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Visible and ultraviolet semiconductor lasers and LEDs
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LED efficiency
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ABC model for LED efficiency

Carrier density rate equation

Injection efficiency
(carrier overshoot and escape)
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ABC model for LED efficiency

Carrier density rate equation

Carrier losses

Injection efficiency

(carrier overshoot and escape) \/{
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Motivations for a more detailed model

Auger coefficients needed for ABC
model to reproduce experiment
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Approach

Hamiltonian

Single-particle energies Light-matter interaction
A A
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Model
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Internal quantum efficiency
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Energy (eV)
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Energy (eV)
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Auger loss

Auger l
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Auger loss

Auger prevents IQE recovery 0.8
Required C << ABC model estimation
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Combination of localized defects and Auger loss

Auger prevents IQE recovery 0.8
Required C << ABC model estimation
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Motivations for a more detailed model

Auger coefficients needed for ABC
model to reproduce experiment
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Motivations for a more detailed model

Auger coefficients needed for ABC

model to reproduce experiment
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Summary

Can fit experiment with :
OF — BN?2
QE = AN + BN2 + CN3

/\ .
4
Extrinsic ? Intrinsic ?
Localization Auger ~5A/cm?

Current leakage  Screening of

Defect loss piezoelectric field Current density

Talk --- describes k-resolve carrier population model
--- systematic description of above effects at microscopic level
--- droop can arise from --- screening of QCSE
--- localization of SRH losses

--- Auger loss (with small necessary C)



Ge-on-Si Laser



Electron energy

Hole energy

Effects of strain and doping on Ge

Unstrained




Electron energy

Hole energy

Effects of strain and doping on Ge

Unstrained Tensile

For previous modeling,
see e.g. Liu, et al, Opt.
Express 15 11272 (2007)




Electron energy

Hole energy

Effects of strain and doping on Ge

Unstrained

Tensile

For previous modeling,
see e.g. Liu, et al, Opt.
Express 15 11272 (2007)

Tensile with doping
and current

Agx 1.

Bandgap renormalization
(carrier density dependent)

- k




Hamiltonian: H = Single-particle + Light-matter + Coulomb

energy Interaction interaction
Laser field Non-radiative factors
a Free-carrier absorption
v Hamiltonian Defect losses
Bandstructure * Auger scattering, ...
do +
lha = [0, H]
; _ » Gain a_md_ spontaneous
3 emission spectra
Hartee-Fock

Coulomb-interaction + i '

correlations .
Collisions -
'S
! + o
° D
o ‘D Different strains and
o S n-doping densities

Required current
APL 100, 191113 (2012)



Material gain (cm-1)

900
----- Free-carrier
Many-bod
600 F Y Y
Np (10'8cm-3)
300 | 25—
20
15
O L
-300 : ' | '

Gain spectrum

0.65 0.70 0.75 0.80 0.85 0.90
Photon energy (eV)

T = 300K, 0.2% tensile strain, y = 1013s%, N, = 8 x 1018cm3



Gain spectrum
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From gain spectrum:

1) Peak gain versus injected carrier
density

2) Spontaneous emission contribution
to current density:
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From gain spectrum:
1) Peak gain versus injected carrier
density
2) Spontaneous emission contribution
to current density:
ed ;/n\2 (® G(v)
Jsp = (—) dv v? ——
h \mc/ ), W—llen
e kT —1

Free-carrier absorption:

age = ay(Np + Np) + a, N,
a;(10718cm?) = 5.54 [1] or 3.17 [2]
a,(1077cm?) = 1.969 [1] or 3.8 [2]

[1] Liu, et al, Opt. Exp. 15, 11272, 2007

[2] Carroll, et al, PRL 109, 057402, 2012
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From gain spectrum:
1) Peak gain versus injected carrier
density
2) Spontaneous emission contribution
to current density:
ed ;/n\2 (® G(v)
Jsp = (—) dv v? ——
h \mc/ ), W—llen
e kT —1

Free-carrier absorption:

age = ay(Np + Np) + a, N,
a;(10718cm?) = 5.54 [1] or 3.17 [2]
a,(1077cm?) = 1.969 [1] or 3.8 [2]

[1] Liu, et al, Opt. Exp. 15, 11272, 2007
[2] Carroll, et al, PRL 109, 057402, 2012

Net (available) gain: Gper = Gy — Age

Non-radiative contributions to current

density:
Defect (Shockley-Read-Hall) loss
Auger scattering

Total current density:
J =Jsp + ed(yYsguN; + CNP)
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Droop from screening of quantum-confined Stark effect

Prior to droop During droop
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Summary: Theory of Laser Gain in a Ge-on-Si Laser

Motivation
Have computation tool for parametric studies of gain in Ge-on-Si lasers

Design parameters: strain and n-doping density

Nonradiative factors: defect and Auger losses, free-carrier absorption

Environmental factors: temperature

?Interesting dynamics or quantum optics?

Indirect bandgap M J
systems Mg Phonon assisted
@, 4 light-matter coupling

Carmele, Kabuss and Chow, “Highly-detuned
Rabi oscillations in a quantum-dot-microcavity
system”, PRB rapid comm. (TBR)



Carrier population relaxation
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IEEE JQE 42, 292 (2006)



Efficiency droop is observed under a wide range of experimental conditions —
involving different LED emitting wavelengths, polar versus non polar
substrates, with or without electron blocking layers, etc

It is possible that the differences in observed droop behavior (involving
different LED emitting wavelengths, polar versus non polar substrates, with or
without electron blocking layers, etc.) arise from differences in the relative
importance of various mechanismes.



Summary of results

Distinguishing feature: tracks k-resolved carrier populations
instead of total carrier density

« Accounts for band-structure details esp. excitation dependences
« Computes radiative rate instead of using phenomenological BN?

» Describes carrier capture and escape in terms of carrier-carrier and

carrier-phonon relaxation rates — accounts for nonequilibrium carrier
distributions and plasma heating

Preliminary simulations: bandstructure influence on droop description

* For higher defect density in QWs then barriers (A > A, ):
SRH (linear) + excitation dependent band structurc sy N3 |0ss!

mmm) | Droop can be totally extrinsic

« For defect density in QW comparable or less than barriers :

Present experimental droop can be explained with C > 5 x 1032 cm®s-1

Y
Needed Auger coefficient is smaller and consistent with microscopic calculations




Other reasons

Eliseev, Osinski, Li, APL 75, 3838 (1999)

"Sublinearity of light-current characteristics ...Auger coefficient C may be much smaller since
higher-order nonradiative processes may also behaves like N3"

Pope, Smowton, Blood, Thomson, Kappers, Humphreys, APL 82, 2755 (2003)
"... L-I curves are sublinear ... characteristic of localized states."
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FIG. 1. Experimental L —7 characteristics over the temperature range 150—
330 K. The inset shows the light output at a fixed current density of
10’ Am~? as a function of temperature.



