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Overview of Adult Neurogenesis Overview of Modeling Approach Analysis Method Results 
 Nine layer model of DG and 

entorhinal cortex inputs 
 Oscillating modulatory inputs 
 Feed-forward and feedback 

inhibitory and excitatory 
pathways 

 Biologically realistic neuron 
numbers and ratios 

 Modified Izhikevich spiking 
dynamics 

 Neuron dynamics fit to actual 
electrophysiology data from 
mature and immature 
granule cells and hilar 
interneurons 

 Inputs are spatial (mEC; grid 
cells) and object (lEC; object 
cells) 

 Multi-day simulation to 
capture acute and long-
term effects of 
neurogenesis 

 Each day has novel 
contexts and (after initial 
day) familiar contexts 

 Contexts can vary by 
which objects, object 
locations, and broader 
features 
 

Aimone, Deng and Gage 
Neuron; 2011 

Aimone et al., Nature Neuroscience 2006  

 1000s of new granule cells 
integrate into DG monthly  

 Only excitatory neurons are 
born; no new inhibitory 
neurons in DG 

 Process heavily regulated by 
behavior; for example, 
running and enrichment 
increase, stress and aging 
decrease. 

 Maturation process extends 
over months, excitatory and 
inhibitory pathways develop 
in parallel 

 Young neurons are more 
“excitable” than mature 
counterparts due to distinct 
physiological and 
connectivity  

Memory resolution hypothesis 
 Mature neurons utilize high fidelity, low redundancy sparse code that 

effectively represents familiar features 
 Young neurons form distributed code made up of individually low 

fidelity units but cumulatively represent novel and familiar information 
 Over time, those young neurons that survive develop to become tightly 

tuned mature neurons  
 Combined sparse and distributed code ensures novel features are 

encoded within new memories while preserving familiar features 
 
Pattern Separation 
 Based on behavioral data (poor spatial discrimination in neurogenesis 

knockdown animals) and classic models of sparse coding DG function 
 Facilitates encoding of information in downstream CA3 network by 

reducing interference between attractor states 
 Almost certainly a function; question is whether it is everything? 
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Digital Compression 
Method 
Normalized LZ Complexity, 
c,  measures the rate of 
generation of new patterns 
along a sequence 
 
 
The generation rate of new 
patterns along a word of 
length 𝑛 with letters from 
an alphabet of size 𝛼 is 
measured by the 
normalized complexity 
 
 
 

𝑐𝛼 𝑥𝑛 =
𝐶𝛼(𝑥𝑛)

𝑛
𝑙𝑜𝑔𝛼𝑛  

lim
𝑛→∞

𝑠𝑢𝑝  𝑐𝛼 𝑥𝑛 ≤ 𝐻𝛼(𝑆) 

Lempel and Ziv, IEEE Information Theory, 1976 
Szczepanski, Janusz, et al. Network: Computation in 
Neural Systems 2003 
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Increasing EC-GC strengths impairs 
separation 

… but does not improve coding  

Adding new neurons decreases overall 
compressibility of GC output 

… and increases the total 
representation in the output 

Overall firing behavior 
 GCs are much less active than EC 

neurons 
 Young GCs are vast majority of 

active GCs 
 Neurogenesis is major factor in 

overall GC responsiveness 
 EC-GC weight increase has only 

marginal effect on GC 
responsiveness 
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Effect of scaling 
 Non-neurogenic networks over 100k GCs are essentially silent 
 Increasing EC-GC weights is not strong factor 
 Limited activity in no NG networks is not accompanied by 

increased pattern separation 
 Neurogenesis does not impair pattern separation in larger 

networks yet increases coding capacity 

Digital Compression 
 EC shows higher overall entropy than GC layer 
 EC-GC weight increase marginally increases representation complexity 
 NG substantially increases GC complexity 
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