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Massive Concurrency [ | =

Jaguar — XT5 Exascale* Increase

Overhead of ghost/halo cells?

On Jaguar: 1 trillion cells > 5 million cells/thread

Partition into ~1713 blocks

6 x 1712 » 175K ghost/block - 35 billion ghost total
Ghost cells ~3.5% size of original data

On Exascale: 100 trillion cells = 1000 cells/thread

Partition into 103 blocks
6 x 102 # 600 ghost/block = 60 trillion ghost total
Ghost cells 60% size of original data

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.



Dax Project (™ | =

= Reduce the challenges of writing highly concurrent algorithms.

“Everybody who learns concurrency thinks they understand it, ends up
finding mysterious races they thought weren’t possible, and discovers
that they didn’t actually understand it yet after all.” Herb Sutter
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Dax Framework

Control Execution )|
Environment Environment l
Grid Topology Cell Operations
Array Handle Field Operations
Invoke Basic Math
Make Cells
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Device Adapter Encapsulates o [
Architecture Ambiguity

= Execution Array Manager

Control Environment Execution Environment
T e ] Transfer PR P
= Schedule Schedule @
t
= Scan s/3/sls/3/6lol7/alo 8l11l16/21]24/30/30[37/41/41
= Sort 83553607 a0 ™ 0lo[3/3]/al5[5/6]7]8

= QOther Support algorithms

Stream compact, copy, parallel find, unique
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Array Handle Container Fo [
Minimizes Memory Overhead
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Worklet

struct Classify: dax::exec::WorkletMapCell {
typedef void ControlSignature(Topology(In),Field(Point,In)
Field(Out));
typedef 3 ExecutionSignature( 2);

template<class InCellTag>
DAX_EXEC_EXPORT
dax::Id operator()(const CellVertices<InCellTag>& v) const

Execution Environment

Control Environment

dax::cont::UniformGrid grid;

dax::cont::ArrayHandle<dax::Scalar> inputHandle =
dax::cont::make_ArrayHandle(input);

dax::cont::ArrayHandle<dax: :Scalar> result;

dax::cont::Scheduler<> scheduler;
scheduler.Invoke(Classify(), grid, inputHandle, result);



Benefits of this system I

struct CopyCell: dax::exec::WorkletGenerateTopology {
typedef void ControlSignature(Topology(In), Topology(Out));
typedef void ExecutionSignature(Vertices( 1), Vertices( 2));

template<class InCellTag, class OutCellTag>
DAX_EXEC_EXPORT void operator()(

const CellVertices<InCellTag>&inVertices,
CellVertices<OutCellTag> &outVertices) const

{
return outVertices.SetFromTuple(inVertices.GetAsTuple());

}
s

= Word Aligned Types
" Reduce False Sharing

= Let somebody else deal with compiler quirks
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Basic Threshold Algorithm (™ | =

Generic Parallel Primitives Dax Parallel Primitives

" For each cell, set valid (0O or 1) " For each cell, set valid (0O or 1)

" Inclusive scan on valid flag " For each output cell, copy
Makes input -> output index map corresponding input

= Parallel upper bound of count
in input->output map
Makes output -> input index map

" For each output cell, copy
corresponding input

" For each output cell, mark
used points

= Parallel copy point fields if
point marked
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template<typename ValueType>

class ThresholdClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType: :NUM_POINTS> &values) const

{

ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{

out = in;
}
}s



template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell

{

public:
typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM POINTS> &values) const
{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid; Report cells to be

} generated.
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.




class HalfSpaceClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (dax::dot(values[index],this->normal) + offset > @) { return 1; }
}
return 0 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.




class SphereClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}
return 8 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.




class TetrahedraTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(
Topology: :PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax: :Id,NumInputPoints> const& in,
int subIndex,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{
for (int index = ©@; index < NumOutputPoints; index++)
{
out[index] = in[TetraVerts[index]];
} Define cells.
}

}s
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