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*Formally: If a step takes O(f(x)) time, then given input of size x, the step requires at most (c*f(x) + m) 
computations for some constants c, m.  

Assume the Graph has n nodes and m edges.
If a step takes O(f(x)) time, it takes about* f(x) many steps to compute. 
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Step 2: For each wedge, check to see if it’s closed to make a triangle. There are 
maximum m2 possible wedges, and each check takes O(ln m) look-up time.

O(m2(ln m))
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But real social networks can have hundreds of millions of edges!
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We can count triangles quickly by making two improvements: 

• Don’t Count All Triangles:  Uniformly randomly sample 
some wedges from the graph, check them for closure, and 
use this to create an estimate of the total triangle count. 

• Parallelize the Algorithm: Use the Hadoop Map-Reduce 
framework to work on the adjacency list in parallel.

Parallel Triangle Sampling
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We can get a close estimate of the triangle count on large graphs by uniformly 
randomly sampling wedges: 

• Each wedge is a random variable which equals 1 if the wedge is closed, and 
0 if open.  The variable’s expected value is equal to the graph’s 
triangle/wedge ratio.  This random variable is identical for all wedges.

• Checking if a wedge is closed is like sampling the random variable. The 
average of many samples converges on the true triangle/wedge ratio.  

• Just 38,000 wedge samples gives 0.01 accuracy with 99.9% confidence, 
much better than actually checking all O(m2) wedges, for m ≈108

• We can also compute the true total wedge count easily, from node degrees. 

• With an estimate of the triangle/wedge ratio, and true total wedge count, we 
can accurately estimate the total number of triangles.  

C. Seshadhri, A. Pinar and T. G. Kolda. Fast Triangle Counting through Wedge Sampling, arXiv:1202.5230, February 2012.

Parallel Triangle Sampling: Sample
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Rather than read through the (possibly enormous) adjacency list sequentially 
to find the node degrees, wedges, and check for wedge closure, we can use 
the Hadoop Map-Reduce framework to operate in parallel.  
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Pass 1: 
Get Node
Degrees
and Total
Wedge Count
(as described before)

Parallel Triangle Sampling: Parallel
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Pass 2: 
If we know the degree of a node, 
and the total number of wedges, 
then we can compute how many 
wedges we should sample from 
that node.  This can be done 
completely in parallel (map step).

Parallel Triangle Sampling: Parallel
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Pass 2: 
If we know we need w wedges from 
node x, and we know x’s edges, we 
can sample the wedges for x.

Parallel Triangle Sampling: Parallel
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Pass 3:
We can check in parallel whether wedge closure edges exist in the graph, by grouping 
together (real) edges from the adjacency list with (hypothetical) wedge-closure edges. 

Parallel Triangle Sampling: Parallel
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• Just Three Passes! Instead of sequentially reading the adjacency list 
many times, we can accomplish our goals by just acting on the 
adjacency list in parallel three times, with a highly optimized distributed 
sort step between each pass. 

• Generalizable! Remember at the beginning, nodes with lots of friends 
were also likely to have lots of open wedges?  We have also 
generalized this technique to separate wedges by the degree of their 
central node, to help us understand that effect better.  We can even 
work on directed graphs (where friendships may not be mutual). 

• Additional Optimizations: Some optimizations have been omitted here 
for simplicity. In the full implementation, secondary sort is used to 
randomly permute edges in Pass 2, enabling the uniform random 
sample at the reducer to read minimal data into memory. 

Parallel Triangle Sampling: 
Contributions
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Note to Review and Approval Official: 
Time allowing, this slide will contain a chart comparing the 
maximum graph sizes which can be handled by the parallel 
algorithm described, as compared to the maximum limits of 
the previously existing non-parallel and non-sampled 
versions.  The graphs will be either publically available online 
or synthetically generated.  

Parallel Triangle Sampling: Results
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• Triangle counts offer a meaningful characterization of the cohesiveness of 
social networks, but  are too time-consuming on large, real social networks. 

• Sampling wedges greatly reduces computations while preserving accuracy, but 
still involves searching the adjacency list repeatedly to find node degrees and 
check for wedge closures.  A large graph => a long list => slow searches. 

• Wedge sampling can be reframed in Map Reduce to be highly parallel, allowing 
us to make all our adjacency list accesses simultaneously in each step.

• Instead of the computation time depending on the size of the graph, it now 
depends primarily on the number of processors available. 

• Fast triangle counts on real, large social networks will enable real-time 
characterization of these networks.  This will help us study and understand 
properties that were previously impossible to see. 

Conclusions
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