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Before
Response

Polymer foams provide thermal, mechanical, & 
electrical  isolation in engineered systems

• Systems safety analyses use numerical models to predict heat transfer 
to encapsulated objects and pressurization/failure of sealed containers

• In inert environments, the incident heat flux to a system can cause 
foams to decompose

• Evolved gases can cause pressurization and failure of sealed 
containers 

• Container pressurization involves complex physics
– Liquefaction/flow introduces convective heat transfer
– Erosive channeling by hot gases exacerbates liquefaction/flow
– Pressure depends on rate of gas generation, which depends on temperature 

history  (Heat transfer through foam is more important)
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Small container heat transfer and 
pressurization experiments

Develop model based on existing 
radiation-conduction code

   i
i

ie HrTkk
t
Tc 

  

Evaluate models: compare with results 
from container experiments

Material properties from independent 
laboratory experiments

Coordinated experiments & analyses are needed to 
develop models for systems safety analyses

 1
g

g g
V

P n R dVT/ 
Reaction rate expressions for ri & ng

Determine needed experiments 
and model/code development
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Plate temperature: 1173 K
Foam density = 160 to 720 kg/m3

Sample 
Unit

Duraboard Insulation

Heat Lamp Array

x-ray: 57o

Small container heat transfer & pressurization 
exp’s. provide physical insight and T & P data



5

Sample container
•Sleeve 321 SS tubing

•8.89-cm OD, 5.40 cm long
•0.508-mm wall thickness

•End plates: 0.475-cm thick 304 SS
•Laser welded to Sleeve

Foam

End Plate

Internal Mass

Vent

Sleeve

Heated End Plate

Rigid, closed cell, polyurethane foams
•TDI-polyester-polyol

(160 - 720 kg/m3)
•PMDI-polyether-polyol

•160 & 320 kg/m3

Experiments were done using foam-in-can
(FIC) configuration
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X-ray images showed liquefaction and flow occurring 
with lower density PMDI-based polyurethane foam

PMDI-based foam
160 kg/m3

Bulk movement 
was away from 
the heat source

Bulk movement 
was toward the 
heat source
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For both RPU foams, time to vent pressure (2.4 MPa) 
decreased as bulk density of initial foam increased
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Pressures observed with PMDI-based foam samples 
varied less between upright and inverted samples
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TDI-based foam and PMDI-based foam behave 
differently during thermal decomposition
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Postmortem examination of samples also indicates
different physical behavior (density = 160 kg/m3)

Upright

Inverted

TDI-Based PMDI-based
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Summary of Experiments

• TDI
– FY2009: 224 kg/m3

– FY2010: 160, 320, 480, 720 kg/m3

– FY2011: 640 kg/m3 (thicker can design)

• PMDI
– FY2009: 320 kg/m3

– FY2010: 160 kg/m3

– FY2011:  265, 365 kg/m3 (thicker can design)

11
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Thicker can design and different heat source

x-ray: 57o

Q

FOAM

G

OBJECT

Upright – 0oQ

FOAM

G
OBJECT

Inverted – 180o

Sample container
•Sleeve 321 SS tubing

•8.89-cm OD, 5.40 cm long
•1.651-mm wall thickness

•End plates: 0.602-cm thick 304 SS
•Laser welded to Sleeve
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X-ray images showed liquefaction and flow occurring 
with lower density PMDI-based polyurethane foam

13

PMDI-based foam
320 kg/m3

Bulk movement 
was away from 
the heat source

Bulk movement 
was toward the 
heat source
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For both RPU foams, time to vent pressure (2.4 MPa) 
decreased as bulk density of initial foam increased

14
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Pressures observed with PMDI-based foam samples 
varied less between upright and inverted samples

15

Thin Can/Radiant Heat Lamps Thick Can/Silicon Rods
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Energy Balance
   i

i
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
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Diffusive approximation: 
Optically thick material  
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Pressure - Assume
• Gradients relax quickly
• Ideal gas law
• All decomp. prod.    
• Gas occupies all free volume

 RTQkk iii  exp0

iAi
A rwk

dt
dw

i
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ij
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w
dt

d 0
0 




Decomposition reactions / rates (ri )
Polymer = w1A1 + w2A2 +  · · · ·

Ai ξi1Bi1 + ξi2Bi2 + · · · ·
ri

Modeling approach was based on diffusive 
approximation for radiant heat transfer
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Values for ρ, c, k, and ke were obtained from 
available literature or independent exp’s.

 
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 3003.0 T
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k
rxn

e




• Density (ρ) was determined by measuring/weighing samples
• Heat capacity (cp) values were taken from available literature 

and were consistent with DSC results
• Thermal conductivity (k) values were taken from available 

literature 
• Effective radiative conductivity ke was determined using an 

integrating sphere apparatus to measure reflectance and 
transmittance through un-reacted foam

• Scattering (σs) and absorption (a) coefficients were calculated  
using an analytical two-flux representation of radiative transfer

or                                W/mK
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Initial Foam Reaction Decomposition Products
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Multiple techniques were used to examine 
decomposition mechanisms and obtain rate data

• Decomposition rates and  evolved gas/vapor products
• TGA-FTIR 
• Pyrolysis-GC-FTIR

• Postmortem condensed-phase analyses

• FTIR - ATR

• Specific heat and enthalpy changes

• DSC simultaneous DSC-TGA
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Model and Experimental Comparison
TDI-Based Foam
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Thin Can/Radiant Heat Lamps Thick Can/Silicon Rods

Model and Experimental Comparison 
PMDI-Based Foam
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Foam density and structure determine physical 
behavior during thermal decomposition

• Rate of container pressurization depends on physical behavior
• Low-density (160 kg/m3) TDI based-foam

– Significant convective heat transfer was caused by
• Liquefaction and flow
• Penetration and erosive channeling by hot gases

• In pressure range previously studied (ambient to 2.4 MPa), 
magnitude of effects decreased as foam density increased

• In recent work (ambient to 4.5 MPa), difference between upright 
and inverted samples increased significantly above ~2.5 Mpa

• Sources of Model Form Error (MFE)
– Convective heat transfer (gas permeation in pores structure and 

liquefaction and flow) causes MFE in current model
• Heat transfer to foam and, therefore, the amount of foam that has 

decomposed as a function of time 
• Volume that is available to the gas phase as a function of time 

– A related MFE is the distribution of organic decomposition products 
between condensed and vapor phases 
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Future work to reduce model form error 
and include additional physics

• Liquefaction and flow of 
decomposition products
– Significantly impacts heat transfer to foam/ 

rate of gas generation and container 
pressurization

• Gas penetration into pores and erosive 
channeling by hot gas-phase 
decomposition products

• Vapor-liquid distribution of organic 
decomposition products

• To support model/code development, future experiments will 
examine: 
– Rheological properties of decomposing foams
– Permeability and porosity as a function of temperature
– Vapor–liquid distribution of organic decomposition products
– Higher pressures
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Foam Decomposition Phenomenology

• Heat transfer
• Mass transfer
• Chemistry
• Liquefaction/flow of 

decomposition products
– Significantly impacts heat transfer to 

foam / rate of gas generation and 
container pressurization

• Erosive channeling by hot gas-
phase decomposition  products

• Vapor-Liquid Distribution of 
Organic Decomposition 
Products

Q

Channeling

Liquefaction/flow

Liquefaction/flow

Condensation
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Experimental and Modeling Efforts

• Objective: Develop a predictive modeling capability
• Approach: Hierarchal approach with incremental 

improvements to modeling and experimental capabilities 
– Modeling:

• Provide today’s capability with enhancements as appropriate
• Develop a plan for future capabilities to be developed incrementally with 

increasing complexity
• Implement new code capability, verify, validate
• Assess feasibility of approach
• Modify path forward

– Experimentally
• Develop additional experimental capabilities
• Perform range of scale experiments to examine phenomenology
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Porous Media Capability

• Solve conservation equations for:
– Mass (gas phase, condensed phase)
– Species (gas phase, condensed phase)
– Energy (gas phase, condensed phase)

• Physics include:
– Condensed phase and gas phase conduction
– Gas phase convection
– Species diffusion
– Darcy flow
– Generalized reaction capability

• Interface with fluid region
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Currently Implemented Equations

Condensed Phase: 
t

    fg

  g 
t


 g ui 
xi

   fgGas Phase:

where:   fg  Formation rate of gases from condensed phase

ui  
K


P
xi

 g gi









 (Darcy velocity with buoyancy correction)

g 
P M
Ru Tg

  Xkk
k


k 1 k

s0,k

Xk  
Yk

k

(Ideal gas law)

(Porosity, from volume-averaged species porosities)

K  Xk Kk
k
 (Permeability, from volume-averaged species permeabilities)

Mass Conservation Equations:
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Currently Implemented Equations

Condensed Phase:

Gas Phase:

where:   fk   dk  Formation and destruction rate of condensed-phase species
due to heterogeneous reactions

 Yk 
t

   fk   dk 
  g Yk 

t

 g ui Yk 

xi

  
x j

 gD Yk

x j











  s, fk   s,dk    g, fk   g,dk 

 s, fk   s,dk   Formation and destruction rate of gas-phase species
due to heterogeneous reactions

 g, fk   g,dk  Formation and destruction rate of gas-phase species
due to homogeneous reactions

Species Conservation Equations:
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Currently Implemented Equations

Condensed Phase:

Gas Phase:

where: hcv  Volumetric heat transfer coefficient

  h 
t

  
x j

k T
x j









   fk   dk 

k
 hk  hcv T Tg 

   

   , , ,

g g g i g g
g j

i j j j

s fk s dk g k cv g
k

h u h h P PD u
t x x x t x

h h T T

  
  

 

       
                   

      

k  Xk
k
 kk (Volume-averaged conductivity)

h  Yk
k
 hk (Mass-averaged enthalpy)

Enthalpy Conservation Equations:
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Coupling of Porous Media and Conduction Region

• Loosely-coupled solution 
strategy:
– Solve conduction region
– Transfer interface T to 

porous region as a Dirichlet
BC

– Solve porous region
– Transfer interface heat flux to 

conduction region as a flux 
BC

• Pressurizing foam-in-a-
can simulations now 
possible
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Modeling Path Forward

• Porous media approach coupled with fluid region
– Two phase: gas/solid
– Three phase: gas/liquid/solid
– Material expansion

• Front tracking methods
– Decomposition front with gas domain formation
– Liquefaction and flow

• Vapor/Liquid Equilibrium (approximations?)
• Participating media radiation
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Backup Slides



33

Ai Wi
ξij

 Decomposition 
Products 

MW
(kg/mole) 

H 
kJ/kg

K0

(s-1) 
Q/R
(K) 

A1 0.45 0.56 CO2 44 0 8.0x1012 21,600
  0.44 Organic vapors ~80    

A2 0.15 1.0 Organic Vapors ~120 0 1.8x1011 21,600
A3 0.40 0.50 Organic Vapors ~120 0 8.9x109 21,600
  0.50 Char     

 

TGA-FTIR and DSC provided data for rate 
expressions, evolved gases, and H

Polymer = w1A1 + w2A2 +  
· · · ·

 RTQkk iii  exp0

iAi
A rwk

dt
dw

i
i 

ii
ij

ij
A

B

iij
B

B wk
M

w
dt

d 0
0 




Ai ξi1Bi1 + ξi2Bi2 + · · 
· ·

ri
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Current simulations do not account for 
convective heat transfer by gases or liquids

*MFE is Model Form Error
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Difference between experimental and modeling 
results is less with higher density TDI-based foams

*MFE is Model Form Error
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Similar results were obtained for 
PMDI-based foams



Mass and Species Porous 
Media Equations

    =  g g
g fg
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K
P g

t
 

 


  
        




fgt
   




 i
fi di

Y
t


 


  


 

Species Conservation

Gas Phase

Condensed Phase

Species Conservation

Mass Conservation

Mass Conservation

      , , , ,
g j g j

g g j s fj s dj g fj g dj
g

Y Y K
P g D Y

t
 

     


  
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Condensed and Gas Phase 
Energy and Momentum Equations

Energy Conservation Gas 
Phase

Energy Conservation Condensed Phase
     ,

1 1

K M

s k fi di i cv g
k i

h
k T Q h h T T

t


 
 


          

    

     

   *
, , , ,

1 1

g g g g
g g g

g

L N

g s fj s dj g j cv g
j

h h K
P g D h

t

Q h h T T

 
 



 
 

  
          

       




  
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Heterogeneous Reactions

, , ,
1 1

1 kg  kg gas  kg  kg gas 
N N

k j k B k k j k
j j

A j B j  
 

     ,
k

k

B
B k

A







Destruction rate of condensed-phase species Ak

Stoichiometry of heterogeneous reaction k

Formation rate of condensed-phase species Bk ,
k

k k k

k

B
fB B k dA dA

A


   


     

 ,1 1 k

k k k

k

B
fg B k dA dA

A


   



 
       

 
  Conversion rate of condensed-phase

mass to gas-phase mass

Heat of reaction
, ks k dA kQ H    

    2 ,exp      (for 0)
k

k

k k

k

n

A k
dA A k O k

A

Y EY Z n
RTY


 

 


            


      ,2

2 2 ,1 1 exp   (for 0)
k

O kk

k k

k

n

nA k
dA A O k O k

A

Y EY Y Z n
RTY


 

 


                 


, , , ,ks fj k fg s j ky   
, , , ,ks dj k fg s j ky    

Net formation rate and destruction rate 
of gaseous species j from reaction k
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Homogeneous Reactions


Destruction rate of gas-phase species

Stoichiometry of homogeneous reaction 

Heat of reaction: ,g dAQ H   
 

 

, , , ,
1

1 kg kg max( ,0) kg gas 
N

g B g j
j

A y B y j


    

    expp q b
dA

g

EA B T Z
RT

 
 

    
 

  




  



A

Net formation rate and destruction 
rate of gaseous species j by 
homogeneous gaseous reaction 

, , , ,g fj dA g jy  
 

 

, , , ,g dj dA g jy   
 

 


