
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2013-XXXXP

Dax: Data Analysis at Extreme

SDAV All Hands Meeting

Kenneth Moreland Sandia National Laboratories

February 20, 2013

SAND2013-1426P



Slide of Doom

System Parameter 2011 “2018” Factor Change

System Peak 2 PetaFLOPS 1 ExaFLOP 500

Power 6 MW ≤ 20 MW 3

System Memory 0.3 PB 32 – 64 PB 100 – 200

Total Concurrency 225K 1B × 10 1B × 100 40,000 – 400,000

Node Performance 125 GF 1 TF 10 TF 8 – 80

Node Concurrency 12 1,000 10,000 83 – 830

Network BW 1.5 KB/s 100 GB/s 1000 GB/s 66 – 660

System Size (nodes) 18,700 1,000,000 100,000 50 – 500

I/O Capacity 15 PB 300 – 1000 PB 20 – 67

I/O BW 0.2 TB/s 20 – 60 TB/s 10 – 30



Slide of Doom

System Parameter 2011 “2018” Factor Change

System Peak 2 PetaFLOPS 1 ExaFLOP 500

Power 6 MW ≤ 20 MW 3

System Memory 0.3 PB 32 – 64 PB 100 – 200

Total Concurrency 225K 1B × 10 1B × 100 40,000 – 400,000

Node Performance 125 GF 1 TF 10 TF 8 – 80

Node Concurrency 12 1,000 10,000 83 – 830

Network BW 1.5 KB/s 100 GB/s 1000 GB/s 66 – 660

System Size (nodes) 18,700 1,000,000 100,000 50 – 500

I/O Capacity 15 PB 300 – 1000 PB 20 – 67

I/O BW 0.2 TB/s 20 – 60 TB/s 10 – 30



Massive Concurrency

Jaguar – XT5 Exascale* Increase

Memory 300 Terabytes 32 – 64 Petabytes 100 – 200×

Concurrency 224,256 way 10 – 100 billion way Up to 400,000×

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.

Overhead of ghost/halo cells?

On Jaguar: 1 trillion cells  5 million cells/thread

On Exascale: 100 trillion cells  1000 cells/thread

Partition into ~1713 blocks
6 × 1712 ≈ 175K ghost/block  35 billion ghost total
Ghost cells ~3.5% size of original data

Partition into 103 blocks
6 × 102 ≈ 600 ghost/block  60 trillion ghost total
Ghost cells 60% size of original data



Dax Project

 Reduce the challenges of writing highly concurrent algorithms.

“Everybody who learns concurrency thinks they understand it, ends up 
finding mysterious races they thought weren’t possible, and discovers 

that they didn’t actually understand it yet after all.” Herb Sutter



Execution 
Environment

Control 
Environment

Grid Topology
Array Handle
Invoke

Dax Framework



Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke W

o
rklet

Dax Framework



Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke W

o
rklet

Dax Framework



Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke

Device 
Adapter

Allocate
Transfer
Schedule

Sort
…

W
o

rklet
Dax Framework



Device Adapter Encapsulates 
Architecture Ambiguity

 Execution Array Manager

 Schedule

 Scan

 Sort

 Other Support algorithms
 Stream compact, copy, parallel find, unique

Control Environment Execution Environment

worklet

workletworkletworkletworkletworkletworkletworkletworklet

8 3 5 5 3 6 0 7 4 0 8 11 16 21 24 30 30 37 41 41

8 3 5 5 3 6 0 7 4 0 0 0 3 3 4 5 5 6 7 8

Transfer

Schedule

Compute

Compute



Array Handle Container 
Minimizes Memory Overhead

Array Handle

x0x0 y0y0 z0z0x0 y0 z0 x1x1 y1y1 z1z1x1 y1 z1 x2x2 y2y2 z2z2x2 y2 z2

Array of Structs
Container

x0x0 y0y0 z0z0x0 y0 z0 x1x1 y1y1 z1z1x1 y1 z1 x2x2 y2y2 z2z2x2 y2 z2

x0 x1 x2Array Handle

x0x0 y0y0 z0z0x0 y0 z0 x1x1 y1y1 z1z1x1 y1 z1 x2x2 y2y2 z2z2x2 y2 z2

Struct of Arrays 
Container

y0 y1 y2

z0 z1 z2

vtkCellArray
Container

Array Handle

v0v0v0 v1v1v1 v2v2v2 v3v3v3 v4v4v4 v5v5v5 v6v6v6 v7v7v7 v8v8v8

v2v2v2 333 v3v3v3 v4v4v4 v5v5v5 333 v6v6v6 v7v7v7 v8v8v8v1v1v1v0v0v0333



struct Classify: dax::exec::WorkletMapCell {
typedef void ControlSignature(Topology(In),Field(Point,In)

Field(Out));
typedef _3 ExecutionSignature(_2);

template<class InCellTag>
DAX_EXEC_EXPORT
dax::Id operator()(const CellVertices<InCellTag>& v) const
... 

dax::cont::UniformGrid grid;
dax::cont::ArrayHandle<dax::Scalar> inputHandle =

dax::cont::make_ArrayHandle(input);
dax::cont::ArrayHandle<dax::Scalar> result;

dax::cont::Scheduler<> scheduler; 
scheduler.Invoke(Classify(), grid, inputHandle, result);

Execution Environment

Control Environment

Worklet



Benefits of this system

 Word Aligned Types 

 Reduce False Sharing

 Let somebody else deal with compiler quirks

struct CopyCell: dax::exec::WorkletGenerateTopology {
typedef void ControlSignature(Topology(In), Topology(Out));
typedef void ExecutionSignature(Vertices(_1), Vertices(_2));

template<class InCellTag, class OutCellTag>
DAX_EXEC_EXPORT void operator()(
const CellVertices<InCellTag>&inVertices,
CellVertices<OutCellTag> &outVertices) const
{
return outVertices.SetFromTuple(inVertices.GetAsTuple());
}

};



Basic Threshold Algorithm

Generic Parallel Primitives

 For each cell, set valid (0 or 1)

 Inclusive scan on valid flag
 Makes input -> output index map

 Parallel upper bound of count 
in input->output map
 Makes output -> input index map

 For each output cell, copy 
corresponding input

 For each output cell, mark 
used points

 Parallel copy point fields if 
point marked

Dax Parallel Primitives

 For each cell, set valid (0 or 1)

 For each output cell, copy 
corresponding input



template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM_POINTS> &values) const

{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 



template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM_POINTS> &values) const

{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class HalfSpaceClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)

{
if (dax::dot(values[index],this->normal) + offset > 0) { return 1; }
}

return 0;
}

};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class SphereClassify : public dax::exec::WorkletMapCell
{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1,_2);

template<class InputCellType>
DAX_EXEC_EXPORT dax::Id operator()(

InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)

{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}

return 0;
}

};

class ThresholdTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

dax::Tuple<dax::Id,NumOutputPoints> &out) const
{

out = in;
}

}; 

Report cells to be 
generated.

Define cells.



class TetrahedraTopology : public dax::exec::WorkletGenerateTopology
{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(

Topology::PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,

int subIndex,
dax::Tuple<dax::Id,NumOutputPoints> &out) const

{
for (int index = 0; index < NumOutputPoints; index++)

{
out[index] = in[TetraVerts[index]];
}

}
}; 

Define cells.



Contour (with normal, Contour (with normal, 
surface improvements, surface improvements, 
quadratic smoothing, and quadratic smoothing, and 
curvature estimation)curvature estimation)

Cells extracted by Cells extracted by 
field thresholdfield threshold

Basic particle advection and stream tracingBasic particle advection and stream tracing









Acknowledgements

 This work was supported by the DOE Office of Science, Advanced 
Scientific Computing Research, under award number 10-014707, 
program manager Lucy Nowell.

 Additional support by the Director, Office of Advanced Scientific 
Computing Research, Office of Science, of the U.S. Department of 
Energy under Contract No. 12-015215, through the Scientific 
Discovery through Advanced Computing (SciDAC) Institute of 
Scalable Data Management, Analysis and Visualization.


