and iterative error reconstruction algorithms present in Section 3. The final
set of data contains three-dimensional strain field data on a large finite element simulation of a porous
foam where we demonstrate the use of AMW algorithms on a large, applied problem with over 4 million

nodes. Results in the this section are produced using the SWinzip library [47].

4.1 Demonstration of AMW on two-dimensional analytical functions

Here we demonstrate the results of AMW transformations on the following two-dimensional functions:

f = 48sin(67x) sin(bry) sin(4mrx)
g = 48sin(2wx) [sin(27z) — sin(27y)] — 52
h = 5sin(27x) [9sin(27z) — 7sin(2my)] — 52 (21)

The functions are evaluated on the same grid defined within an irregular geometry. Figure 1 shows the
three functions displayed on the chosen irregular geometry on a unit square centered about z =y = 0.5
along with the first 20 dominant modes of their AMW transformations.

These functions were specifically chosen to show the spectral nature of the AMW transforms and
the sensitivity of the wavelet mode amplitudes to similar and dis-similar functions. For example, the
function f has higher spatial frequency than the functions g and h and is dis-similar to these functions,

both of these differences are evident in the wavelet mode amplitudes. In the AMW transform for f, the
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Figure 1: Plots showing (top) the functions f and g and h defined in Eq. 21 plotted on an irrugular
two-dimensional geometry and the same grid, and (bottom) the first 20 modes of the wavelet transform
of the considered functions performed using Alpert multiwavelets of order 5.

16



lower frequency amplitudes are lower than those of g and h and it exhibits a slower decay on wavelet
amplitude modes. In general, the AMW for f exhibits a different spectral trend and different wavelet
mode amplitudes than the functions g and h. The functions g and h are similar functions that vary
from each other in magnitude by approximately 30% at the maximums and 10% at their minimums.
Their AMW transforms show similar trends as the wavelet mode number increases, but also shows a
clear difference in wavelet mode amplitude differentiating the two data sets. Figure 2 (left) shows the
normalizd relative mean square error (NRMSE) in each function when reconstructed using Eq. 4. The
NRMSE decreases when more terms are kept in the functions spectra i.e. when less terms are truncated.
This highlights the spectral content of the functions, since more wavelet modes are needed to reach the
same level of error for the reconstructed image down for f when compared to the errors of g and h.
Other examples on the data reconstruction from the spectral form are given in [32] where it is shown how
the data reconstruction quality deteriorates with larger truncations (smaller values of M).

Using the € and p error metrics defined in Section 2.3, we compare the functions f, g and h defined
in Eq. 21 and represented on the irregular grid where Ny = N, = N, = 33,062. Figure 2 shows that the
error between f and g is larger than the error between g and h for both metrics. For these functions,
we see that that while p decays monotonically with the number of retained coefficients M, e reached a
constant value after some value of M. The quality of quickly reaching its asymptote makes the global
error metric € makes it an ideal choice for wavelet truncation when comparing different functions with

these techniques.
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Figure 2: Plots showing (left) the normalized relative mean squared error metric (see 5) corresponding
to the functions f, g and h after inverse wavelet transform, as a function of the number of retained
coefficients M, and (right) the metrics € and p comparing the functions f, g and h as a function of the
number of retained coefficients M. The wavelet transforms are applied with Alpert multiwavelets of order
w = 5.

The final feature we will demonstrate is the insensitivity of the wavelet transform to scale, translation

and point selection. This property of the AMW is useful for comparison between two data sets that
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may not be perfectly aligned, scaled or collocated at common points. In general, this is the type of
comparison that will be encountered during model validation or calibration exercises. We illustrate this
property of the AMW transform by modifying the grid on which the functions were evaluated, but not
changing the values at each location. Specifically, the grid is scaled by a factor of 2 and translated 1.1
units in both the z and y directions. The modified grid is also down-sampled by a factor of three so
that every third point is maintained with the 1st and second points being discarded. This results in a
comparison made on grids with a different number of points and different spatial sampling rates. Both
the modified grid, G2, and the original grid, G; are shown in Figure 3 colored according the function
g evaluated on the unit square centered at 0.5. The wavelet transfrom amplitudes for f and g are also
plotted in Figure 3 and show that the first 20 amplitudes for the AMW transformations on the different
grids are similar, but not exact. The maximum error in mode amplitudes is 3.7% for mode 14 and the
average error is 1.54%. The insensitivity to scale is due to the Gram-Schmid orthogonalization, which
normalizes the mode magnitudes. The insensitivity to translation is due to the fact that the wavelet
modes are calculated using polynomials in the global coordinate system using the locations of grid point
relative to the other grid locations space. As a result, the actual location of the geometric centroid of the
shape being analyzed does not affect the modes. The insensitivity to spatial sampling results from the

multi-scale nature of the wavelet transform projecting the functions into a spectral space.
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Figure 3: On the left, the function g is displayed on the two sets of points that we use to show the
insensitivity of the AMW transform to scaling, translation and discretization. The plot on the right
shows the resulting AMW transform amplitudes.

Note that we say the transforms are insensitive and not invariant to these translations. This is due

18



to the fact that the AMW is formed in a discrete rather than continuous fashion and; therefore, when
performing the AMW on different collections of points, small errors are unavoidable. We believe these
small errors are acceptable when comparing fields from different sources on different irregular grids, as
these discretizations errors will be small relative to the actual errors in the fields. In fact, the magnitude
of this discretization error can be assessed using the inverse AMW transforms. For example, the AMW
transform discretization error introduced by the reduced grid size of grid G5 is evaluated for the function
g by performing the inverse AMW transform for G; using the ¢4o amplitudes after proper truncation and
sign correction. The function g can then be reconstructed using both ¢41 and ¢42 on grid G;. Following
the notation introduced in earlier sections, the reconstructed function g on Gy using a truncated AMW
transform ¢, is g1 and the reconstruction on G using a truncated AMW transform ¢» is g7. The error
between these reconstructions is attributable to only discretization error. The relative discretization error
field was calculated for the first 20 modes of the function g. The discretization error from the AMW
transform of g on grid G5 is plotted on G7 in Figure 4. The relative discretization error field is calculated
using
g1 — g2 ll2

€ = Tox(@1) — minG)] (22)

For the first 20 modes, the max error is 1.16 and the average error on all points is 0.152.
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Figure 4: The relative discretization error e; calculated using Eq. 22 on g7 for the first 20 AMW
transform amplitudes from go. The reconstruction g7 is the function g reconstructed on grid G using
the AMW transform amplitudes calculated from Ga, ¢4o.
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4.2 Verification using a three-dimensional analytical function

In this section, we test our field data comparison algorithm on the two functions ¢; and ¢o given in Eq. 23.
These functions are evaluated on an irregular geometry where several ellipsoidal holes are randomly drawn
inside a unit cube. The functions ¢; and gy are discretized on this geometry using two different grids M

and My defined on 68,042 and 45,176 points, respectively.

@ = 48 [sin(27z) — sin(27y) — sin(2.572)] - sin(27x) - sin(2.57z) — 52

g2 38 - [1.1sin(27z) — 0.9sin(27y) — 1.05sin(2.57z)] - sin(27x) - sin(2.572) — 52 (23)

These two functions are plotted in Figure 5 (top) on their respective grids.

We transform these two field data vectors using Alpert wavelets and plot the first 100 largest wavelet
mode amplitudes ¢ as shown in Figure 5 (bottom). The first mode amplitude is very similar for ¢; and
g2 according to Figure 5 (bottom, right), because the first mode reflects the average of the transformed
functions which is similar in our case. Moreover, we notice that the trends in the remaining modes
are similar but with different amplitudes. Similar to the previous example of the 2D functions g and
h, this is expected because ¢; and ¢o are formed by a combination of sine and cosine functions with
the same spatial frequencies (see Eq. 23) resulting in similarity in their wavelet spectrum trends. Once
again, the difference in the multipliers in their equations leads to the difference in amplitude in their
spectra. The wavelet coefficients w themselves are plotted in Figure 5 (bottom, left). The signs of these
coeflicients are inconsistent between ¢; and g2 because they resulted from two different wavelet matrices
[¥] corresponding to the two different grids. As described in Algorithm 2, we have to adjust these signs
in order to compute the error field between ¢; and gs.

Given their analytical expressions, we compute ¢; — g2 on a given grid in order to validate our wavelet
error field evaluation method. Our method is capable of evaluating the error field on either M; or M.
We plot the analytical and computed error fields on My as shown in Figure 6. These plots show very
good agreement between the analytical and computed fields with both the direct and iterative methods.
In order to quantify the agreement, we compute the NRMSE (see Eq. 5) between the two error fields. We
also vary the number of grid points in My and M3 to assess the effect of the grid quality on the error
field reconstruction. Table 1 shows that the normalized error resulting from the iterative method is lower
than the direct method. This is due to the special feature in the iterative nethod where the combined
grid is used to estimate the error field as described in Section 3.1.2, where more information is available
and results in a more accurate estimation of the error field. Table 1 also shows that the error decreases

with the number of grid points. In fact, the distance between grid points is larger in coarse grids inducing
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Figure 5: Plots showing (top) the functions ¢; and ¢y defined in Eq. 23 plotted on an irrugular three-
dimensional geometry but on two different three dimensional grids, and (bottom) the first 100 modes of

the wavelet transform of the considered functions performed using Alpert multiwavelets of order 5 and

threshold factor g = 0.001 (see Eq. 9). The black dots are used to visualize the holes.

21



q1 — g2 analytical @1 — g2 computed q1 — @2 computed
by the direct method

by the iterative method
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Figure 6: Plots showing (left) the analytical error field between ¢; and g given in Eq. 23, (center) the
error field computed using the direct method described in Section 3.1.1, and (right) the computed error
field using the iterative method given in Algorithm 2 with a threshold factor 6, = 0.01 (see Eq. 9). Shown
are error fields plotted on My where the computed field is obtained by subdividing each domain into 8
subdomains.

a larger interpolation error. This is reflected in wavelets through the loss of field information with less

wavelet coefficients in coarser grids.

Table 1: NRMSE between the analytical and computed error fields ¢; — g2 as a function of the number of
grid points in Msy. The RMS is normalized by max(¢; — g2) — min(¢q; — ¢2). Results are obtained using
Alpert multiwavelets of order 5 and threshold factor 6, = 0.001 (see Eq. 9).

Nos, 11,294 22588 33882 45,176
Nag, 17,010 34,021 51,031 68,042

Lo Normalized error (direct) 0.0587 0.0516 0.0446 0.0390
L, Normalized error (iterative) 0.0357 0.0303 0.0275 0.0234

In order to further confirm the ability of our algorithms to accurately estimate the error field between
two functions, we compare ¢q; with another function py given in Eq. 24 and defined on the mesh My but

exhibiting variations and features of higher frequencies.

p2 = 48 - [sin(57ry) — 3sin(37x) — 2sin(4.572)] - sin(4my) - sin(5.57x) - sin(3.57z) — 52 (24)

The error fields are plotted in Figure 7 which shows good agreement between the analytical error field
and the one estimated by both the direct and iterative methods.

We have validated in these results the ability of AMW to accurately estimate the difference between
two data fields. The major benefits of the AMW method over other methods are as follows. It can be
applicable to field data represented on any mesh or point-cloud, and any irregular geometry. It incurs
automatic noise filtering because it relies on the truncation of the wavelet spectrum of the data. It is also

robust to scaling and translation in geometries often encountered in experimental data fields.
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Figure 7: Plots showing (left) the analytical error field between ¢ and ps given in Egs. 23 and 24,
(center) the error field computed using the direct method described in Section 3.1.1, and (right) the
computed error field using the iterative method given in Algorithm 2 with a threshold factor 6y = 0.01
(see Eq. 9). Shown are error fields plotted on My where the computed field is obtained by subdividing
each domain into 8 subdomains.

4.3 An Application of AMW Field Comparison to Three-dimensional Finite

Element Results

We now apply our methods to a strain field obtained by simulating the compression of an elastomeric
syntactic foam block that contains voids with irregular shapes and locations [48]. The computational 3D
domain consists of 4,095,763 mesh points distributed among 1,584 processes. The simulation computes
several the three-dimensional strain fields in the foam block at several time steps where the total simu-
lation time is equal to 0.25 seconds. We focus in our study on the strain in the z direction s,, shown in
Figure 8.

We divide the mesh points into two meshes Meshl and Mesh2 consisting of 1,364,732 and 2,731,031
points, respectively. We seek to compare two discretizations of the strain fieldss,., s.,1 and s,.5 repre-
sented on Meshl and Mesh2, respectively. For the sake of validation of our method, we compute this
error field for the same time step. Theoretically, this error field should be equal to zero. However, due
to the differences in the meshes, small discretization errors will occur as discussed in Section 4.1. We
apply the adaptive iterative method described in Sections 3.1.2 and 3.2 in parallel on each of the 1,584
computing processes. Within each process, we consider 8 subdomains in order to enhance the comparison
speed as described in Section 3.3.

Figure 9 shows a slice plot of s,, on Meshl and Mesh2 along with their error fields plotted on both
meshes. We first notice that the largest errors are concentrated in the regions of large gradients. This is
expected since large amplitudes require smaller thresholds to be accurately captured [32]. We also notice

in Figure 9 that the errors are smaller on Meshl. In fact, Meshl contains less points thus it is less
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Figure 8: Plots showing the strain in the z direction s,. at the last time step t=0.25s plotted at the full
computational mesh Meshl @& Mesh2.
likely that it contains data of large gradients thus it has less regions of larger errors. For quantitative
assessment of the error field, we plot its distribution as shown in Figure 10 where we can see that the
mode of the normalized relative error is less than 1% and the 95" percentile is less than 5% for both
mesh representations.

We now compare s, fields from two different times ¢; and to and represented on Meshl and Mesh2,
that is, s..(¢1) and s..(t2) are represented on Meshl and Mesh2, respectively. The results show very
good agreement between the estimated and true error fields with 95" percentile error less than 5% for

all considered times.

5 Conclusions

In this paper we have introduced a method to compare full-field data of N dimensions using an AMW
transform on the data and making the comparison in a spectral space. We have shown that the transforms
are truly insensitive to translation, scale and discretization on arbitrary geometry. This makes them
especially well suited for comparison of field-data sets coming from two different sources such as when
comparing simulation field data to experimental field data. The primary benefits of using our methods

are:

1. The AMW transform can be performed on arbitrary geometry containing N dimensional data.
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Figure 9: Plots showing (top row) a slice plot of s,, for z = 40.7um plotted on Meshl and Mesh2,
and (bottom) the error field between these two representation plotted on both meshes. Results obtained
using the adaptive iterative method ran in parallel with 8 subdomains in each computing process with a
threshold multiplier 6, = 0.01.
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Figure 10: Plots showing the distribution of the error field computed on Meshl and Mesh2, as indicated.
Results obtained using the adaptive iterative method ran in parallel with 8 subdomains in each computing
process with a threshold multiplier 89 = 0.01.
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Figure 11: Plots showing true and estimated error fields in the strain s,, resulting in comparison at
different times and at the two Meshl and Mesh2 representations, as indicated. Results obtained using the

adaptive iterative method ran in parallel with 8 subdomains in each computing process with a threshold
multiplier 8y = 0.01.
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2. The comparison of fields in the AMW transform spectral space is insensitive to translation, scale

and discretization.

3. The AMW transform and comparison algorithms can be easily parallelized to decrease the compu-

tational cost of comparing large data sets.

4. Wavelets have a long history in signal processing and filtering. This can be used to remove noise

from data sets and compress the data sets to reduce storage burdens.

Potential short comings of this method include discretization errors, sensitivity to rotations and
computational cost. As for the discretization error, we have shown that the inherent discretization error
that is unavoidable with this method is small, bounded and quantifiable. In general, numerical error
occurs for most of the methods reviewed in the Section 1 whether it be integration errors for Zernike
moment methods or discretization errors for Tchebichef moments methods. Effectively accounting for the
rotations requires solving an inverse problem [49] that minimizes a global field error. While the sensitivity
to rotations of the AMW transform is unavoidable using the methods proposed here, the computational
cost can be reduced through the use of parallel code and sparse matrix algorithms. Overall, we believe
the benefits of the method warrant its consideration as a tool for general, quantifiable full-field data

comparison.
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A Appendix: Alpert Multi-Wavelets

Multi-wavelets and wavelets can be different types of bases where multiresolution functions can be rep-
resented by linear combinations. Wavelets encode all the scales in the data and their locations in space
and/or time. Initial wavelets were developed for data defined on regular grids such as signal, image and
video data. They are referred to as First generation wavelets (FGW) given by the approximation basis

¢(x) and wavelet basis ¥ (z) to find the details in a function [33] following:

Pilz) = Z apdj—1(2z — k) (25)
kEZ

bi(x) = bpgj_1(2z — k) (26)
keZ

where z is the spatio-temporal coordinate, j and k are the detail level and location indices, respectively,
and aj and by are coefficients intrinsic to the FGW type. Each wavelet basis 1;(x) models a finer
resolution detail as j increases. Regular grids are dyadic such that the maximum number of detail levels

Jmax 1s equal to loga(IN) where N is the number of grid points in each dimension.
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FGWs are not a suitable representation in our work because we analyze data represented on unstruc-
tured meshes [50]. Instead, non-traditional wavelet bases such as second generation wavelets [50, 51],
diffusion wavelets [52] or Alpert multi-wavelets (AMW) [36,38] are required; we use the latter type in
in our work.

These types of wavelets have similar characteristics to FGWs. While Eqgs. 25 and 26 are also used
used to compute AMWSs, there are two main differences between FGW and AMWs. First, jpax iS
computed by recursive splitting of the non-dyadic mesh into separate subdomains that form a multiscale
hierarchical tree [50]. Thus, AMWSs can accommodate non-dyadic grids such as finite intervals and
irregular geometries. Second, the AMW bases are not based on constant coefficients aj and by as in
FGWs but they are calculated according to the mesh coordinates x.

The major advantage of AMWs is they do not require any special treatment of irregular boundaries
(e.g. holes) present in the domain and they avoid them by construction [36]. The discrete Alpert wavelets

1 (x) are polynomials that are easy to compute; they are represented in a square sparse matrix [¥].

A.1 Building the Wavelets Matrix

It is unclear how to compute [¥] using Eqgs. 25 and 26 in a systematic and practical manner. Instead, we
employ a discrete methodology to build the Alpert wavelet matrix. We briefly present a technique for the
case of one-dimensional (1D) non-uniform mesh for a polynomial order w. The 1D mesh is constituted
of N points z1 < ... <x; <...<zTn.

First, the mesh is subdivided into P almost equally sized bins where the number of points n per bin
is 2w > n 2 w. This subdivision operation is not required when FGW are used in a dyadic grid.

Second, the so-called initial moment matrices [M]q 1<p<p € R™** are computed for each bin:

1z 2 ... a¥!
1 @ =3 -

(M1, = (27)
L my x% .. xz’_l

[M]:, contain the wavelet functions v (see Eq. 26), assumed to be polynomials in AMW [38]. We
also compute the matrices [U]; , € R"*™ for each bin by orthogonalizing the matrices [M] (e.g. using a
QR operation).

Third, the matrices [U]; ;, are assembled in a large matrix [V]; € RVXY as illustrated in Figure 12 (left

column). The columns of the matrix [V] correspond to the N mesh points and the N rows correspond
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to the N wavelet coefficients.

Vh V] Vs [V]a

A

/
[¥]: = V], (o = V]i- V]2 [Ws = (Vi V] [V]s /%] =19 =V - V]2 - Vs - V4]

A CECE— A

Figure 12: Representations of the sparse Alpert wavelet matrices at different detail levels j. For each
level j, the wavelet matrix [¥]; is the cumulative product of the matrices [V];<;. Shown are matrices
computed for a one-dimensional mesh containing N = 32 points where the wavelet order is w = 3 such
that the mesh is divided into P = 8 bins and exhibits jnq: = 4 detail levels. The mesh is not necessarily
dyadic.

Fourth, the finer detail levels in the mesh are accounted for. The P bins form a hierarchy of the details
where jiqp = logy(P) + 1 is the maximum number of detail levels. Matrices [V]a<j<j,... are computed

similarly to [V];1 and the full wavelet matrix as is obtained as:
v =TTV (28)
j=1

More details on these four steps are given in [36-38]. This procedure can be generalized to D-
dimensional meshes. The procedure described above to build the wavelet matrix [¥] guarantees that it

is orthonormal such that its matrix inverse is equal to its transpose, [¥]~! = [¥]T.

34



