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11 Triangles

Social Cohesion: Are my friends friends with each other?

« Graph measure which indicates meaningful properties
of social community represented.

» Used when comparing and modeling social networks.
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Total number of wedges at a node with
d friends is (d choose 2) = d(d-1)/2
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How a Computer Sees a Graph:

Amy
Bob
Frank
Chuck Elise
Adjacency Node Node

List Degrees Wedges  Check for Triangle Closure:
(A,B) (A,4) (A,6) Wedge (A,B)(A,C): Is (B,C) in Adjacency List?
(A,C) Wedge (A,B)(A,E): Is (B,E) in Adjacency List?
(AE) Wedge (A,B)(A,F): Is (B,F) in Adjacency List?

Wedge (A,C)(A,E): Is (C,E) in Adjacency List?

Wedge (A,C)(A,F): Is (C,F) in Adjacency List?
Wedge (A,E)(A,F): Is (E,F) in Adjacency List?

(AF)
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How a Computer Sees a Graph:
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How a Computer Sees a Graph:

Amy Node A
Bob 4 Triangles

Erank 2 Open Wedges

Node B?

Chuck Elise Node C?
Node D?

Adjacency Node Node

List Degrees Wedges Check for Triangle Closure:
(A,B) (A4) (A,6) Wedge (A,B)(A,C): Is (B,C) in Adjacency List? Y
(A,C) Wedge (A,B)(A,E): Is (B,E) in Adjacency List? Y
(AE) Wedge (A,B)(A,F): Is (B,F) in Adjacency List? N
(A,F) Wedge (A,C)(A,E): Is (C,E) in Adjacency List? Y
Wedge (A,C)(A,F): Is (C,F) in Adjacency List? N
Wedge (A,E)(A,F): Is (E,F) in Adjacency List? Y
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The Trouble with Triangles:

Assume the Graph has n nodes and m edges.
If a step takes O(f(x)) time, it takes about® f(x) many steps to compute.

Adjacency Gather Node Check

List Edges Wedge Closure
(A,B) (A:B,C,E,F .) (A,B)-(A,C)?
(A,C) (B:A,E, C, .) (A,B)-(A,E)?
(AE) (C:A,B,E, ..)

(A,F) (E:A, B, C, ...) (B,A)-(B,E)?
(B,E) (F:A, ..)

®sc | ... (C,B)-(C,E)?
(C,E)

(E,B)~(E,C)?

*Formally: If a step takes O(f(x)) time, then given input of size x, the step requires at most (c*f(x) + m)

computations for some constants ¢, m.
I ———————
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The Trouble with Triangles:

Assume the Graph has n nodes and m edges.
If a step takes O(f(x)) time, it takes about f(x) many steps to compute.

Adjacency Gather Node Check

List Edges Wedge Closure
(A,B) (A:B,C,E, F .) (A,B)-(A,C)?
(A,C) (B:A,E, C,..) (A,B)-(A,E)?
(AE) | Om) . | (C:A B,E, ..)

(AF) (E:A, B, C, ..)) (B,A)-(B,E)?
(B,E) (F:A, ..)

ec | .. (C,B)-(C,E)?
(C,E)

(E,B)-(E,C)?

Step 1: Read through adjacency list and compile list of edges at each node



The Trouble with Triangles:

Assume the Graph has n nodes and m edges.
If a step takes O(f(x)) time, it takes about f(x) many steps to compute.

Adjacency
List

(A.B)
(A,.C)
(A.E)

Gather Node
Edges

(AF)
(B.E)
(B.C)
(C.E)

Step 2: For each wedge, check to see if it's closed to make a triangle. There are

(A:B,C,E,F, .)
(B:A,E, C,.)
(C:A,B,E, ..)
(E:A, B, C, ...)
(F: A, ...)

O(m3(In m))

Check

Wedge Closure

(A,B)-(A,C)?
(A,B)-(A,E)?

(B,A)-(B.E)?
(C.B)-(C.E)?

(E,B)-(E.C)?
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maximum m? possible wedges, and each check takes O(In m) look-up time.
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The Trouble with Triangles:

Assume the Graph has n nodes and m edges.
If a step takes O(f(x)) time, it takes about f(x) many steps to compute.

Adjacency Gather Node Check

List Edges Wedge Closure
(A,B) (A:B,C,E, F .) (A,B)-(A,C)?
(A,C) (B:A,E, C,..) (A,B)-(A,E)?
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(C,E)

(E,B)-(E,C)?

Time Complexity (worst case, naive algorithm): O(m?(In m))
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The Trouble with Triangles:

Assume the Graph has n nodes and m edges.
If a step takes O(f(x)) time, it takes about f(x) many steps to compute.

Adjacency Gather Node Check

List Edges Wedge Closure
(A,B) (A:B,C,E, F .) (A,B)-(A,C)?
(A,C) (B:A,E, C,..) (A,B)-(A,E)?
(AE) | _Om) , |(c:ABE ) [OM(nm) |

(AF) (E:A, B, C, ..)) (B,A)-(B,E)?
(B,E) (F:A, ..)

ec | | (C,B)-(C,E)?
(C,E)

(E,B)-(E,C)?

Time Complexity (worst case, naive algorithm): O(m?(In m))
But real social networks can have hundreds of millions of edges!
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Parallel Triangle Sampling

We can count triangles quickly by making two improvements:

* Don’t Count All Triangles: Uniformly randomly sample
some wedges from the graph, check them for closure, and
use this to create an estimate of the total triangle count.

« Parallelize the Algorithm: Use the Hadoop Map-Reduce

framework to work on the adjacency list in parallel.




Parallel Triangle Sampling: Sample
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We can get a close estimate of the triangle count on large graphs by uniformly
randomly sampling wedges:

Each wedge is a random variable which equals 1 if the wedge is closed, and
0 if open. The variable’s expected value is equal to the graph’s
triangle/wedge ratio. This random variable is identical for all wedges.

Checking if a wedge is closed is like sampling the random variable. The
average of many samples converges on the true triangle/wedge ratio.

Just 38,000 wedge samples gives 0.01 accuracy with 99.9% confidence,
much better than actually checking all O(m?) wedges, for m =108

We can also compute the true total wedge count easily, from node degrees.

With an estimate of the triangle/wedge ratio, and true total wedge count, we
can accurately estimate the total number of triangles.

C. Seshadhri, A. Pinarand T. G. Kolda. Fast Triangle Counting through Wedge Sampling, arXiv:1202.5230, February 2012.
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Parallel Triangle Sampling: Parallel

Rather than read through the (possibly enormous) adjacency list sequentially
to find the node degrees, wedges, and check for wedge closure, we can use
the Hadoop Map-Reduce framework to operate in parallel.

Adjacency List

Stored Across Multiple bllc wl |r rlo w
Processors
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Parallel Triangle Sampling: Parallel

Pass 1: This is a detailed look at the first pass of the parallel algorithm

Adjacency List

Stored Across Multiple b
Processors
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Parallel Triangle Sampling: Parallel

Pass 1: This is a detailed look at the first pass of the parallel algorithm

Adjacency List 21 13 7116 . .
Stored Across Multiple bllc! | wl el el [ |w
Processors
R Reduce/ Global Sorting:
. Gathers data by node ID.
\< All information about node
X goes to same processor

Node Degrees List

Stored across Multiple
Processors

N
N T
- O
oo
B
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Parallel Triangle Sampling: Parallel

Pass 1: This is a detailed look at the first pass of the parallel algorithm

Adjacency List
a d||[b c c

Stored Across Multiple ﬁ el 1wl et s W
Processors
R Reduce/ Global Sorting:
. Gathers data by node ID.
\< All information about node
X goes to same processor

Node Degrees List

b d C W
Processors

N ©
N
—_—

Stored across Multiple

Counter: Processors update
shared counter in Parallel

Totals Wedge Counter:
Stored in Shared Variable Total # of Wedges
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Parallel Triangle Sampling: Parallel

Pass 1 Adjacency Edge List
Get Node Node Degrees
Degrees -

and Total Total

Wedge Count Wedge

(as described before) Count




Sandia
m National
Laboratories

Parallel Triangle Sampling: Parallel

Pass 2:
If we know the degree of a node,
Node Degrees and the total number of wedges,
‘v then we can compute how many
Number of Wedges to Sample at Each Node wedges we should sample from

that node. This can be done
completely in parallel (map step).
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Parallel Triangle Sampling: Parallel

Pass 2:
If we know we need w wedges from

Node Dearees node X, and we know x’s edges, we
‘ can sample the wedges for x.

Number of Wedges to Sample at Each Node Adjacency Edge List

Actual Wedges To Check for Closure
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Parallel Triangle Sampling: Parallel

Pass 3:
We can check in parallel whether wedge closure edges exist in the graph, by grouping

together (real) edges from the adjacency list with (hypothetical) wedge-closure edges.

Actual Wedges To Check for Closure Adjacency Edge List
Triangle Count And Open Wedge Count
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Parallel Triangle Sampling: Parallel

Adjacency Edge List
<

Node Degrees

Node Degrees

Number of Wedges to Sample at Each Node Adjacency Edge List

Actual Wedges To Check for Closure Pass 2

Actual Wedges To Check for Closure Adjacency Edge List

Triangle Count And Open Wedge Count Pass 3
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Parallel Triangle Sampling: ) %,
Contributions

« Just Three Passes! Instead of sequentially reading the adjacency list
many times, we can accomplish our goals by just acting on the
adjacency list in parallel three times, with a highly optimized distributed
sort step between each pass.

* Generalizable! Remember at the beginning, nodes with lots of friends
were also likely to have lots of open wedges? We have also
generalized this technique to separate wedges by the degree of their
central node, to help us understand that effect better. We can even
work on directed graphs (where friendships may not be mutual).

« Additional Optimizations: Some optimizations have been omitted here
for simplicity. In the full implementation, secondary sort is used to
randomly permute edges in Pass 2, enabling the uniform random
sample at the reducer to read minimal data into memory.
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Parallel Triangle Sampling: Results

Note to Review and Approval Official:

Time allowing, this slide will contain a chart comparing the
maximum graph sizes which can be handled by the parallel
algorithm described, as compared to the maximum limits of
the previously existing non-parallel and non-sampled
versions. The graphs will be either publically available online
or synthetically generated.




Conclusions ) i,

« Triangle counts offer a meaningful characterization of the cohesiveness of
social networks, but are too time-consuming on large, real social networks.

« Sampling wedges greatly reduces computations while preserving accuracy, but
still involves searching the adjacency list repeatedly to find node degrees and
check for wedge closures. Alarge graph => a long list => slow searches.

« Wedge sampling can be reframed in Map Reduce to be highly parallel, allowing
us to make all our adjacency list accesses simultaneously in each step.

» Instead of the computation time depending on the size of the graph, it now
depends primarily on the number of processors available.

« Fast triangle counts on real, large social networks will enable real-time
characterization of these networks. This will help us study and understand
properties that were previously impossible to see.



