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Polymer foams provide thermal, mechanical, &
electrical isolation in engineered systems

« Systems safety analyses use numerical models to predict heat transfer
to encapsulated objects and pressurization/failure of sealed containers

* Ininert environments, the incident heat flux to a system can cause
foams to decompose

 Evolved gases can cause pressurization and failure of sealed
containers
« Container pressurization involves complex physics
— Liquefaction/flow introduces convective heat transfer
— Erosive channeling by hot gases exacerbates liquefaction/flow

— Pressure depends on rate of gas generation, which depends on temperature
history (Heat transfer through foam is more important)
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Coordinated experiments & analyses are needed to
develop models for systems safety analyses

Material properties from independent

) Develop model based on existing
laboratory experiments

radiation-conduction code
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Small container heat transfer & pressurization
exp’s. provide physical insight and T & P data

Plate temperature: 1173 K
Foam density = 160 to 720 kg/m?

W

i; l -
y., L=

Upright — 0°

\ Inverted — 180°
f‘ Sandia
Asc 4 o eries



Experiments were done using foam-in-can
(FIC) configuration

Heated End Plate

Heated Plate 1, 3 opposite

Vent g 4 5
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Base Plate \ 13, 15 opposite

Sample container
*Sleeve 321 SS tubing
*8.89-cm OD, 5.40 cm long
*0.508-mm wall thickness
*End plates: 0.475-cm thick 304 SS
sLaser welded to Sleeve
e Sandia
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Rigid, closed cell, polyurethane foams
*TDI-polyester-polyol
(160 - 720 kg/m?3)
*PMDI-polyether-polyol
*160 & 320 kg/m?3



X-ray images showed liquefaction and flow occurring
with lower density PMDI-based polyurethane foam

PMDI-based foam
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For both RPU foams, time to vent pressure (2.4 MPa)

decreased as bulk density of initial foam increased

Pressure (MPa)
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Pressures observed with PMDI-based foam samples
varied less between upright and inverted samples

Pressure (MPa)
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TDI-based foam and PMDI-based foam behave
differently during thermal decomposition
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Postmortem examination of samples also indicates
different physical behavior (density = 160 kg/m?3)

™ Inverted
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Summary of Experiments

TDI

— FY2009: 224 kg/m3

— FY2010: 160, 320, 480, 720 kg/m3

— FY2011: 640 kg/m3 (thicker can design)

PMDI

— FY2009: 320 kg/m3

— FY2010: 160 kg/m3

— FY2011: 265, 365 kg/m? (thicker can design)
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Thicker can design and different heat source

Sample container
*Sleeve 321 SS tubing
*8.89-cm OD, 5.40 cm long
*1.651-mm wall thickness

‘G
*End plates: 0.602-cm thick 304 SS .

\ Laser welded to Sleeve Upright — 0° g.ia
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X-ray images showed liquefaction and flow occurring
with lower density PMDI-based polyurethane foam

PMDI-based foam
320 kg/m3

Bulk movement
was away from—p
the heat source

Bulk movement
was toward the_,
heat source
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For both RPU foams, time to vent pressure (2.4 MPa)
decreased as bulk density of initial foam increased

Pressure (MPa)
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Pressures observed with PMDI-based foam samples
varied less between upright and inverted samples

Pressure (MPa)
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Modeling approach was based on diffusive
approximation for radiant heat transfer

Energy Balance

pe =V a(ks ke VT + 3 pr(-AH)) o ssstssored
) i

Diffusive approximation: k, = 160 T’

Optically thick material a+o,)

Decomposition reactions / rates (r;)

Pressure - Assume
» Gradients relax quickly
* |deal gas law
 All decomp. prod.'r

I
Ahk —— §B+EB

dwp, dos. Ew? - Gas occupies all free volume
— =—Kjwp =—H i— H230 T Kk wa
dt T et M, 5 MR
1
— 0 _ ) o
X ki = k{ exp(- Q. /RT) | — Vg
g

Sandia

- 16 National
ASC Laboratories



Values for p, c, k, and k_, were obtained from
available literature or independent exp’s.

Density (p) was determined by measuring/weighing samples

Heat capacity (c,) values were taken from available literature
and were consistent with DSC results

Thermal conductivity (k) values were taken from available
literature

Effective radiative conductivity k, was determined using an
integrating sphere apparatus to measure reflectance and
transmittance through un-reacted foam

Scattering (o) and absorption (a) coefficients were calculated
using an analytical two-flux representation of radiative transfer

« — T o 00030
* 3a+o,) T o

T° W/mK
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Multiple techniques were used to examine
decomposition mechanisms and obtain rate data

« Decomposition rates and evolved gas/vapor products

« TGA-FTIR
« Pyrolysis-GC-FTIR

« Postmortem condensed-phase analyses
« FTIR-ATR
« Specific heat and enthalpy changes

e DSC simultaneous DSC-TGA

Initial Foam Reaction Decomposition Products
WA + WA + .+ WA —
Al h 511811+§12812+"'+§1m81m
A, r,
521821+§2281.2..+'”+§2m82m
An I é:nanl +‘§n28n2 +"'+§ntnm
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Model and Experimental Comparison
TDI-Based Foam
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Model and Experimental Comparison
PMDI-Based Foam
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Foam density and structure determine physical
behavior during thermal decomposition

Rate of container pressurization depends on physical behavior

« Low-density (160 kg/m3) TDI based-foam

— Significant convective heat transfer was caused by
 Ligquefaction and flow
» Penetration and erosive channeling by hot gases

* In pressure range previously studied (ambient to 2.4 MPa),
magnitude of effects decreased as foam density increased

* In recent work (ambient to 4.5 MPa), difference between upright
and inverted samples increased significantly above ~2.5 Mpa

* Sources of Model Form Error (MFE)

— Convective heat transfer (gas permeation in pores structure and
liguefaction and flow) causes MFE in current model
» Heat transfer to foam and, therefore, the amount of foam that has
decomposed as a function of time

* Volume that is available to the gas phase as a function of time

— Arelated MFE is the distribution of organic decomposition products

V \ between condensed and vapor phases Sandia

. 21
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Future work to reduce model form error
and include additional physics

Q
Liquefaction and flow of ! —
decomposition products T hqua~
— Significantly impacts heat transfer to foam/
rate of gas generation and container \
pressurization f _ I
Gas penetration into pores and erosive JPenetration ) CLom g

channeling by hot gas-phase
decomposition products
Vapor-liquid distribution of organic
decomposition products

—- Condensation

To support model/code development, future experiments will
examine:

— Rheological properties of decomposing foams

— Permeability and porosity as a function of temperature

— Vapor-liquid distribution of organic decomposition products

— Higher pressures Sandia
22 National
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Modeling Foam Decomposition
with a Porous Media Approach

A. B. Dodd, K. L. Erickson, D. J. Glaze, and R.
E. Hogan Jr.
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Foam Decomposition Phenomenology

Q
Heat transfer l

Mass transfer
Chemistry

Liquefaction/flow of
decomposition products

— Significantly impacts heat transfer to
foam / rate of gas generation and
container pressurization

Erosive channeling by hot gas-

phase decomposition products

Vapor-Liquid Distribution of
Organic Decomposition
Products

Sandia
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Experimental and Modeling Efforts

* Objective: Develop a predictive modeling capability

 Approach: Hierarchal approach with incremental
improvements to modeling and experimental capabilities
— Modeling:

Provide today’s capability with enhancements as appropriate

Develop a plan for future capabilities to be developed incrementally with
increasing complexity

Implement new code capability, verify, validate
Assess feasibility of approach
Modify path forward

— Experimentally

Asc 25

Develop additional experimental capabilities
Perform range of scale experiments to examine phenomenology
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Porous Media Capability

* Solve conservation equations for:
— Mass (gas phase, condensed phase)
— Species (gas phase, condensed phase)
— Energy (gas phase, condensed phase)

* Physics include:
— Condensed phase and gas phase conduction
— Gas phase convection
— Species diffusion
— Darcy flow
— Generalized reaction capability

* Interface with fluid region

\

Z \ Sandia
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Currently Implemented Equations

Mass Conservation Equations:

Condensed Phase: 8_,0 = —a')’f”
ot ’
o( v o p, U
Gas Phase: ( g) ('Og ') "
ot OX;
where: a)}’é = Formation rate of gases from condensed phase
K| oP L .
U=———+p,9 (Darcy velocity with buoyancy correction)
JZAN2
Py = m (Ideal gas law)
R, T,

W= ZXK , (Porosity, from volume-averaged species porosities)
k

K= ZXK K, (Permeability, from volume-averaged species permeabilities)

k
_Y
AN P Xk = p—k Sandia
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Currently Implemented Equations

Species Conservation Equations:

Condensed Phase: a('[_)Yk) —(a')}’l’( _a-)glr()

ot
olwp,Y,) O(p,uY,
Gas Phase: (W'Og k)+ ('09 ! k):_ﬂ _,/_,pDaYk
ot OX. OX; Tox,

m m m

/4
+(a)s, ik a)s,dk) T (a)g, ik a)g,dk)

where: (a)}'{( - a)g{() = Formation and destruction rate of condensed-phase species
due to heterogeneous reactions

/)

(a');”fk -, dk) = Formation and destruction rate of gas-phase species
due to heterogeneous reactions

Y /)

(a')g'fk — dk) =Formation and destruction rate of gas-phase species
due to homogeneous reactions

Z \ Sandia
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Currently Implemented Equations

Enthalpy Conservation Equations:

0 ,5ﬁ 9, m m T
Condensed Phase: (at ) a)(}( J_l_Z(a)fk wdk) (T _Tg)
Gas Phase: 8(1/7'09 hg)+ 8(,09 u hg) = g { v p, D— on, jJ{w@PJruj 8PJ
ot OX; c’3xJ OX. ot OX;

+Z(d)s”,’fk — @ g ) hg,k +h,, (f —T, )

k

where: hCV = Volumetric heat transfer coefficient

k = Z:)(kkk (Volume-averaged conductivity)

h = Z:Ykhk (Mass-averaged enthalpy)

s National
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Coupling of Porous Media and Conduction Region

 Loosely-coupled solution
strategy:
— Solve conduction region

— Transfer interface T to
porous region as a Dirichlet
BC

— Solve porous region

— Transfer interface heat flux to
conduction region as a flux
BC
* Pressurizing foam-in-a-
can simulations now
possible

Aasc 30
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Modeling Path Forward

Porous media approach coupled with fluid region
— Two phase: gas/solid

— Three phase: gas/liquid/solid

— Material expansion

Front tracking methods
— Decomposition front with gas domain formation
— Liquefaction and flow

Vapor/Liquid Equilibrium (approximations?)
Participating media radiation

Z \ Sandia
- 31 National
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TGA-FTIR and DSC provided data for rate
expressions, evolved gases, and AH

100 -
Polymer = w,A; + W,A, + so} PmDIRPU
L
A —> GiuBit + E,Bp + > 6o} comonts
dWAI_ — d'BBij 0 §|W|O E ata: 20 °C/min N
dt TR g T, K e e
ki =k exp(-Q, /RT) i AN OC./min. — g
100 200 300 400 500 600
Temperature (°C)
Ai | w, | & | Decomposition MW AH K’ QR
Products (kg/mole) | kdkkg | (™) (K)
A; [ 0.45 | 0.56 CO; 44 0 | 8.0x10"° | 21,600
0.44 | Organic vapors ~80
A, | 0.15| 1.0 | Organic Vapors | ~120 0 |1.8x10" | 21,600
Az | 0.40 | 0.50 | Organic Vapors ~120 0 8.9x10° | 21,600
0.50 Char
P
A=t 33
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Current simulations do not account for
convective heat transfer by gases or liquids
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Difference between experimental and modeling
results is less with higher density TDIl-based foams
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Similar results were obtained for
PMDI-based foams
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Mass and Species Porous
Media Equations

Condensed Phase _

a_p . _a-)m
Mass Conservation ot B fg
o( pY.
Species Conservation m — a):": — (g)gi’
ot

Gas Phase

o
Mass Conservation

v.m:(vagﬁ)j o

Species Conservation

o(peyY;) =v.(p gY’K(vm pgé’)}v-(wpg DVY, )+l — Ly + @) 4 — )

/\ A Sandia
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Condensed and Gas Phase
Energy and Momentum Equations

Energy Conservation Condensed Phase
8('L_)h) " d " "
=V KVT +ZQ Z(wf —af )b —h,, (T-T,)
Energy Conservation Gas
Phase 5(nghg>zv.[pghg|<(
ot

VP+pg§)j+V-(l//pg DVﬁg)

+> QY +Z(d)s’i’fj S’"dj)h +h, ( )
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Heterogeneous Reactions

Stoichiometrx of heterogeneous reactioNn k

' - " . ,Ok
1 kg A -I-Zl/j’k kg gas | —> Vg, kg B, +Zvj,k kg gas | Ve = pB
j=I j=1 A

Destruction rate of condensed-phase species A,

[ ) E

5, |
ol :[(;)Yﬁ} A [(1+Y02) - —1}2k exp(—%] (for ng_ #0)

Formation rate of condensed-phase species B, @ = Vg @

o,

A

Conversion rate of condensed-phase ol = (1—"5 k)d)clj’;ﬁk —|1=

g )

mass to gas-phase mass ‘

Net formation rate and destruction rate @ ="y o

of gaseous species j from reaction k s 1.k 9 7s. 1.k sdik =~y Vs jk

i \ " - m

/N‘eat gg reaction QU = -y, AH, Sandia
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Homogeneous Reactions

Stoichiometry of homogeneous reaction /

N
1kgA -y, 5 kgB, — Zmax(yg,jj,O) kg gas

j=1

Destruction rate of gas-phase species Ag

m — v ¢ E
Wl =v[A]"[B,]" T"Z, exp[— m{ J

Net formation rate and destruction a) Y a)(;'; Yqi

rate of gaseous species j by T
o/ o

homogeneous gaseous reaction WOy 4.0 =~ Dgp Yy i

. Heat of reaction: Qy, =—aj, AH,

ra
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