
Droop: 

Semiconductor lights, III-N material system 

LED model 

Efficiency droop: intrinsic or extrinic? 

 

Ge: 

Experiment  

Laser model 

Results --  Required current vs. desired gain for different 

                   strain and doping densities 

Thanks to: Sandia’s Energy Frontier Research Center (EFRC), DOE-Basic Energy Sciences 

and Sonderforschungsbereich (SFB) 787   
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(a) Efficiency droop without  Auger in InGaN LEDs 

(b) Laser gain in Ge-on-Si 
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LED efficiency 

Internal Quantum 
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Chemical potential 
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(=0 for ‘Manley-Rowe’ limit) 
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Internal quantum efficiency 

IQE 

Carrier density rate equation 

Steady-state 

ABC model for LED efficiency 
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(carrier overshoot and escape) 



Internal quantum efficiency 
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Motivations for a more detailed model 

Auger coefficients needed for ABC 

model to reproduce experiment 

Generally accepted scaling of 

Auger coefficient with bandgap 

J. Piprek,PSS, A 

207,2217(2010) 



Motivations for a more detailed model 

Carrier density dependent 

band structure changes 
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+ Coulomb interaction 

Hamiltonian 

Hiesenberg Picture 

Light-matter 

interaction 
Mean-field 

Coulomb 

interaction 
Mean-field 

Correlations 

Approach 

Single-particle energies Light-matter interaction 
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, c-c = 5x1013s-1, c-p = 1013s-1, A = 10-7s-1, C = 0 
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4nm In0.2Ga0.8N/6nmGaN, TL = 300K, c-c = 5x1013s-1, c-p = 1013s-1, A = 10-7s-1, C = 0 
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Auger loss 

APL 97, 121105, 2010 
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Required C << ABC model estimation 
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Combination of localized defects and Auger loss 

Auger prevents IQE recovery 

Required C << ABC model estimation 



Motivations for a more detailed model 

Auger coefficients needed for ABC 

model to reproduce experiment 

Generally accepted scaling of 

Auger coefficient with bandgap 



Motivations for a more detailed model 

Auger coefficients needed for ABC 

model to reproduce experiment 

Generally accepted scaling of 

Auger coefficient with bandgap 

Range of Auger coefficients 

producing efficiency droop 

according to present LED model 

Agreement between 

droop observation and 

1st principle theory 
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T3 

5A/cm2 

Droop 

Intrinsic 

Auger 

Screening of 

piezoelectric field 

Extrinsic 

Localization 

Current leakage 

Defect loss 

Can fit experiment with : 

? ? 

Summary 

Talk --- describes k-resolve carrier population model 

        --- systematic description of above effects at microscopic level 

        --- droop can arise from --- screening of QCSE 

                                                  --- localization of SRH losses 

                                                  --- Auger loss (with small necessary C) 



Ge-on-Si Laser 
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Bandgap renormalization 

(carrier density dependent) 



APL 100, 191113 (2012) 
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From gain spectrum: 

1) Peak gain versus injected carrier 

    density 

2) Spontaneous emission contribution 

     to current density: 

𝐽𝑠𝑝 =
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From gain spectrum: 

1) Peak gain versus injected carrier 

    density 

2) Spontaneous emission contribution 

     to current density: 

𝐽𝑠𝑝 =
𝑒𝑑
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Free-carrier absorption: 

𝛼𝐺𝑒 = 𝛼1 𝑁𝐷 + 𝑁𝐼 + 𝛼2𝑁𝐼 

Net (available) gain: 𝐺𝑛𝑒𝑡 = 𝐺𝑝𝑘 − 𝛼𝐺𝑒 

𝛼1 10−18𝑐𝑚2 = 5.54 1  𝑜𝑟 3.17 [2] 

𝛼2 10−17𝑐𝑚2 = 1.969 1  𝑜𝑟 3.8 [2] 

[1] Liu, et al, Opt. Exp. 15, 11272, 2007 

[2] Carroll, et al, PRL 109, 057402, 2012 C
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From gain spectrum: 

1) Peak gain versus injected carrier 

    density 

2) Spontaneous emission contribution 

     to current density: 

𝐽𝑠𝑝 =
𝑒𝑑
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Free-carrier absorption: 

Non-radiative contributions to current 

density: 

Defect (Shockley-Read-Hall) loss 

Auger scattering 

Total current density: 

𝐽 = 𝐽𝑠𝑝 + 𝑒𝑑 𝛾𝑆𝑅𝐻𝑁𝐼 + 𝐶𝑁𝐼
3  

𝛼𝐺𝑒 = 𝛼1 𝑁𝐷 + 𝑁𝐼 + 𝛼2𝑁𝐼 

Net (available) gain: 𝐺𝑛𝑒𝑡 = 𝐺𝑝𝑘 − 𝛼𝐺𝑒 

𝛼1 10−18𝑐𝑚2 = 5.54 1  𝑜𝑟 3.17 [2] 

𝛼2 10−17𝑐𝑚2 = 1.969 1  𝑜𝑟 3.8 [2] 

[1] Liu, et al, Opt. Exp. 15, 11272, 2007 

[2] Carroll, et al, PRL 109, 057402, 2012 
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Droop from screening of quantum-confined Stark effect 

𝐼𝑄𝐸 = 1 − 2
𝐽0
𝐽

𝐽0
𝐽

+ 1 − 1  

𝛽 =
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Motivation  

Have computation tool for parametric studies of gain in Ge-on-Si lasers 

Design parameters:  strain and n-doping density 

Nonradiative factors:  defect and Auger losses, free-carrier absorption 

Environmental factors:  temperature 

Summary: Theory of Laser Gain in a Ge-on-Si Laser 

LO

Mg



Phonon assisted 

light-matter coupling 

?Interesting dynamics or quantum optics? 

Indirect bandgap 

systems 
M

g

Carmele, Kabuss and Chow, “Highly-detuned 

Rabi oscillations in a quantum-dot-microcavity 

system”, PRB rapid comm. (TBR) 



Carrier population relaxation 

IEEE JQE 42, 292 (2006) 

Quantum kinetic calculation (Our) Rate equation approximation 
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Efficiency droop is observed under a wide range of experimental conditions –  
involving different LED emitting wavelengths, polar versus non polar 
substrates, with or without electron blocking layers, etc 
 
It is possible that the differences in observed droop behavior (involving 
different LED emitting wavelengths, polar versus non polar substrates, with or 
without electron blocking layers, etc.) arise from differences in the relative 
importance of various mechanisms.  



Distinguishing feature: tracks k-resolved carrier populations 

              instead of total carrier density  

Summary of results 

• Accounts for band-structure details esp. excitation dependences 

 

• Computes radiative rate instead of using phenomenological BN2 

 

• Describes carrier capture and escape in terms of carrier-carrier and 

carrier-phonon relaxation rates – accounts for nonequilibrium carrier 

distributions and plasma heating 

SRH (linear) + excitation dependent band structure             N3  loss! 

• For higher defect density in QWs then barriers (A > Ab ): 

• For defect density in QW comparable or less than barriers : 

Needed Auger coefficient is smaller and consistent with microscopic calculations 

Preliminary simulations: bandstructure influence on droop description 

Droop can be totally extrinsic 

Present experimental droop can be explained with C > 5 x 10-32 cm6s-1  



Other reasons 

Eliseev, Osinski, Li, APL 75, 3838 (1999) 

"Sublinearity of light-current characteristics ...Auger coefficient C may be much smaller since 

higher-order nonradiative processes may also behaves like N3" 

 

Pope, Smowton, Blood, Thomson, Kappers, Humphreys, APL 82, 2755 (2003)  

"... L-I curves are sublinear ... characteristic of localized states." 


