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Inhomogeneous Hard Sphere Fluid
reactive boundary = hard wall
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Comparing fluxes

j,=0.669 107 inhomogeneous
j,=0.937 107 bulk
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What to do?
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= Consider D.=D.[p;(z)] ?
= Consider a different equation?

oY,
OX
Smoluchowski equation

J; :_Dpi
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v. Smoluchowski (1906)
Kramers(1940)-Klein(1922)

dp;
Bz b

Chemical kinetics and diffusion approach: the history of
the Klein-Kramers equation, S. Zambelli, Archive for History
of Exact Sciences, 64, 395 (2010)

Brownian Motion: Fluctuations, Dynamics, and
Applications

Robert M. Mazo
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tracting the force K(z)




Alternatively:
measure K(z) directly




K(z) = Solvation Force




9.5 Potential Distribution Theorem (hard walls)

Pure fluid, at equilibrium:

Bu Inp(z) —In<e Pl >  0<z2< L,
Inp(z) + BA™(2)

From which it follows that

K(z)  oinp 9852
kKT 0z @ 0Oz




K(z) from three routes

1. Force measurement
2. PDT
3. Fluxes and Profiles

Note, route 3 assumed:

D = constant = D(p,)




Inhomogeneous
Hard Sphere Fluid
In gravity




(3] Sandia,
9.6 Color Diffusion in a Slowly-Varying External Field: an alternate derivation

Color mixture, at " pure” equilibrium, and at "color” steady-state

3#-‘(3] = Inp, (3) —In < E—ﬁU:,.I:A:] > +Vﬁﬂft[:'z) ;i=A,B
Inpi(z) + BA™ (2) + Veat(2)

Bui(z) = Inzi(2)+Bw; =z = pi(z)/p(2)

a8,
—D;(2)p; g,\f
dlnp

0z

given that the total local density, p, is also a function of z. Note that if p is a constant, this equation
reduces to the simplest form of Fick’s first law

dpi
—ﬂffz)ﬁ—z — Dipi

Ji _ Olnpi(z) 0Olnp(z)
" D()pi(z) 8z

.i=A,B (58)
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Finding D(z)

The intrinsic chemical potential: pure fluid in gravity

Bu = Inp(z) —In < e %) 5 4V 4(2)
Inpi(z) + BA**(2) +Vext(2)

Hint{2)

pintiz) o= ﬂ:t(z)
= p—mg(z—z); gravity

This determines the "state” of the local fluid. Now approximate

D = Dlpin(z)]




The intrinsic density profile

Wi (2) = W(zy) —mg(z - z,)

pmgo = 0.2
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Checking K(z)
In gravity




Checking the fluxes, j, & jg
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Concusion

For inhomogeneous fluids use

D(z)=D[p;, (2)]

and combine with the solvation force.
This also works in the presence of slowly-varying fields (e.g.,
gravity)
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Question

What is this? . ol
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E.B. Webb I1l, J.J. Hoyt| Acta Materialia 56 (2008) 1802-1812
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Fig. 1. Snapshots from MD simulations of liquid Cu infiltration into a Ni channel at T'= 1750 K; Cu(Ni) atoms are rendered as light(dark) spheres.
Results are shown for the non-dissolutive (left) and the dissolutive (right) simulations at varying simulation times: (a) ¢ = 400 ps, (b) ¢t = 900 ps and (c)
t = 1400 ps.
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Liquid-Cu infiltration

E.B. Webb III, J.J. Hoyt!| Acta M
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Fig. 6. Penetration length squared vs. time for 7'= 1500 K (lower curves)
and 7= 1750 K (upper curves); (a) and (c) show results for ND cases,
while (b) and (d) are for D cases. Broken curves show simulation data,
while solid lines are fits.
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Liquid-Cu infiltration

E.B. Webb III, J.J. Hoyt!| Acta M

Washburn egn

72 hy,, cosO )
3n

500 1000 1500 2500 3000
t (ps)

Fig. 6. Penetration length squared vs. time for 7'= 1500 K (lower curves)
and 7= 1750 K (upper curves); (a) and (c) show results for ND cases,
while (b) and (d) are for D cases. Broken curves show simulation data,
while solid lines are fits.
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Liquid-Cu infiltration
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Fig. 6. Penetration length squared vs. time for 7'= 1500 K (lower curves)
and 7= 1750 K (upper curves); (a) and (c) show results for ND cases,
while (b) and (d) are for D cases. Broken curves show simulation data,
while solid lines are fits.
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Contact densities
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Very low density gas
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Molecular dynamics Brownian Dynamics




Velocity distributions
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Narrow Slit Pores
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Layering and Position-Dependent Diffusive Dynamics of Confined Fluids

Jeetain Mittal,"* Thomas M. Truskett,> Jeffrey R. El'l'i]'lgtDIl,j"t and Gerhard Hummer'*

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
Bethesda, Maryland 20892-0520, USA
*Department of Chemical Engineering and Institute for Theoretical Chemistry, The University of Texas at Austin,
Austin, Texas 78712-0231, USA
*Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York,
Buffalo, New York 14260-0231, USA
{(Received 4 January 2008; published 11 April 2008}

We study the diffusive dynamics ol a hard-sphere fluid confined between parallel smooth hard walls,
The position-dependent diffusion coefficient normal to the walls is larger in regions of high local packing
density. High density regions also have the largest available volume, consistent with the fast local
diffusivity. Indeed, local and global diffusivities as a function of the Widom insertion probability
approximately collapse onto a master curve. Parallel and average normal diffusivities are strongly coupled
at high densities and deviate from bulk fluid behavior.




quote ) .

We use a recently proposed propagator-based formalism
to estimate the position-dependent diffusion coefficients
self-consistently from simulation trajectory data [6]. For
diffusion, the propagator (or Green's function)
G(z, At|Z/, 0) for single-particle displacements along the
coordinate z normal to the confining walls 1s assumed to
satisty the Smoluchowski diffusion equation,

o(s d B d
_ D BF(z) = ,EIF{::]G }, 1
= lpi@er Dol

with B8 = 1/ksT, kz Boltzmann’s constant, and 7 the
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FIG. 1 (color online). The conditional probability G(z, t|z/, 0)
of observing a particle at a position z at time ¢ if it started at z’ at
t = 0. Results are shown for pore size H = 3, packing fractions
¢ = 0.05 (left) and 0.35 (right), and times r =1, 2, and 10
(bottom to top). The observation time ¢ = 1 is used to obtain
parameters of the diffusion model Eq. (1) (lines). Simulation
results for G(z, t]z/,0) for different z' are shown as symbols,
where z’ varies from —0.05 to —0.95 (symbol o to *) in intervals
of 0.1. (For reference, mean collision frequencies for the bulk
hard-sphere fluid are approximately 852 and 7369 for ¢ = 0.05
and 0.35, respectively.)
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Equilibrium DFT': Grand Canonical Ensemble

Ispe Ispe Lspe 6 Ne lspe

BQp] = i(1—sz)1n(1—2pz)+2(pzlnpﬁpzﬁ‘/’“ proul + = ZZedzm

Take the partial of the grand potential with respect to the site
densities gives a set of equations which will all be zero at equilibrium.

(50 Ispe Ne lspe
(gpk[:p}) In ol —hl(l Zpé pl)—|—5vk ﬂ,u@ +05 Z f Ed ?(z,m)

The equations can be rearranged in the following form
Suitable for a picard iteration solution method.

(1= 5% o) exp(C)) _ Velipe
2tk Pi Ce Buk — vk —

p; =

kﬂ?(i,m))]




Equilibrium Density Functional Theory (DFT J g

Grand Canonical Ensemble

Qlp] = Flp] + f dr p (X) (Ve (1) — ),

BFilp] = f dr p(r) (In(A°p () — 1),

BFexl{pi}] = f &*r’ @ ({n, ()}




Example:  Non equilibrium DFT
(on a lattice)

Use diffusive equations to determine site flux of material

dpf: k k lspe kn n n
= —VJ¢ where J; = — %j Di"pi'V

These equations can be combined to give

dpf: lspe n n n n n
=2 DI (VP + Vi V)

A forward time step solution method uses

lspe

(05)" = ()" + > (At) D" (V2w + Vi Vi)
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Non equilibrium DF
(on a lattice)

Transitions
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Colloids: Confocal Microscopy

Fig. 5. Confocal microscope image of a pair of 2.1-pm-diameter
spheres surrounded by 0.5-pum-diameter spheres. The pro-
nounced layering of the smaller spheres gives rise to the depletion
repulsion. The volume fractions of the larger and the smaller
spheres are 0.24 and 0.28, respectively.
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We study the diffusive dynamics ol a hard-sphere fluid confined between parallel smooth hard walls,
The position-dependent diffusion coefficient normal to the walls is larger in regions of high local packing
density. High density regions also have the largest available volume, consistent with the fast local
diffusivity. Indeed, local and global diffusivities as a function of the Widom insertion probability
approximately collapse onto a master curve. Parallel and average normal diffusivities are strongly coupled
at high densities and deviate from bulk fluid behavior.




Quote: )

We use a recently proposed propagator-based formalism
to estimate the position-dependent diffusion coefficients
self-consistently from simulation trajectory data [6]. For
diffusion, the propagator (or Green's function)
G(z, At|Z/, 0) for single-particle displacements along the
coordinate z normal to the confining walls 1s assumed to
satisty the Smoluchowski diffusion equation,

o(s d B d
_ D BF(z) = ,EIF{::]G }, 1
= lpi@er Dol

with B8 = 1/ksT, kz Boltzmann’s constant, and 7 the
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FIG. 1 (color online). The conditional probability G(z, t|z/, 0)
of observing a particle at a position z at time ¢ if it started at z’ at
t = 0. Results are shown for pore size H = 3, packing fractions
¢ = 0.05 (left) and 0.35 (right), and times r =1, 2, and 10
(bottom to top). The observation time ¢ = 1 is used to obtain
parameters of the diffusion model Eq. (1) (lines). Simulation
results for G(z, t]z/,0) for different z' are shown as symbols,
where z’ varies from —0.05 to —0.95 (symbol o to *) in intervals
of 0.1. (For reference, mean collision frequencies for the bulk
hard-sphere fluid are approximately 852 and 7369 for ¢ = 0.05
and 0.35, respectively.)
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Equilibrium DFT': Grand Canonical Ensemble

Ispe Ispe Lspe 6 Ne lspe

BQp] = i(1—sz)1n(1—2pz)+2(pzlnpﬁpzﬁ‘/’“ proul + = ZZedzm

Take the partial of the grand potential with respect to the site
densities gives a set of equations which will all be zero at equilibrium.

(50 Ispe Ne lspe
(gpk[:p}) In ol —hl(l Zpé pl)—|—5vk ﬂ,u@ +05 Z f Ed ?(z,m)

The equations can be rearranged in the following form
Suitable for a picard iteration solution method.

(1= 5% o) exp(C)) _ Velipe
2tk Pi Ce Buk — vk —

p; =

kﬂ?(i,m))]




Equilibrium Density Functional Theory (DFT):

Grand Canonical Ensemble

Qlp] = Flp] + f dr p (X) (Ve (1) — ),

BFilp] = f dr p(r) (In(A°p () — 1),

BFexl{pi}] = f &*r’ @ ({n, ()}




Example:  Non equilibrium DFT
(on a lattice)

Use diffusive equations to determine site flux of material

dpf: k k lspe kn n n
= —VJ¢ where J; = — %j Di"pi'V

These equations can be combined to give

dpf: lspe n n n n n
=2 DI (VP + Vi V)

A forward time step solution method uses

lspe

(05)" = ()" + > (At) D" (V2w + Vi Vi)

Sandia
National
Laboratories




Sandia
National
Laboratories

Example:  Non equilibrium DFT
(on a lattice)

Transitions
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Colloids: Confocal Microscopy

Fig. 5. Confocal microscope image of a pair of 2.1-pm-diameter
spheres surrounded by 0.5-pm-diameter spheres. The pro-
nounced layering of the smaller spheres gives rise to the depletion
repulsion. The volume fractions of the larger and the smaller
spheres are 0.24 and 0.28, respectively.
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The effect of Reaction Probabilities




v. Smoluchowski (1906) ).

Kramers(1940)-Klein(1922) w

p; E)F-a
; = =D — D ,
J 52 kT

dP(x, xp, 1) Dazp(x,_xﬂ, 1)
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D(z)=—j/| p, + 1| ;i=A4,B

|deal gas:

o= =

D(z) = constant
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Bu®(z) in gravity




