Exceptz'onal service in the national interest

National
Laboratories

UC DAVIS

UNIVERSITY OF CALIFORNIA

SDAV .

U.S. DEPARTMENT OF

Dax: Data Analysis at Extreme

SDAV All Hands Meeting

Kenneth Moreland Sandia National Laboratories
February 20, 2013

'b(ﬂ.
ENERGY MMV 4

National Nuclear Security Admini:

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2013-XXXXP

Slide of Doom

System Parameter “2018” Factor Change

/ AW 77 . @ Sandia National Laboratories »K tware Hgmboﬁym!g

Slide of Doom

System Parameter “2018” Factor Change

}SD Aw 7 - @ Sandia National Laboratories »K tware &%

Massive Concurrency [| =

Jaguar — XT5 Exascale* Increase

Overhead of ghost/halo cells?

On Jaguar: 1 trillion cells > 5 million cells/thread

Partition into ~1713 blocks

6 x 1712 » 175K ghost/block - 35 billion ghost total
Ghost cells ~3.5% size of original data

On Exascale: 100 trillion cells = 1000 cells/thread

Partition into 103 blocks
6 x 102 # 600 ghost/block = 60 trillion ghost total
Ghost cells 60% size of original data

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.

Dax Project (™ | =

= Reduce the challenges of writing highly concurrent algorithms.

“Everybody who learns concurrency thinks they understand it, ends up
finding mysterious races they thought weren’t possible, and discovers
that they didn’t actually understand it yet after all.” Herb Sutter

M) Sandia National Laboratories W g UCDAVIS
UNIVERSITY OF CALIFORNIA

Dax Framework

h

Sandia National Laboratories

)))(Kitware

UCDAVIS

UNIVERSITY OF CALIFORNIA

Dax Framework

Control Execution)|
Environment Environment l
Grid Topology Cell Operations
Array Handle Field Operations
Invoke Basic Math
Make Cells

13]HOM

Sandia National Laboratories W | g UCDAVIS

UNIVERSITY OF CALIFORNIA

Dax Framework

Control Execution W

Environment Environment l
Grid Topology Cell Operations
Array Handle Field Operations
Invoke Basic Math

Make Cells E

O

-

o

D

—

M) Sandia National Laboratories))k | g UCDAVIS

UNIVERSITY OF CALIFORNIA

Dax Framework -

A} Sandia National Laboratories)))/(Kitware UCDAVIS

UNIVERSITY OF CALIFORNIA

Device Adapter Encapsulates o [
Architecture Ambiguity

= Execution Array Manager

Control Environment Execution Environment
T e] Transfer PR P
= Schedule Schedule @
t
= Scan s/3/sls/3/6lol7/alo 8l11l16/21]24/30/30[37/41/41
= Sort 83553607 a0 ™ 0lo[3/3]/al5[5/6]7]8

= QOther Support algorithms

Stream compact, copy, parallel find, unique

s D A_ TS M) Sandia National Laboratories))kg | g UCDAVIS

UNIVERSITY OF CALIFORNIA

Array Handle Container Fo [
Minimizes Memory Overhead

S D AV?Q ~ M) Sandia National Laboratories)))/(Kitware R&RA&!&

Worklet

struct Classify: dax::exec::WorkletMapCell {
typedef void ControlSignature(Topology(In),Field(Point,In)
Field(Out));
typedef 3 ExecutionSignature(2);

template<class InCellTag>
DAX_EXEC_EXPORT
dax::Id operator()(const CellVertices<InCellTag>& v) const

Execution Environment

Control Environment

dax::cont::UniformGrid grid;

dax::cont::ArrayHandle<dax::Scalar> inputHandle =
dax::cont::make_ArrayHandle(input);

dax::cont::ArrayHandle<dax: :Scalar> result;

dax::cont::Scheduler<> scheduler;
scheduler.Invoke(Classify(), grid, inputHandle, result);

Benefits of this system I

struct CopyCell: dax::exec::WorkletGenerateTopology {
typedef void ControlSignature(Topology(In), Topology(Out));
typedef void ExecutionSignature(Vertices(1), Vertices(2));

template<class InCellTag, class OutCellTag>
DAX_EXEC_EXPORT void operator()(

const CellVertices<InCellTag>&inVertices,
CellVertices<OutCellTag> &outVertices) const

{
return outVertices.SetFromTuple(inVertices.GetAsTuple());

}
s

= Word Aligned Types
" Reduce False Sharing

= Let somebody else deal with compiler quirks

M) Sandia National Laboratories))k | g UCDAVIS

UNIVERSITY OF CALIFORNIA

Basic Threshold Algorithm (™ | =

Generic Parallel Primitives Dax Parallel Primitives

" For each cell, set valid (0O or 1) " For each cell, set valid (0O or 1)

" Inclusive scan on valid flag " For each output cell, copy
Makes input -> output index map corresponding input

= Parallel upper bound of count
in input->output map
Makes output -> input index map

" For each output cell, copy
corresponding input

" For each output cell, mark
used points

= Parallel copy point fields if
point marked

§' SD L_; [Ko A} Sandia National Laboratories))k\ g UCDAVIS

UNIVERSITY OF CALIFORNIA

template<typename ValueType>

class ThresholdClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType: :NUM_POINTS> &values) const

{

ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid;

}
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{

out = in;
}
}s

template<typename ValueType>
class ThresholdClassify : public dax::exec::WorkletMapCell

{

public:
typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<ValueType,InputCellType::NUM POINTS> &values) const
{
ThresholdFunction<ValueType> threshold(this->ThresholdMin, this->ThresholdMax);
dax::exec::VectorForEach(values, threshold);
return threshold.valid; Report cells to be

} generated.
}s

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.

class HalfSpaceClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (dax::dot(values[index],this->normal) + offset > @) { return 1; }
}
return 0 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.

class SphereClassify : public dax::exec::WorkletMapCell

{
public:

typedef void ControlSignature(Topology, Field(Point), Field(Out));
typedef _3 ExecutionSignature(_1, 2);

template<class InputCellType>
DAX_EXEC_EXPORT dax: :Id operator()(
InputCellType,
const dax::Tuple<dax::Vector3,InputCellType::NUM_POINTS> &values) const

{
for (int index = 0; index < InputCellType::NUM_POINTS; index++)
{
if (Magnitude(values[index]-this->Center) < this->Radius) { return 1; }
}
return 8 Report cells to be
} generated.
¥

class ThresholdTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(Topology::PointIds(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>
DAX_EXEC_EXPORT void operator()(dax::Tuple<dax::Id,NumInputPoints> const& in,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

out = in; Define cells.

class TetrahedraTopology : public dax::exec::WorkletGenerateTopology

{
public:

typedef void ControlSignature(Topology, Topology(Out));
typedef void ExecutionSignature(
Topology: :PointIds(_1), Topology::SubIndex(_1), Topology::PointIds(_2));

template<int NumInputPoints, int NumOutputPoints>

DAX_EXEC_EXPORT void operator()(dax::Tuple<dax: :Id,NumInputPoints> const& in,
int subIndex,
dax::Tuple<dax: :Id,NumOutputPoints> &out) const

{
for (int index = ©@; index < NumOutputPoints; index++)
{
out[index] = in[TetraVerts[index]];
} Define cells.
}

}s

Contour (with normal,

surface improvemeg

quadratic smg /(\

curvature C
o

Basic particle advection and stream tracing

224

M VTK 18.856

20

—
FJ

Device Min

TBE 1 Core 10.10
Serial STL 0.66

OpenMP 8 Core 3.35
TBB 8 Core 2.23

CUDA 0.62

Max

21.13

Nrrar————— OpenViP 1 Core 1148 11.95

10.41
9.85

4.08
281

3.08

0.34

0.21

0.1-

0.0

Trial

Implementation Min Max

PISTON Criginal 0.984 1.142

PISTON Meodified ¢.911 1.012
Dax 0.909 1.057

0.14-

0.121

0.10+

Seconds

0.064

0.04 -

0.02

0.00

Implementation Min Max
st —— 0| STON Original 0.147 0.142

e [BEY 0,126 0127

————————— | STON Modified 0.117 0.118

Trial

Acknowledgements (™ | =

= This work was supported by the DOE Office of Science, Advanced
Scientific Computing Research, under award number 10-014707,
program manager Lucy Nowell.

= Additional support by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of
Energy under Contract No. 12-015215, through the Scientific
Discovery through Advanced Computing (SciDAC) Institute of
Scalable Data Management, Analysis and Visualization.

M) Sandia National Laboratories)}kk g UCDAVIS
UNIVERSITY OF CALIFORNIA

