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Overview of Porous Flow in Aria

* Leveraged development under LDRD
& EFRC

— Targets SNL activities in energy
security, conventional munitions,
thermal batteries, heat pipes, ...

Current capabilities

— Single phase heat and reactive mass
flow

— Immiscible two-phase flow

— Two-phase, two-component (air &
water) evaporating/condensing thermal
model

— Chemically reactive flows (e.g. calcite
mineralization)

— Spatially heterogeneous material and
transport properties

— Couples with mechanics and other
Sierra physics modules

Capability under development

— Nonisothermal two-phase CO2-H20-
NACL EOS with general phase behavior

— Advanced discretization schemes (UT
technology)

Modeling Cook-Off in Granular Explosives
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Development of a confining saturation envelope in ultra-
low permeability clays, trapping gases within.
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i Effects of Heterogeneity

Some Results
(10 realizations)

* Correlation between fast paths and
permeability distribution is evident

 Leakage, arrival time are heavily
dependent on permeability distribution

» Standard deviations are substantial

* Appears useful results can be
obtained from a few realizations
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Coupled Flow and Geomechanics
Flow, CO2 Transport and Deformation

CO, saturation, Overpressure & Displacement
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ime = 0.0 yrs
Overburden k_cap = 0.01 mD
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Coupled Flow and Geomechanics
Hydromechanical Effects of Faults

Discrete Geologic Model

Some faults could go undetected and may pose a risk to sequestration of
CO, by reactivation due to injection pressures. This study considers
possible hydromechanical effects due to a low and high permeability fault.
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Low permeability fault impedes CO, injection, High permeability fault creates a
diverts flow along fault and builds pressure pathway for leakage of CO, through the
behind the fault, thereby shearing/warping the caprock, ultimately pooling at the top of

fault and inducing critical shear failure in both the upper aquifer, which is capped by
the caprock and fault. an impermeable boundary. r'|1 Sandia National Laboratories




- High Level Waste Disposal in Clay

y Thermo-Hydrologic Features

High decay powers in ultra-low

Repository Temperature and Pressure permeability clays can result in dry out
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gy Coupled Energy, Flow, Radioactive Species, and

S L Mechanics of a Clay/Shale Repository
Problem Schematic |
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Transport of Daughter Species
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Pore Scale Analysis of Reaction Dependent Viscosity Variations
for Subsurface Engineered Systems

Scientific Achievement

Developed a computationally powerful & high'l_y'parallelized pore-scale model to '
examine flow in porous media with chemical reaction dependent viscosity

Significance and Impact
Pore scale simulations on high performance computers suggest that mixing-
induced chemical reactions can alter fluid properties (e.g., viscosity and

density) and shear rate enabling engineered solutions for CO, sequestration
Product concentration & flow velocit &Lo 05

Research Details A A A A A AR A ciis
~  More reaction product was formed when fluid B AP AR A {Ylo.os
viscosity increases with increasing product (a) Constant VISCOSIty cm/s

concentration (viscous thickening) than the opposite

case (viscous thinning) .

— Enhanced mixing at pore scale leads to enhanced ’
reaction rates at high local ratio of reaction rate to 0.15
flowrate (Da) and lower porosity em/s

— Flows with viscous thinning reactions can become
unstable at high Da, leading to enhanced mixing and

e

: . : (c) Viscous thinning

reactI?[n rates under high Peclet number and higher Comparison of reaction product (A+B -> C) concentration
porosity

and flow velocity in the loosely packed array for different
viscosity variations. Hot (or cool) color depicts high (or low)
S.M. Davison, H. Yoon, and M.J. Martinez, Advances in Water Resources, 38, concentration and velocity. Onset of Instability is shown in (c).
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