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Abstract

In this paper we introduce a method to compare sets of full-field data using Alpert tree-wavelet

transforms. The Alpert tree-wavelet methods transform the data into a spectral space allowing the

comparison of all points in the fields by comparing spectral amplitudes. The methods are insensitive

to translation, scale and discretization and can be applied to arbitrary geometries. This makes them

especially well suited for comparison of field data sets coming from two different sources such as when

comparing simulation field data to experimental field data. We have developed both global and local

error metrics to quantify the error between two fields. We verify the methods on two-dimensional and

three-dimensional discretizations of analytical functions. We then deploy the methods to compare

full-field strain data from a simulation of elastomeric syntactic foam.
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1 Introduction

Simulation is a critical part of the development of new designs because simulations can predict the

performance of the designs in expected environments. These predictions can then be used to improve

different aspects of the design and guarantee all requirements for the design are met. The models behind

these simulations frequently require calibration and validation to ensure the accuracy and predictivity of

their results. During the calibration and validation processes, quantitative comparisons are made between

simulations results and experimental results of a system representative of the problem of interest.

Typically, these quantitative comparisons have been done using point-wise local data from local sensors

or global data from point sensors that measure a global characteristic of a system (e.g. mass, external load,

etc.). A small number of local and global quantities-of-interest are identified and measured for model

calibration or validation activities. Comparing a small number of these measurements to simulation

results is done by comparing the measured quantities to the simulations as a function of a common

dependent variable such as time. This results in a sets of data where the model error can be easily

calculated by interpolating the measured and simulated quantities of interest to common intervals on the

independent variable space.

With the development and wide-spread adoption of full-field experimental techniques (e.g. digital

image correlation, digital volume correlation, infrared cameras, etc.), a single experiment can provide a

great deal of data for validation and calibration. [1] However, several challenges exist when making a

quantitative comparison between full-field simulation results and corresponding experimental data. A

point-wise comparison of results can be difficult to make due to the fact that the simulation and exper-

imental results will most likely exist in different coordinate systems and at different points within their

respective coordinate systems. This requires translating and rotating results into a common coordinate

system, and interpolating the results onto a common set of points in space for direct comparison. Gen-

eral interpolation of three dimensional experimental data with noise is non-trivial [2], while interpolating

simulation results may not always be straight forward. For example, interpolating finite element results

that lie on element integration points can introduce errors unless specialized methods are used [3]. Even

interpolating nodal quantities from finite element simulations when using commercial software can pose

a challenge because direct access to element shape functions and mesh connectivity may not be available.

An additional challenge when working with full-field data, is that large data sets are usually produced and

extracting meaningful error metrics can be a challenge. While point-wise comparisons natively provide an

error field and a total global error metric can be calculated from this error field, further post processing

is required to determine the nature of the error such as distinguishing between high frequency, local error
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or low frequency, global error.

Methods have been proposed to deal with these issues by comparing the fields through moment-

based shape descriptors. The first to propose using shape descriptors, also referrred to as shape features,

in such a way was Wang, et. al. [4] They present the following as the primary benefits of using these

techniques for full-field data comparison: (1) shape features do not require that the data exist at the same

locations in space, (2) the large full-field data sets can be represented and compared by a small number

of shape features and (3) by using shape features the images are effectively filtered by the underlying

polynomials used for the shape descriptor calculations. Many follow-on efforts have focused on using

moment-based shape features for model validation and model calibration work flows. [5-7] These works

use either Tchebichef or Zernike polynominals as an orthogonal basis for the calculation of moment

shape descriptors suitable for field data represented on circular and rectangular subdomains on the entire

domain of interest, respectively [8]. By projecting the fields onto a common set of basis functions, a

point-wise comparison is not needed and the fields can be directly compared in the projected space.

A benefit of using Zernike polynomial basis functions is that the resulting shape descriptors from the

projection are invariant to rotation. However, a disadvantage is that numerical errors when integrating

a discrete image to calculate the Zernike moments can lead to numerical instabilities. [9, 10] Tchebichef

polynomials are discrete polynomials that avoid the numerical instabilities when being integrated on a

discrete data set. [11] Other discrete polynomials, such as the Krawtchouk, Hahn, dual Hahn and Racah

polynomials, have been used for image reconstruction and classification, but not applied to full-field data

comparison. [12-15]

Some of the works using Zernike or Tchebichef shape descriptors cite the invariance of these shape

features to scaling, rotation and translation as a benefit of their use for comparison of field data. [16-

18] It should be noted that these shape feature methods were originally developed for machine vision

applications where the unique identification of field values was not the goal. Instead, these original works

were interested in uniquely identifying shapes within an image. [19] As a result, the scaling, rotational

and translational invariance is only guaranteed for certain types of shape descriptors under specific

conditions. [20-22] When applied to general full-field data for field comparison, there is no guarantee

of invariance for scaling, rotational and translation transformations for moment-based shape descriptors

using Zernike or Tchebichef orthogonal basis functions. Therefore, using these shape features for field

data comparisons still requires the proper alignment and selection of regions within the compared data

sets. Methods to guarantee invariance for Tchebichef [23, 24] and Zernike [25] shape descriptors have been

derived but these specific methods have not been used in full-field data comparisons. These methods rely

on coordinate system transformations and normalization techniques to achieve invariance to rotation,
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translation and scale.

Regardless of which orthogonal polynomial set is used or if the shape descriptors are invariant to scale,

rotation or translation, a common disadvantage of using these shape features is that they cannot inherently

represent fields on irregular geometry. Work has been done to extend moment based shape features to

more general geometries. In [26], Zernike polynomials were mapped from circular to rectangular domains

using the Schwarz-Christoffel transform. Thus, a method was developed allowing the use of Zernike shape

descriptors on field-data represented on both circular and rectangular geometries.Wang et. al. [7] extended

Zernike polynomials to a rectangular plate with circular hole located at the plate center. They used Gram-

Shmidt orthogonalization to ensure the orthogonality of the adapted polynomials. A general set of shape

descriptors can be derived for any geometry using the adaptive geometric moment descriptor (AGMD)

technique also developed by Wang. [27]. The AGMD was recently improved using basis-updating to

address its limitation in handling large full-field images [28]. However, a new set of basis functions must

be derived for each geometry investigated. This complexity lead Lampeas [18] to use several sub-domains

with the fields identified using Zernike shape descriptors instead of the AGMD technique.

The last shortcoming of the moment-based shape features is that these techniques are restricted to

two-dimension (2D) field data. A general technique applicable to three-dimensional (3D) data, such as

digital volume correlation data, is still needed due to the massive data size and large difference in the

field data representation (mesh) between experiments and simulations [29, 30].

1.1 Proposed Method

We present a systematic method to compare N-dimensional data fields sampled at arbitrary locations

with no geometric constraints. This is accomplished by comparing the data fields in a unified spectral

space using Alpert multi-wavelet (AMW) [31] transforms of the data. Similar to the methods using

moment based-shape descriptors, the differences in the spatial discretization of the fields, the existence of

noise and issues arising due to missing points are all bypassed when using our method. However, by using

AMW for the spectral representation of the data, numerical instabilities are avoided, data can natively

be represented on irregular geometry, the proposed methods can be applied to N-dimensional data and

the comparisons are insensitive to translation and scale.

While in our previous paper [32], the work focused on data compression of scientific data using

AMW in order to reduce storage size, our current work focuses on extending the capabilities of AMW to

verification and validation, that is by comparing two field datasets represented on irregular meshes and

geometries.

We first start by a brief mathematical background on wavelets. Second, we describe the forward and
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inverse wavelet transforms along with the truncation that results in a unified spectral space for field data

comparison. Third, we present the comparison method based on the wavelet representation of the data.

Finally, we apply our methods to two 3D problems. The first is an analytical verification problem on an

irregular 3D domain. The second is a realistic test case involving an irregular 3D geometry in a solid

mechanics application. For both of these problems, we also create error fields for the comparisons and

introduce a new wavelet-based method for projecting the field data from two different irregular sets of

locations onto a common set of spatial points.

2 Background on Wavelets

Wavelets consist of multi-resolution bases suitable to represent any function in a spectral domain [33].

One major benefit of wavelets is their ability to transform different spatial sampling of the same data

into a unified space. Let f be a vector of dimensionality N representing a data field, e.g. a displacement

field in a solid mechanics finite element simulation. Here N can be the number of mesh points in the

simulation, it also can be the number of pixels in an image. f can be transformed back and forth from

the physical and spectral domains using a wavelet operator [4]. During the transforms, the spectral

representation is often truncated for compression and filtering purposes [34].

Several types of wavelet bases exist in the literature. The majority of these wavelets (Daubechies,

Meyer, Biorthogonal, etc.) can only be applied to data represented on regular grids, such as images.

Such wavelets are known as first generation wavelets [35]. Wavelets that generalize to irregular grids

such unstructured meshes are called second generation wavelets or tree-wavelets [34, 36]. In fact, the

multi-wavelets developed by Alpert [31] have been found in a recent study [37] to be a suitable basis for

data represented on unstructured meshes. Hence, we use Alpert multi-wavelets (AMW) in this paper

to transform data represented on unstructured grids such as results from large engineering simulations

and digital image correlation data sets. More information on the mathematics of wavelets are given in

Appendix A.

2.1 Wavelet Transforms

Similarly to any basis transform, a wavelet transform can be cast as a matrix-vector product, where the

matrix and vector contain the wavelet bases and the data, respectively. Wavelet transforms can also be

performed in a matrix-free fashion. For convenience purposes, we will present our wavelet tranforms and

comparison algorithms in matrix-vector products form.
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In the forward wavelet transform, f is transformed into a spectrum uyj using a matrix operator [III]

consisting of functional bases following:

w f = [T] • f (1)

This transformation requires building the full wavelet operator [T] when f is represented on an

unstructured mesh [32] which is often the case in engineering simulations. We build [T] according to

Alpert multi-wavelets (AMW) described in [38] and outlined in our recent study [37]. The rows of the

matrix [T] contain the different wavelet function bases for all wavelet modes. The major advantage of

AMW is that their computation does not require any special treatment of the domain boundaries or any

irregularities present in the domain and they avoid them by construction [36]. AMW are also able to

ignore missing points during the forward transform and recover their values during an inverse wavelet

transform. During the inverse transform, the data f is reconstructed using:

f = [T]T • c 0 f

2.2 Data compression and filtering through wavelet truncation

(2)

Since the data is transformed into a spectral space using the AMW, truncation of the non-dominant

AMW modes can provide data compression and filtering. After applying the operation in Eq. 1 on the

data f, we truncate u/f as follows. We first sort the amplitude (absolute value) of Inf in descending

order then truncate the latter part of the sorted entities i. e. the entities with lower magnitude. We can

decide where to truncate W.f. using either of the following approaches:

1. Truncating by keeping a given number M of large amplitude coefficients.

2. Truncating by keeping the coefficients that are larger than a given threshold 0 [32] (see Eq. 9).

The resulting truncated vector 0 is of size M < N. Hence, truncation induces compression. The

compression ratio is defined as:

N
R = M (3)

Along with 0, the indices 1 of the sorted and retained large coefficients also have to be stored to be able

to reconstruct an approximation of the original function f through the inverse wavelet transform:

= [W]i • 4) (4)
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We define the reconstruction error of the compressed function f as the normalized relative mean

squared error (NRMSE) given by:

NRMSEf = Ilf - f112 
VITT [max(f) — min(f)] (5)

Data reconstruction using Eq. 4 and the associated NRMSE have been discussed in details in [32]

where it is found from the considered examples that the error can be estimated before truncation by

a suitable selection of the truncation threshold coefficient Bo (see Eq. 9). Filtering is accomplished by

truncating the modes with higher spatial frequency. In general, these high frequency modes are the modes

with low amplitude coefficients. As a result, compression and filtering are accomplished together. Some

formal works on filtering and compressing with wavelets are [39-42].

2.3 Comparing Wavelet Spectra as a Global Error Metric

As stated previously, a quantitative error metric is required for calibration and validation purposes. AMW

enable such a comparison through their unified spectral space and wavelet mode magnitudes. Consider

two data vectors f and g that we wish to compare. f and g are field data and they are, in general,

defined on different meshes .M1 and M2, and involves different number of points N1 and N2, respectively.

We first perform a forward wavelet transform on f and g following:

u 1 f = Rh • f

tug = [4]2 • g (6)

where the wavelet operators [4]1 and [4]2 are computed based on the meshes .M1 and M2, respectively.

The resulting vectors wf and wg contain both positive and negative entities. We truncate the amplitude

(i.e. absolute value) of these two vectors and sort their amplitudes into chi and Og,g both of size

M < N1 and M < N2. M is chosen such that the error between the error in f and g before and after

truncation is below a given tolerance (see Eq. 5). The choice of a truncation threshold that controls

the resulting error is described in [32]. I and J are the sorting indices, they should be consistent with

the wavelet mode functions. This condition is automatically satisfied if the meshes A/11 and M2 are

the same. If not, mode switching could occur with respect to the amplitude sorting. The reason why

mode switching occurs is an interesting mathematical question that is beyond the scope of this paper.

Although a minor error can result if the mode switching is neglected, we choose to correct it by finding
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the inconsistent indices wherever I— ,7 0 and suitably flipping them resulting in and ,7' . Now Of

and Og are of the same size and exist in a unified spectral domain. We define the global error metric as

the norm of the difference between Of and Og. In general, the trends of the wavelets amplitudes span

several orders of magnitudes. Thus, a convenient approach is to compute the difference e as the difference

between the logarithms of Of and Og following:

E =
Illog(Of/VNf)— log(09/ VNg)112

07max[log(Of / VNf )]
(7)

where ,VNf and VNg account for the difference in the number of points in the field meshes. Although

there can be several ways to normalize the global error, we choose the maximum wavelet coefficient as

the normalization factor. The procedure to compute the global error c is presented in Algorithm 1.

Algorithm 1 Steps to compute the L2 difference between two vector fields f and g (of sizes Nf and N9,
respectively) in the wavelet domain.

1: Transform f and g using wavelets into tuf and wg (see Eq. 1)

2: Find a truncation at M wavelet coefficients where NRMSEf and NRMSE9 are both below a given

tolerance

3: Sort and truncate I/1/f I and Iws I into Of,I and 09,3-

4: Correct the consistency of the indices wherever I — O.

I ilog(4,/ /VNf )—log(ch / ̂)112 
5: Compute c=

VMUmax[log(Of [VNf

Different logarithm bases can be used when E is computed, as suitable to the given problem. Its choice

depends on the ability to pre-estimate the trends and decay rate of the wavelet spectrum. Small and large

decay rates would require smaller and larger logarithm bases, respectively. However, it could be likely

that the metric E is insensitive to the selected logarithm base since we truncate the spectrum using Eq. 9

as described below, such that only the large dominant wavelet coefficients are included in the metric.

In addition to the L2 error metric c, we can devise other error metrics. For example, we can compute

the element-wise relative error between Of and Og then obtain the resulting average. Such error metric

would be expressed as:

1 M llog(Of,i1VN,f) —log(09,i/
P= E i=1 llog(Of,i/VNf )1

(8)

In practice, we seek to develop a systematic method for error estimation that is insensitive to the

choice of M. Furthermore, we seek to minimize M in order to maximize the compression of the data

arrays representing the compared functions. In other words, we seek finding the minimal value of M

above which the corresponding error metric does not change. Thus, the error metric e seems to be a
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suitable choice as we will show in Section 4.1. We also set M using the threshold developed by Salloum

et.al [32] retaining the coefficients larger than:

80 
-f 0.6745 

[ 
'max 

(f mean (rtufl — meanaw.fp

meanftwf   V2log(Nf) (9)

where we fix Bo = 0.01. When comparing two functions f and g, the computed thresholds Of and Og

results in Mf and Mg. We choose the optimal number of retained coefficients as M = max(Mf, , Mg).

3 Error Field Construction

In addition to the global error metric, AMW can be used as an interpolation method between discretiza-

tions of a domain. Once results from two sources are interpolated onto a common set of spatial points,

an error field between the two data sets can be used to understand and identify model form error. As a

result, we seek to compute the spatial error field between two field vectors fi and 92 defined on different

meshes M1 and .A/12 of sizes Nj. and N2. The resulting error field can be defined on two different meshes

M1 or A/12. At a first glance, the straightforward way to compute the error field e appears to directly

compute the difference:

e = [T] • (7Di — W2) (10)

wi = [4]1 fl

w2 = [412 g2

where w1 and w2 are the wavelet transforms of fi and 92, respectively according to Eq. 11. The wavelet

matrix [T] can be the one corresponding to either mesh M1 or .A/12, depending on the intended mesh

representation of the error field e. Eq. 10 holds if w1 and w2 are obtained with matrices Rh and

[412 containing wavelet function bases of consistent directions. While this consistency is guaranteed

in the case of regular grid data (e.g. images), it might not always hold for unstructured meshes. In

fact, the wavelet basis direction inconsistency arises in unstructured meshes due to the need of Gram-

Shmidt orthogonalization in Alpert multi-wavelets [37] which is sensitive to the underlying mesh, i. e. the

position of the mesh points. This results in orthogonal vectors of inconsistent directions. Thus, when

forward wavelet transform is performed on the same function using two different unstructured meshes,

the resulting coefficients are expected to have inconsistent signs.
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3.1 Enforcing Wavelet Coefficient Signs

There are several ways to correct for the sign inconsistency ocurring in matrix operations involving

eigenvectors [43,44]. Such operations are encountered when building the Alpert wavelet operator through

the Gram-Shmidt orthogonalization [38]. In order to enforce a wavelet coefficient sign consistency (resp.
a wavelet basis direction consistency), we propose two methods: a direct method that acts directly on the

wavelet matrix and suitably updates the wavelet functions sign. The second method acts on the wavelet

coefficients and iteratively updates their sign.

3.1.1 Direct Method

Let Rh and [4]2 be the wavelet matrices corresponding to the M1 or M2 meshes with Nj. and N2

mesh points, respectively. We consider in our derivation the case where N1 > N2. The first N2 wavelet

functions in [T]i and [T]2 are essentially the same but the sign of some of them are flipped.

In order to find the wavelet functions with sign inconsistency, we compute a scalar global measure

on the wavelet functions that indicates their sign. Our initial choice is to compute the integral of the

wavelet functions 02 over the spatial domain. However such integral is equal to zero due to the vanishing

moment property of wavelets [34] where:

IPi(x)x(9-1dS2 = 0
sz

(12)

where O is the Alpert wavelet polynomial order. Therefore we choose to compute the sign indicator as:

Si = f 1Pi(x)x° dit (13)

Numerically we approximate these integrals for [kI]i and [4]2 as:

Si = [W]1,J • H xa

S2 = [T]2 H xF
i=1

(14)

where d is the number of spatial dimensions and J indicates the first N2 rows of Rh. We correct the

signs of the wavelet functions in [W]2 following:

[T]2,. = [iP]2 sign(si 82) (15)
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that is, we multiply each column in [4]2 by the sign of the product of the two vectors Si and 82. Hence,

the projection of the function fi on the mesh M2 is:

. wi, -VN2/NiJ2 — L 2,8 (16)

where the factor VN2/1Vi accounts for the difference in mesh size. Thus results in the following error

field on M2:

e = — 92

Remark: A derivation similar to Eqs. 13-17 holds for the case when Ni < N2.

3.1.2 Iterative Met ho d

(17)

In the derivation below, the error field will be represented on M2. Our approach is to find f2, the

representation of f on the mesh M2 using wavelet transforms. As such, computing the error field can

be performed in a straightforward manner as f2 — g2 on the mesh .A42.

Let Ma = M2 U Mi be the combined mesh with [kI]a its corresponding wavelet operator. In order

to combine the two meshes, they have to be aligned to the same range e.g. to the [0,a] hypercube. Let

fa E 11:N1+N2 be the joint vector of the unknown f2 and the given fi following:

/f2\

VI/

[Il]a transforms fa into a vector tufa

= (18)

N1+N2 of corresponding amplitude vector (1)fa . Since all fl, f2
and fa represent the same function, their truncated wavelet transforms should be the same in amplitude,

up to a multiplication factor accounting for the sizes of each vector (see Eq. 7). Thus, 0f,, can be written

as:

Ofa =
(Of,  + N2)/N1)

(19)

where Of, e RM is the truncated wavelet transform of fi and the the rest of Of°, contains zeros. The

entities in cPira are the amplitude of those in tbfa, the wavelet transform of fa. tbfa and cPfa can be
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written as:

fa = [Tia • 'ay..

of. = l[wia • LI

of. ,-, Ii7f. (20)

Our goal is to find f2 which is a subset of fa. We note that the last equation in 20 signifies that Of“

is not exactly equal to tbf“ because some of the coefficients in fvfa might be negative whereas all of them

are positive in Of“. Therefore, we have to find an accurate estimation of tiv“. The entities in Of are all

positive and their signs should be adjusted such that fa reflects an approximation of fa with minimal

error. Hence, we perform a series of inverse wavelet transform iterations on ti)f,,, to minimize the error

between fi and its approximate fl C fa, i.e. the latter part of fa (see Eq. 18). We loop over the M

entities in Oh C lbfa starting with the one of largest amplitude. We flip the sign of the element and

compute fa using Eq. 20. If llfi — fillz decreases, we keep the sign change; if not, we keep the original

sign. These steps are summarized in the following algorithm:
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Algorithm 2 Steps to compute the error field e between two functions fi and 92 represented on two
different meshes .M1 and M2, respectively. The error field is calculated on M2, so we must calculate f2
where f2 C fa and is the function fi interpolated onto M2.

1: Given 00, fi and g2, find N = max(Mi, M2) where M1, M2 are the number of points in the grids M1

and M2

2: Form the joint grid Ma = M2 U M1 and compute its corresponding wavelet operator [W]ct

3: Form the joint vector fa according to Eq. 18

4: Transform fi into Oh e Rm and form Oh, according to Eq. 19 as an initial approximation of thfa

5: Compute fa,o = [T]a • Oh, where Of. is the initial approximation of

,6: Compute the initial error 110 = f1,0112 where fi o C fao

7: for i=1 to M do

8: Flip the sign of tvf _, E 11) fa 1

9: Compute fa,i = [41]!;', • f.afo,,_i

10: Compute ni = I I fl — fl,z I I2 where C fa,i

11: if Th > ni_i then

12: Flip the sign of W.& 1 back

13: end if

14: end for

15: f2 = f2,AT where f'2,N C fa,N

16: e = f2 — 92

Practically, both the direct and iterative methods can be used in any application according to their

characteristics. The iterative method is easy to program in any language but it requires iterations which

may make it relatively slow. The direct method is faster and consists of less steps in its algorithm. How-

ever it requires building and manipulating sparse matrices that are not straightforward in programming

languages and avalaible matrix libraries. Thus, the choice of a method depends on the availability of

computing platform. For example, if the error field estimation takes place in situ during a simulation

where the cost of any post-processing has to be minimized then the direct method is a suitable choice.

If the error field is estimated outside a simulation where the computational time is not an issue then the

iterative method is more appropriate.

3.2 Optimal Wavelet Order Selection

A challenge encountered in the two field comparison method we developed is that they both require the

wavelet order as input. Selecting the optimal order is common topic in machine learning that is usually
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treated using cross-validation [45]. However, our methods have intrinsic indicator that allow for optimal

wavelet order selection. Both methods result in the approximate projection 12 of the field fi on the

mesh M2. Thus, an appropriate error inicator is the global error metric E between the fields fi and 12

represented on the meshes M1 and M2, respectively. These two fields are supposed to be the same thus

n should approach zero. It follows that the wavelet order that results with the lowest ri is the optimal

one. Moreover, The iterative method we derived has another error indicator 77 which also can be used as

a metric to assess the most adequate wavelet order used in the comparison.

Practically, the either method would be run for different wavelet orders and the one that gives the

lowest ii or E would correspond to the most accurate estimation of the error field e.

3.3 Performance Improvement

The procedures for error field estimation derived in both the direct and iterative methods contain ex-

pensive numerical operations such as wavelet transforms. These operations are essentially equivalent to

the product of a vector and a sparse matrix. The cost of such numerical operations grows with the size

of the meshes involved in the comparison. We propose a simple technique to reduce this cost, that is by

subdividing the meshes, performing the comparison on smaller subdomains, then combine the obtained

smaller error fields into the full one. Typically, large simulations are already solved across multiple pro-

cessors and the discretizations are already subdivided. If this is the case, a comparison to experimental

data could be done by finding the experimental data points within the simulation subdomains.

If there is no pre-existing subdivision of the geometry of interest, subdivision can be performed using

a variety of methods. We explain two possible approaches here. The first is simply dividing the spatial

ranges of the domain into Nx, Ny and Nz intervals in the x, y and z directions, respectively. With

unstructured meshes, especially with domains containing holes such as the ones in Figures 1 and 5, this

subdivision might result in empty subdomains that can be easily skipped during the computations. But,

the main benefit here is that the spatial ranges of the subdomains is guaranteed to be consistent among

the two mesh fields intended to be compared. The second approach is based on any mesh subdivision

technique found in the machine learning community such as k-means clustering [46]. These methods

result in equal subdomains but they require special attention to ensure that the subdomain borders are

consistent in space between the two mesh fields intended to be compared. This condition is usually

automatically met if the two meshes are uniform over the whole domain.

The benefit of subdivision is two-fold. First it substantially reduces the overall cost of the comparison

by allowing parallelism on multi-core and multi-threaded systems that are ubiquitous in the current

computing platforms. In fact, the subdomains formed after subdivision can be considered independent of

14



each others and can be compared separately. Quantifying this cost improvement is an interesting exercise

but it is beyond the scope of this paper. The second benefit is that subdivision reduces the number of

features (e.g. oscillations in the field) in each subdomain allowing lower wavelet orders for an accurate

comparison. This in turn participates in further reducing the cost of the field comparison.

4 Results and Discussion

In this section, we will apply our AMW algorithms to three different sets of field data. The first set

of field data is three two-dimensional analytical functions calculated on a single set of arbitrary spatial

locations. We use this set of data to demonstrate the AMW transformation on an irregular grid and to

evaluate the global error metrics proposed earlier. We also demonstrate the insensitivty of the global

metrics to scale and translation for one of the functions on this grid. The second set of data includes two

arbitrary three-dimensional functions evaluate on two different irregular grids. We use these functions

an grids to verify the direct and iterative error reconstruction algorithms present in Section 3. The final

set of data contains three-dimensional strain field data on a large finite element simulation of a porous

foam where we demonstrate the use of AMW algorithms on a large, applied problem with over 4 million

nodes. Results in the this section are produced using the SWinzip library [47].

4.1 Demonstration of AMW on two-dimensional analytical functions

Here we demonstrate the results of AMW transformations on the following two-dimensional functions:

f =

9 =

h =

48 sin(67x) sin(5iry) sin(47x)

48 sin(27x) [sin(27x) — sin(27y)] — 52

5 sin(27x) [9 sin(27x) — 7 sin(27y)] — 52 (21)

The functions are evaluated on the same grid defined within an irregular geometry. Figure 1 shows the

three functions displayed on the chosen irregular geometry on a unit square centered about x = y = 0.5

along with the first 20 dominant modes of their AMW transformations.

These functions were specifically chosen to show the spectral nature of the AMW transforms and

the sensitivity of the wavelet mode amplitudes to similar and dis-similar functions. For example, the

function f has higher spatial frequency than the functions g and h and is dis-similar to these functions,

both of these differences are evident in the wavelet mode amplitudes. In the AMW transform for f, the
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Figure 1: Plots showing (top) the functions f and g and h defined in Eq. 21 plotted on an irrugular
two-dimensional geometry and the same grid, and (bottom) the first 20 modes of the wavelet transform
of the considered functions performed using Alpert multiwavelets of order 5.
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lower frequency amplitudes are lower than those of g and h and it exhibits a slower decay on wavelet

amplitude modes. In general, the AMW for f exhibits a different spectral trend and different wavelet

mode amplitudes than the functions g and h. The functions g and h are similar functions that vary

from each other in magnitude by approximately 30% at the maximums and 10% at their minimums.

Their AMW transforms show similar trends as the wavelet mode number increases, but also shows a

clear difference in wavelet mode amplitude differentiating the two data sets. Figure 2 (left) shows the

normalizd relative mean square error (NRMSE) in each function when reconstructed using Eq. 4. The

NRMSE decreases when more terms are kept in the functions spectra i. e. when less terms are truncated.

This highlights the spectral content of the functions, since more wavelet modes are needed to reach the

same level of error for the reconstructed image down for f when compared to the errors of g and h.

Other examples on the data reconstruction from the spectral form are given in [32] where it is shown how

the data reconstruction quality deteriorates with larger truncations (smaller values of M).

Using the e and p error metrics defined in Section 2.3, we compare the functions f, g and h defined

in Eq. 21 and represented on the irregular grid where Nf = Ng = Nh = 33, 062. Figure 2 shows that the

error between f and g is larger than the error between g and h for both metrics. For these functions,

we see that that while p decays monotonically with the number of retained coefficients M, e reached a

constant value after some value of M. The quality of quickly reaching its asymptote makes the global

error metric € makes it an ideal choice for wavelet truncation when comparing different functions with

these techniques.
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—f---g h

2
M

3

—Difference between g and f - - -Difference between g and h

102 102
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io-2 io'

4 
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2 3 4 
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0 2 3 4
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Figure 2: Plots showing (left) the normalized relative mean squared error metric (see 5) corresponding
to the functions f, g and h after inverse wavelet transform, as a function of the number of retained
coefficients M, and (right) the metrics e and p comparing the functions f, g and h as a function of the
number of retained coefficients M. The wavelet transforms are applied with Alpert multiwavelets of order
w = 5.

The final feature we will demonstrate is the insensitivity of the wavelet transform to scale, translation

and point selection. This property of the AMW is useful for comparison between two data sets that

17



may not be perfectly aligned, scaled or collocated at common points. In general, this is the type of

comparison that will be encountered during model validation or calibration exercises. We illustrate this

property of the AMW transform by modifying the grid on which the functions were evaluated, but not

changing the values at each location. Specifically, the grid is scaled by a factor of 2 and translated 1.1

units in both the x and y directions. The modified grid is also down-sampled by a factor of three so

that every third point is maintained with the lst and second points being discarded. This results in a

comparison made on grids with a different number of points and different spatial sampling rates. Both

the modified grid, G2, and the original grid, G1 are shown in Figure 3 colored according the function

g evaluated on the unit square centered at 0.5. The wavelet transfrom amplitudes for f and g are also

plotted in Figure 3 and show that the first 20 amplitudes for the AMW transformations on the different

grids are similar, but not exact. The maximum error in mode amplitudes is 3.7% for mode 14 and the

average error is 1.54%. The insensitivity to scale is due to the Gram-Schmid orthogonalization, which

normalizes the mode magnitudes. The insensitivity to translation is due to the fact that the wavelet

modes are calculated using polynomials in the global coordinate system using the locations of grid point

relative to the other grid locations space. As a result, the actual location of the geometric centroid of the

shape being analyzed does not affect the modes. The insensitivity to spatial sampling results from the

multi-scale nature of the wavelet transform projecting the functions into a spectral space.

2.5

1.5

0.5

0.5 1 1 .5 2 2.5 3
x

5 10 15
Wavelet mode

20

Figure 3: On the left, the function g is displayed on the two sets of points that we use to show the
insensitivity of the AMW transform to scaling, translation and discretization. The plot on the right
shows the resulting AMW transform amplitudes.

Note that we say the transforms are insensitive and not invariant to these translations. This is due
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to the fact that the AMW is formed in a discrete rather than continuous fashion and; therefore, when

performing the AMW on different collections of points, small errors are unavoidable. We believe these

small errors are acceptable when comparing fields from different sources on different irregular grids, as

these discretizations errors will be small relative to the actual errors in the fields. In fact, the magnitude

of this discretization error can be assessed using the inverse AMW transforms. For example, the AMW

transform discretization error introduced by the reduced grid size of grid G2 is evaluated for the function

g by performing the inverse AMW transform for G1 using the 092 amplitudes after proper truncation and

sign correction. The function g can then be reconstructed using both 091 and 092 on grid G1. Following

the notation introduced in earlier sections, the reconstructed function g on G1 using a truncated AMW

transform 091 is gi and the reconstruction on G2 using a truncated AMW transform 0.92 is g?. The error

between these reconstructions is attributable to only discretization error. The relative discretization error

field was calculated for the first 20 modes of the function g. The discretization error from the AMW

transform of g on grid G2 is plotted on G1 in Figure 4. The relative discretization error field is calculated

using

11th —012 
ed [max(gi) — min(gi)]

For the first 20 modes, the max error is 1.16 and the average error on all points is 0.152.
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Figure 4: The relative discretization error ed calculated using Eq. 22 on gi for the first 20 AMW
transform amplitudes from g2. The reconstruction gi is the function g reconstructed on grid G1 using
the AMW transform amplitudes calculated from G2, 092.

19



4.2 Verification using a three-dimensional analytical function

In this section, we test our field data comparison algorithm on the two functions ql and q2 given in Eq. 23.

These functions are evaluated on an irregular geometry where several ellipsoidal holes are randomly drawn

inside a unit cube. The functions qi and q2 are discretized on this geometry using two different grids A/11

and M2 defined on 68,042 and 45,176 points, respectively.

qi = 48 • [sin(27x) — sin(27y) — sin(2.57z)] • sin(27x) • sin(2.57z) — 52

q2 = 38 • [1.1 sin(27x) — 0.9 sin(27y) — 1.05 sin(2.57z)] • sin(27rx) • sin(2.57z) — 52 (23)

These two functions are plotted in Figure 5 (top) on their respective grids.

We transform these two field data vectors using Alpert wavelets and plot the first 100 largest wavelet

mode amplitudes 0 as shown in Figure 5 (bottom). The first mode amplitude is very similar for qi and

q2 according to Figure 5 (bottom, right), because the first mode reflects the average of the transformed

functions which is similar in our case. Moreover, we notice that the trends in the remaining modes

are similar but with different amplitudes. Similar to the previous example of the 2D functions g and

h, this is expected because qi and q2 are formed by a combination of sine and cosine functions with

the same spatial frequencies (see Eq. 23) resulting in similarity in their wavelet spectrum trends. Once

again, the difference in the multipliers in their equations leads to the difference in amplitude in their

spectra. The wavelet coefficients w themselves are plotted in Figure 5 (bottom, left). The signs of these

coefficients are inconsistent between qi and q2 because they resulted from two different wavelet matrices

[4] corresponding to the two different grids. As described in Algorithm 2, we have to adjust these signs

in order to compute the error field between q1 and q2.

Given their analytical expressions, we compute q1 — q2 on a given grid in order to validate our wavelet

error field evaluation method. Our method is capable of evaluating the error field on either .M1 or M2.

We plot the analytical and computed error fields on M2 as shown in Figure 6. These plots show very

good agreement between the analytical and computed fields with both the direct and iterative methods.

In order to quantify the agreement, we compute the NRMSE (see Eq. 5) between the two error fields. We

also vary the number of grid points in M1 and M2 to assess the effect of the grid quality on the error

field reconstruction. Table 1 shows that the normalized error resulting from the iterative method is lower

than the direct method. This is due to the special feature in the iterative nethod where the combined

grid is used to estimate the error field as described in Section 3.1.2, where more information is available

and results in a more accurate estimation of the error field. Table 1 also shows that the error decreases

with the number of grid points. In fact, the distance between grid points is larger in coarse grids inducing
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Figure 5: Plots showing (top) the functions qi and q2 defined in Eq. 23 plotted on an irrugular three-
dimensional geometry but on two different three dimensional grids, and (bottom) the first 100 modes of
the wavelet transform of the considered functions performed using Alpert multiwavelets of order 5 and
threshold factor 00 = 0.001 (see Eq. 9). The black dots are used to visualize the holes.
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Figure 6: Plots showing (left) the analytical error field between qi and q2 given in Eq. 23, (center) the
error field computed using the direct method described in Section 3.1.1, and (right) the computed error
field using the iterative method given in Algorithm 2 with a threshold factor 00 = 0.01 (see Eq. 9). Shown
are error fields plotted on M2 where the computed field is obtained by subdividing each domain into 8
sub domains.

a larger interpolation error. This is reflected in wavelets through the loss of field information with less

wavelet coefficients in coarser grids.

Table 1: NRMSE between the analytical and computed error fields qi — q2 as a function of the number of
grid points in M2. The RMS is normalized by max(qi — q2) — min(ql — q2). Results are obtained using
Alpert multiwavelets of order 5 and threshold factor 00 = 0.001 (see Eq. 9).

NA,12 11,294 22,588 33,882 45,176
N.A41 17,010 34,021 51,031 68,042

L2 Normalized error (direct) 0.0587 0.0516 0.0446 0.0390
L2 Normalized error (iterative) 0.0357 0.0303 0.0275 0.0234

In order to further confirm the ability of our algorithms to accurately estimate the error field between

two functions, we compare qi with another function p2 given in Eq. 24 and defined on the mesh M2 but

exhibiting variations and features of higher frequencies.

292 = 48 • [sin(57y) — 3 sin(37x) — 2 sin(4.57z)] • sin(47y) • sin(5.57x) • sin(3.57z) — 52 (24)

The error fields are plotted in Figure 7 which shows good agreement between the analytical error field

and the one estimated by both the direct and iterative methods.

We have validated in these results the ability of AMW to accurately estimate the difference between

two data fields. The major benefits of the AMW method over other methods are as follows. It can be

applicable to field data represented on any mesh or point-cloud, and any irregular geometry. It incurs

automatic noise filtering because it relies on the truncation of the wavelet spectrum of the data. It is also

robust to scaling and translation in geometries often encountered in experimental data fields.
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Figure 7: Plots showing (left) the analytical error field between ql and p2 given in Eqs. 23 and 24,
(center) the error field computed using the direct method described in Section 3.1.1, and (right) the
computed error field using the iterative method given in Algorithm 2 with a threshold factor Oo = 0.01
(see Eq. 9). Shown are error fields plotted on M2 where the computed field is obtained by subdividing
each domain into 8 subdomains.

4.3 An Application of AMW Field Comparison to Three-dimensional Finite

Element Results

We now apply our methods to a strain field obtained by simulating the compression of an elastomeric

syntactic foam block that contains voids with irregular shapes and locations [48]. The computational 3D

domain consists of 4,095,763 mesh points distributed among 1,584 processes. The simulation computes

several the three-dimensional strain fields in the foam block at several time steps where the total simu-

lation time is equal to 0.25 seconds. We focus in our study on the strain in the z direction szz shown in

Figure 8.

We divide the mesh points into two meshes Meshl and Mesh2 consisting of 1,364,732 and 2,731,031

points, respectively. We seek to compare two discretizations of the strain fieldsszz, szzl and szz2 repre-

sented on Meshl and Mesh2, respectively. For the sake of validation of our method, we compute this

error field for the same time step. Theoretically, this error field should be equal to zero. However, due

to the differences in the meshes, small discretization errors will occur as discussed in Section 4.1. We

apply the adaptive iterative method described in Sections 3.1.2 and 3.2 in parallel on each of the 1,584

computing processes. Within each process, we consider 8 subdomains in order to enhance the comparison

speed as described in Section 3.3.

Figure 9 shows a slice plot of szz on Meshl and Mesh2 along with their error fields plotted on both

meshes. We first notice that the largest errors are concentrated in the regions of large gradients. This is

expected since large amplitudes require smaller thresholds to be accurately captured [32]. We also notice

in Figure 9 that the errors are smaller on Meshl. In fact, Meshl contains less points thus it is less
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Figure 8: Plots showing the strain in the z direction szz at the last time step t=0.25s plotted at the full
computational mesh Meshl ED Mesh2.

likely that it contains data of large gradients thus it has less regions of larger errors. For quantitative

assessment of the error field, we plot its distribution as shown in Figure 10 where we can see that the

mode of the normalized relative error is less than 1% and the 95th percentile is less than 5% for both

mesh representations.

We now compare s„ fields from two different times t1 and t2 and represented on Meshl and Mesh2,

that is, s„(ti) and szz(t2) are represented on Meshl and Mesh2, respectively. The results show very

good agreement between the estimated and true error fields with 95th percentile error less than 5% for

all considered times.

5 Conclusions

In this paper we have introduced a method to compare full-field data of N dimensions using an AMW

transform on the data and making the comparison in a spectral space. We have shown that the transforms

are truly insensitive to translation, scale and discretization on arbitrary geometry. This makes them

especially well suited for comparison of field-data sets coming from two different sources such as when

comparing simulation field data to experimental field data. The primary benefits of using our methods

are:

1. The AMW transform can be performed on arbitrary geometry containing N dimensional data.
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2. The comparison of fields in the AMW transform spectral space is insensitive to translation, scale

and discretization.

3. The AMW transform and comparison algorithms can be easily parallelized to decrease the compu-

tational cost of comparing large data sets.

4. Wavelets have a long history in signal processing and filtering. This can be used to remove noise

from data sets and compress the data sets to reduce storage burdens.

Potential short comings of this method include discretization errors, sensitivity to rotations and

computational cost. As for the discretization error, we have shown that the inherent discretization error

that is unavoidable with this method is small, bounded and quantifiable. In general, numerical error

occurs for most of the methods reviewed in the Section 1 whether it be integration errors for Zernike

moment methods or discretization errors for Tchebichef moments methods. Effectively accounting for the

rotations requires solving an inverse problem [49] that minimizes a global field error. While the sensitivity

to rotations of the AMW transform is unavoidable using the methods proposed here, the computational

cost can be reduced through the use of parallel code and sparse matrix algorithms. Overall, we believe

the benefits of the method warrant its consideration as a tool for general, quantifiable full-field data

comparison.
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A Appendix: Alpert Multi-Wavelets

Multi-wavelets and wavelets can be different types of bases where multiresolution functions can be rep-

resented by linear combinations. Wavelets encode all the scales in the data and their locations in space

and/or time. Initial wavelets were developed for data defined on regular grids such as signal, image and

video data. They are referred to as First generation wavelets (FGW) given by the approximation basis

0(x) and wavelet basis 0(x) to find the details in a function [33] following:

k0j-1(2x — k) (25)
kEZ

oi(x) = E bkoi_, (2x — k) (26)
kEZ

where x is the spatio-temporal coordinate, j and k are the detail level and location indices, respectively,

and ak and bk are coefficients intrinsic to the FGW type. Each wavelet basis 03 (x) models a finer

resolution detail as j increases. Regular grids are dyadic such that the maximum number of detail levels

jmax is equal to log2 (N) where N is the number of grid points in each dimension.
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FGWs are not a suitable representation in our work because we analyze data represented on unstruc-

tured meshes [50]. Instead, non-traditional wavelet bases such as second generation wavelets [50, 51],

diffusion wavelets [52] or Alpert multi-wavelets (AMW) [36, 38] are required; we use the latter type in

in our work.

These types of wavelets have similar characteristics to FGWs. While Eqs. 25 and 26 are also used

used to compute AMWs, there are two main differences between FGW and AMWs. First, jmax is

computed by recursive splitting of the non-dyadic mesh into separate subdomains that form a multiscale

hierarchical tree [50]. Thus, AMWs can accommodate non-dyadic grids such as finite intervals and

irregular geometries. Second, the AMW bases are not based on constant coefficients ak and bk as in

FGWs but they are calculated according to the mesh coordinates xk.

The major advantage of AMWs is they do not require any special treatment of irregular boundaries

(e.g. holes) present in the domain and they avoid them by construction [36]. The discrete Alpert wavelets

(xk) are polynomials that are easy to compute; they are represented in a square sparse matrix NJ].

A.1 Building the Wavelets Matrix

It is unclear how to compute [41] using Eqs. 25 and 26 in a systematic and practical manner. Instead, we

employ a discrete methodology to build the Alpert wavelet matrix. We briefly present a technique for the

case of one-dimensional (1D) non-uniform mesh for a polynomial order w. The 1D mesh is constituted

of N points xl < < x2 < . < xN.

First, the mesh is subdivided into P almost equally sized bins where the number of points n per bin

is 2w > n > w. This subdivision operation is not required when FGW are used in a dyadic grid.

Second, the so-called initial moment matrices [111]1,1<p<P E

[M]1,p =

nxw are computed for each bin:

1 
2

x1 X1 xr-1

-2fr 
„„2 
.G2 X2w-1

1 xn Xn2
w-1

Xn

(27)

[M]1,7, contain the wavelet functions (see Eq. 26), assumed to be polynomials in AMW [38]. We

also compute the matrices [(.1]1,7, E Rn" for each bin by orthogonalizing the matrices [M] (e.g. using a

QR operation).

Third, the matrices [(1]1,p are assembled in a large matrix [V]l E RN' N as illustrated in Figure 12 (left

column). The columns of the matrix [V] correspond to the N mesh points and the N rows correspond
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[V]2

to the N wavelet coefficients.

[V]i

[T]i = [V],

[V]3 [V]4

= [414 = [V]i • [V]2 • [V]3 • [V]4

Figure 12: Representations of the sparse Alpert wavelet matrices at different detail levels j. For each
level j, the wavelet matrix [W]i is the cumulative product of the matrices [V]i<j. Shown are matrices
computed for a one-dimensional mesh containing N = 32 points where the wavelet order is w = 3 such
that the mesh is divided into P = 8 bins and exhibits imax = 4 detail levels. The mesh is not necessarily
dyadic.

Fourth, the finer detail levels in the mesh are accounted for. The P bins form a hierarchy of the details

where jmas = log2(P) + 1 is the maximum number of detail levels. Matrices [V]2<3<3__ are computed

similarly to [V]1 and the full wavelet matrix as is obtained as:

imax

[IP] = Evli (28)

More details on these four steps are given in [36-38]. This procedure can be generalized to D-

dimensional meshes. The procedure described above to build the wavelet matrix [T] guarantees that it

is orthonormal such that its matrix inverse is equal to its transpose, [T]-1 = [IF]T.
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