

Western Electricity Coordinating Council Renewable Energy Modeling Task Force

WECC REMTF Wind/PV Generic Modeling Update

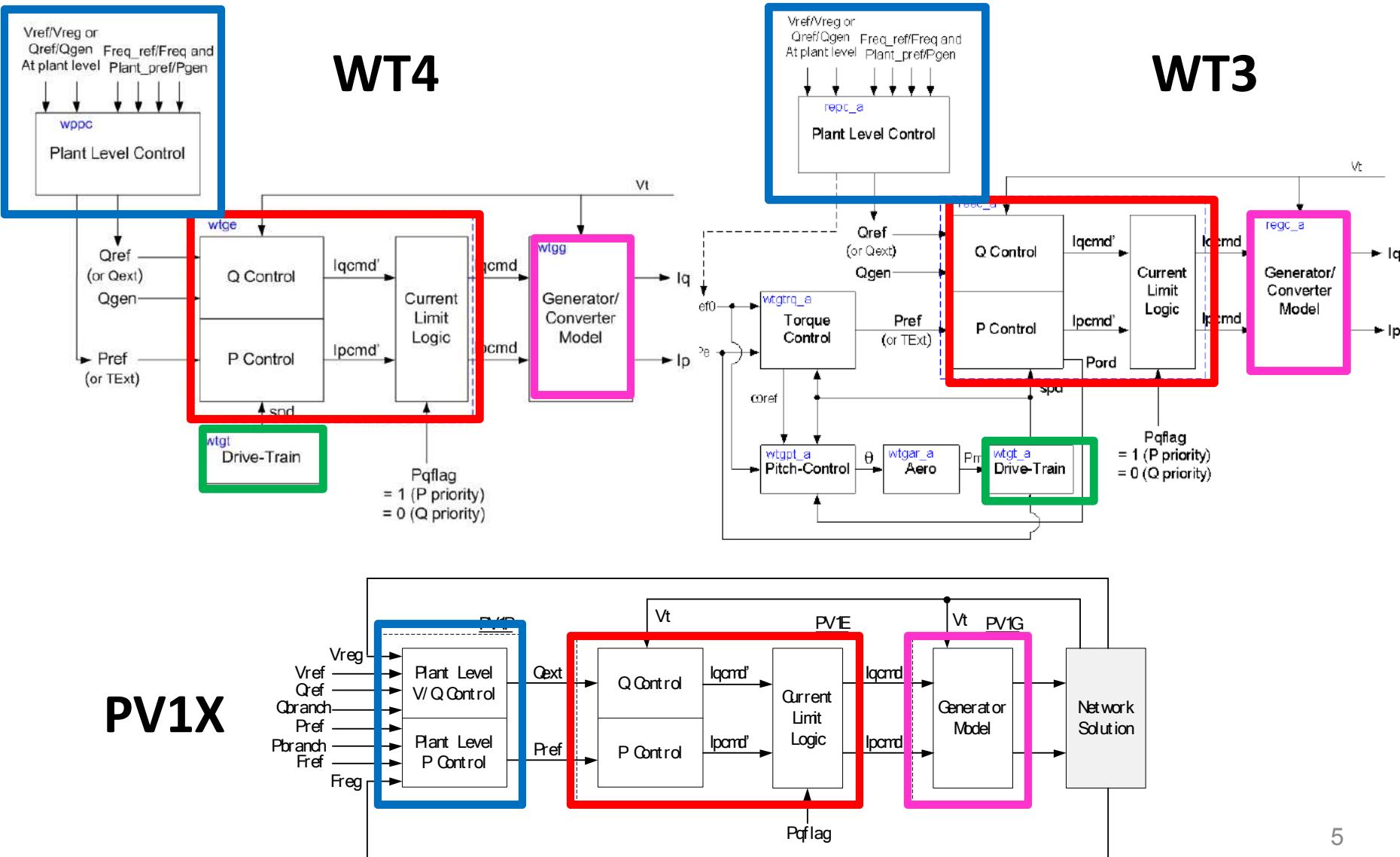
Abraham Ellis
aellis@sandia.gov

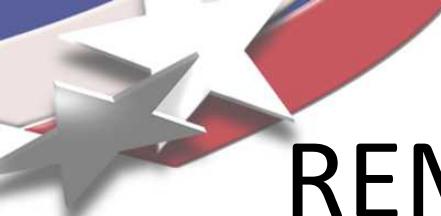
REMTF and MVWG Meeting
Salt Lake City, UT / November, 2012

Activity Since June Meeting

- PV/Wind Model Specification Documents
 - Final WT1/WT2 model specs on pitch control
(REMTF/MVWG Approval Item – not on the list)
 - Final WT3/WT4 model specs (**MVWG approval item**)
 - Large-scale PV model specification completed (PV1X, PVD1)
(MVWG Approval Item)
 - Distribution-connected PV model completed (CMPLDWg)
(REMTF Working Document)
- Other documents to which REMTF contributed
 - Generator Facility Data, Testing and Model Validation Requirements (Oct. 2012)
 - NERC IVGTF 3.1 – Interconnection Requirements (Aug. 2012)

Activity Since June Meeting

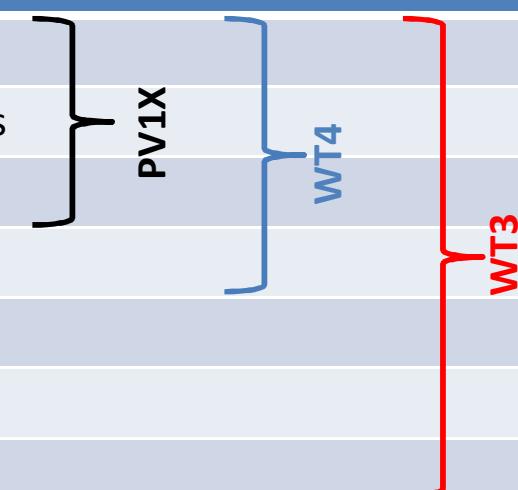

- Recent REMTF Meetings and Teleconferences
 - Review/approval of WT3/WT4 model specifications, July 30
 - Review and approval of large PV plant models Aug. 7
 - Review of IEC comments to WECC models, Oct. 8
 - REMTF Meeting November 5-6
- Other Related Meetings and Presentations
 - UVIG Variable Generation Workshop and Wind/solar Modeling Coordination, Sept. 18-21, Albuquerque, NM
 - IEC WG27 TF88 meeting, Sept. 24-25, Albuquerque, NM
 - NERC Modeling Workshop, Oct. 3, Bloomington, MN
 - UVIG Modeling & Interc. Users Group, Oct. 23, Omaha, NE



Status of Phase 2 Wind Models

- Model specs done, ‘frozen’ for [WT1](#), [WT2](#), WT3 & [WT4](#)
- Model testing/validation at turbine (not plant) level
- Software implementation underway
- Near-term REMTF work
 - Inventory of wind models in WECC base cases
 - Model testing circuit/plan
 - Default data from manufacturers
 - System-wide studies with generic models
 - Model application guide
 - Guidelines/examples for model validation
 - Dissemination in collaboration with UVIG

REMTF Renewable Energy Models



REMTF Wind and PV Models

- Modular structure for wind and PV models
 - Easier to implement and maintain models

Module	Use
REPC_A	Wind/PV plant controller
REEC_A / REEC_B	Wind /PV inverter electrical controls
REGC_A	Generator-Converter model
WTGT_A	Simplified Drive Train
WTGAR_A	Aerodynamic Model
WTGPT_A	Pitch Control Model
WTGTQ_A	Torque Control Model
Ihvrt	Voltage/Frequency Protection Model (any generator model)

Wind Models in WECC Base Cases

	2012 LS	2012 HS	2022 HW	2022 LS	2022 LSP
wt4g match	17/24	17/26	26/28	27/29	367/369
wt4g status = 1	1	1	6	27	344
wt3g match	29/38	27/41	39/41	37/41	51/57
wt3g status = 1	5	5	16	35	44
gewtg match	30/37	25/32	28/33	31/41	50/64
gewtg status = 1	24	24	26	25	39
genwri match	4/9	4/9	5/9	5/9	5/9
genwri status = 1	1	3	3	4	3
wt1g match	10/10	10/10	10/10	10/10	10/10
wt1g status = 1	1	1	1	10	9
wt2g match	16/16	16/16	16/16	16/16	21/21
wt2g status = 1	1	1	3	16	21
Wind Gen MVA	973	1,338	2,290	10,032	18,899
Total Gen MVA	115,921	175,697	173,301	139,633	121,309

Summary for 2022LSP

wtg4 data by area

Area	MVA	PGEN
10	1272.31	643.3
18	450.0	0.0
22	680.1	184.4
24	8347.8	4565.4
30	620.9	454.8
40	5400.8	2841.6
60	308.2	0.0
64	151.8	50.0
73	741.6	667.0

gewtg data by area

Area	MVA	PGEN
10	351.9	302.9
22	806.6	610.0
24	167.0	0.0
26	477.3	150.0
30	514.0	156.3
40	438.3	17.3
60	112.0	95.0
70	2527.6	1907.0

wtg3 data by area

Area	MVA	PGEN
14	56.0	50.4
24	916.4	0.0
40	4227.5	3746.8
54	90.8	50.0
60	359.3	258.5
65	165	40.0

genwri data by area

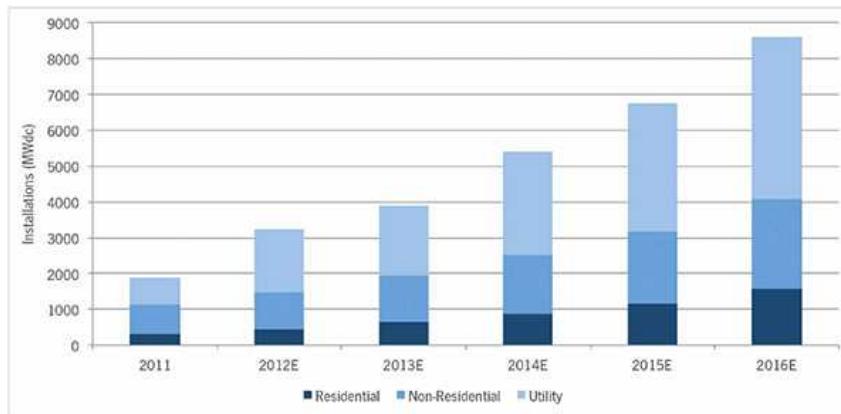
Area	MVA	PGEN
30	475.0	82.5
40	43.1	40.6
64	300.0	80.0

wt1g data by area

Area	MVA	PGEN
10	100.0	89.0
40	479.3	336.8

wt2g data by area

Area	MVA	PGEN
40	1527.9	1375.1
60	124.7	104.5

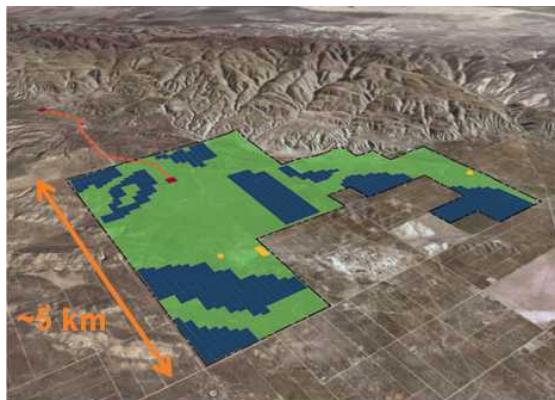

Status of Solar Models

- Specification completed and “frozen” for [PV1X & PVD1](#)
- [CMPLDWg](#) model specification may need some adjustments (broader issue affecting CMPLDW)
- Software implementation underway
- Plant-level data collection for model validation
- REMTF to concentrate on
 - Collecting default data from manufacturers
 - System-wide studies
 - Development of model application guide
 - Guidelines/examples for model validation
 - Dissemination in collaboration with UVIG

PV Plants Getting Larger and Larger

- Large, utility-scale PV plants represent an increasingly large portion of total PV installations
 - Large PV plants in the US as of 08/12
 - 4 plants >50MW_{ac}, several >50MW_{ac} under construction, a few >200MW_{ac}
 - Agua Caliente, AZ: 290MW_{ac} when complete
 - Large PV plants elsewhere:
 - 24 plants >50MW_{ac}, many >50MW_{ac} under construction
 - <http://www.pvresources.com/PVPowerPlants/Top50.aspx>

Note: Full report contains market forecast through 2016 by state and market segment.

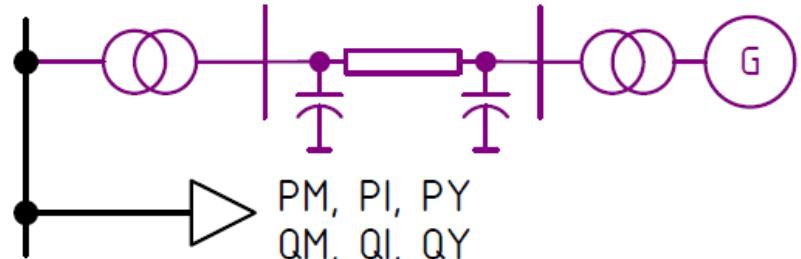


PV Plant Footprint

- Installed/Planned large-scale PV Plants
 - Some 500MW+ plants under construction

Charts courtesy of SunPower Corporation

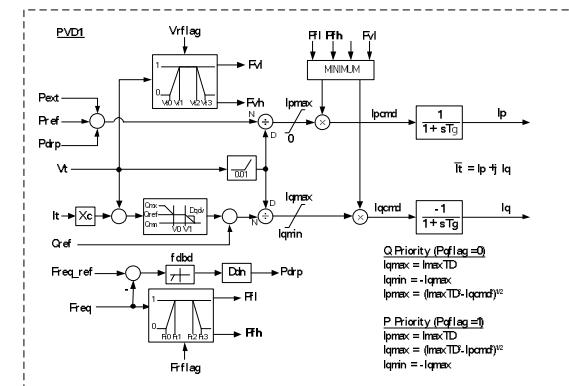
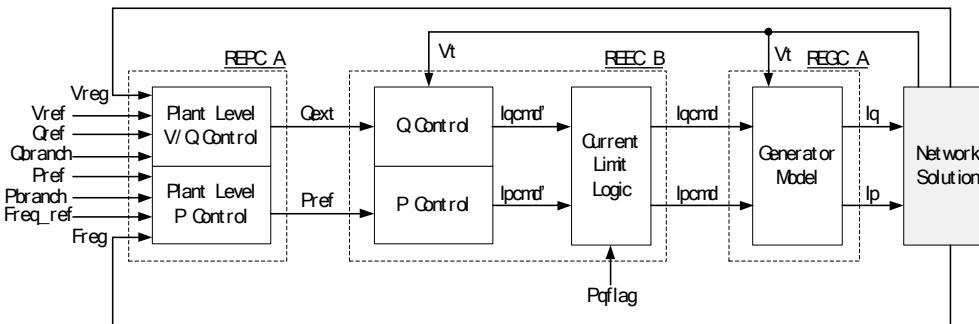
Solar Array Open Space
250 MW – CA Valley Solar Ranch

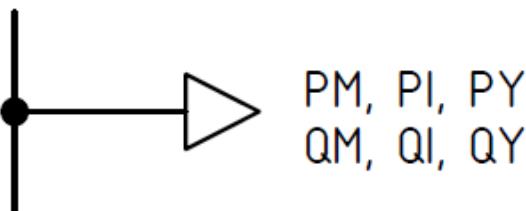

601 MW – Antelope Valley, CA
Overlaid on Washington, DC For Comparison

Agua Caliente 290 MW_{ac} 410 MW_{dc}
Photo courtesy of FirstSolar

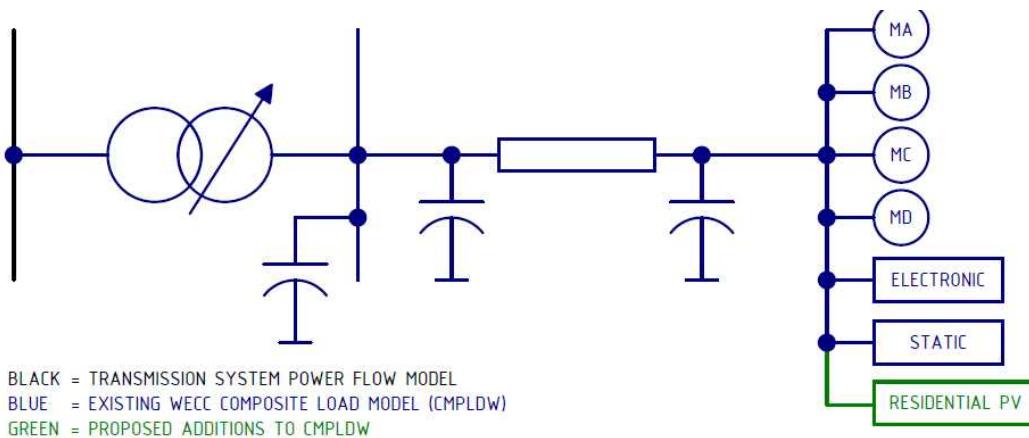
REMTF Dynamic Models for PV

In power flow, PV modeled explicitly as generator



Should include feeder or collector system equivalent per WECC guide


In dynamics, use stand-alone full-featured or simplified model

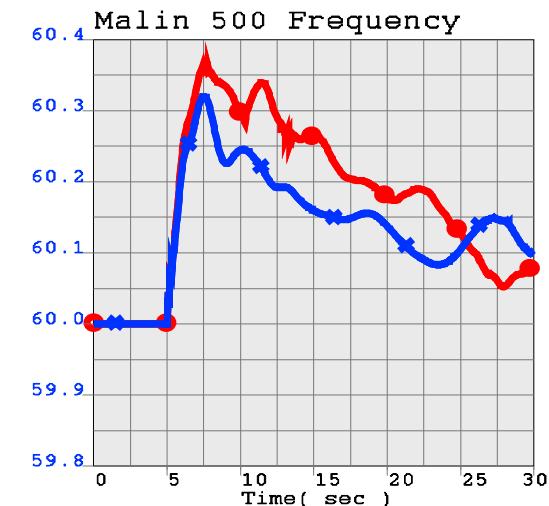
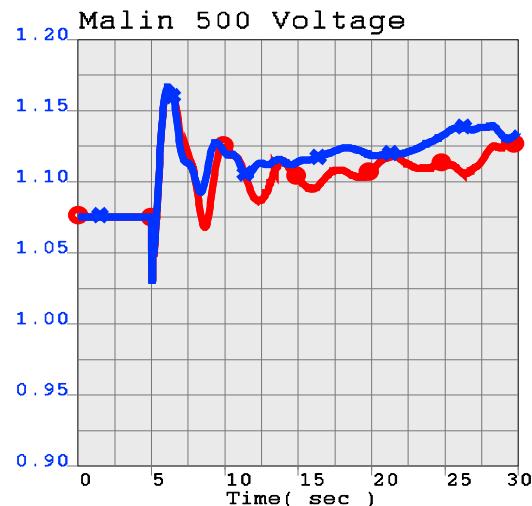
Full-Featured Model (PV1X) OR

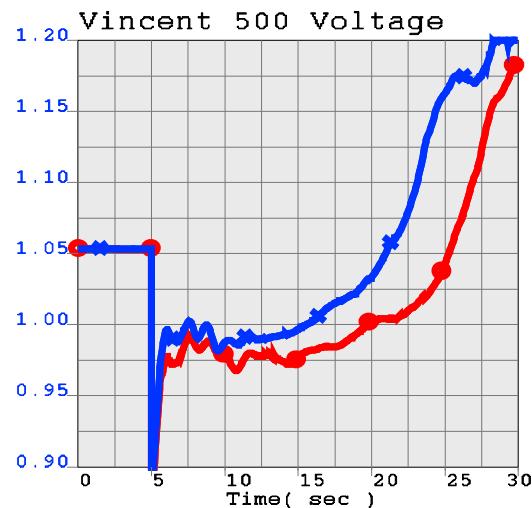

Simplified (PVD1)

Distributed PV Generation

In power flow, residential/commercial PV would be load-netted or represented explicitly (several options possible)

In dynamics, represent with CMPLDWg model



$$\text{CMPLDWg} = \text{CMPLDW} + \text{DG}$$


- Simple version of PVD1

Does it matter?

CMPLDWG Test - WECC data set
Lugo-Victorville 3-phase fault
CMPLDW-blue; CMPLDWG-red

Yes, if penetration levels are high enough...

Main page
Community portal
Current events
Recent changes
Random page
Help
▼ Toolbox
What links here
Related changes
Special pages
Printable version
Permanent link

Page Discussion

Read View source View history

Log in

Main Page

Getting started

- [What is VG Modeling Wiki?](#)
- [List of Turbines](#)

Documentation

- [User's Guide](#)
- [Configuration settings list](#)
- [MediaWiki FAQ](#)
- [MediaWiki release mailing list](#)

News

- [UVIG Fall Technical Workshop \(October 23-25, 2012\)](#)
- [AWEA Wind Energy Fall Symposium \(November 13-15, 2012\)](#)
- [UVIG Spring Technical Workshop and Annual Meeting \(April 2-4, 2013\)](#)

Wind Turbine Technologies

- Mechanical
- Electrical

Current Fleet

- Characteristics
- Trends

Wind Plants

- Design and Configuration
- Performance Characterization

Generic Models

- Background
- Structure
- Known Issues
- Ongoing Developments

Vendor Specific Model Characterization

Model Performance: Case 1 – Fault Event

In this case a remote fault is applied to bus 12 for a duration of 6 cycles (0.1 sec).

GE-1.5 MW – Case 1 and SCR=5

View source View history

Go Search

Series (disambiguation)

with a rated capacity of 1.5-megawatts. Three different models

to 20 revolutions per minute (rpm). Rotor speed is regulated by a 1.5 MW series provides the option of a selectable power factor between 1 production to deliver more VARs during emergency under-voltage

General Electric – 1.5 MW Series

Power Regulation Active blade pitch control

Operating Data

Rated Power 1500 kW [\[1\]](#)

Cut-in wind speed 3.5 to 4 m/s (8 to 9 mph)

Cut-out wind speed 20 to 25 m/s (45 to 55 mph)

Cut-back-int wind speed 17 to 22 m/s (38 to 49 mph)

Wind Class IEC TC III+; IEC TC IIA; IEC TC IIB; IEC TC Ib

Rotor

Rotor diameter 70.5 m (231 ft) for the 1.5se, 77 m (253 ft) for the 1.5se, and 83 m (271 ft) for the 1.5xe model.

WECC Generator Facility Data Testing and Model Validation Requirements

NERC/WECC Model Validation

- NERC MOD standards related to generator models
 - MOD 10-15: Procedures, and requirements for power flow and dynamic models
 - MOD 25: Verification of P/Q capability
 - MOD 26/27: Verification of dynamic models
- WECC recently adopted a Guideline that addresses NERC MOD requirements for generators
 - *Generator Facility Data, Testing and Model Validation Requirements* (Adopted in 2012)
 - Replaces/supplements several technical & procedural docs.
 - Makes specific references to wind/solar modeling (new!)

} Ballot for MOD25 and MOD27 currently open through Oct. 29, 2012
APPROVED!?

Recent WECC Guidelines

- From the Background Section

Guidelines and industry experience have been specific to conventional generation with synchronous machines. The installed capacity of variable generation (wind and solar plants) has increased rapidly, and significant growth is expected in the future. However, representation of variable generation in WECC base cases remains problematic due to the lack of suitable models and limited industry experience. To address this gap, the WECC Modeling and Validation Working Group, through the Renewable Energy Modeling Task Force (REMTF), has been developing modeling guidelines and generic models for wind and solar plants. Going forward, the WECC model data and model validation requirements contain specific provisions for application of model data and model validation requirements to variable generation, in accordance to NERC MOD standards.

[http://www.wecc.biz/committees/StandingCommittees/PCC/10102012/Approval Items/1/WECC Gen Fac Testing and Model Validation Rqmts v 7-13-2012.pdf](http://www.wecc.biz/committees/StandingCommittees/PCC/10102012/Approval%20Items/1/WECC%20Gen%20Fac%20Testing%20and%20Model%20Validation%20Rqmts%20v%207-13-2012.pdf) (Type spaces)

Recent WECC Guideline

- Appendix A: Periodic Model Validation
 - Every 5 years or after substantial change (NERC Project 2007-09 proposing a 10 year cycle for MOD 26/27)
 - Option 1: Validation using recordings taken at the Point of Interconnection of the generating facility
 - Staged tests or naturally-occurring disturbances
 - Approach could be suitable for wind & solar plants
 - Option 2: Validation using recordings taken at the generating unit
 - Full test to derive/measure generator and turbine model parameters, with unit out of service

Recent WECC Guideline

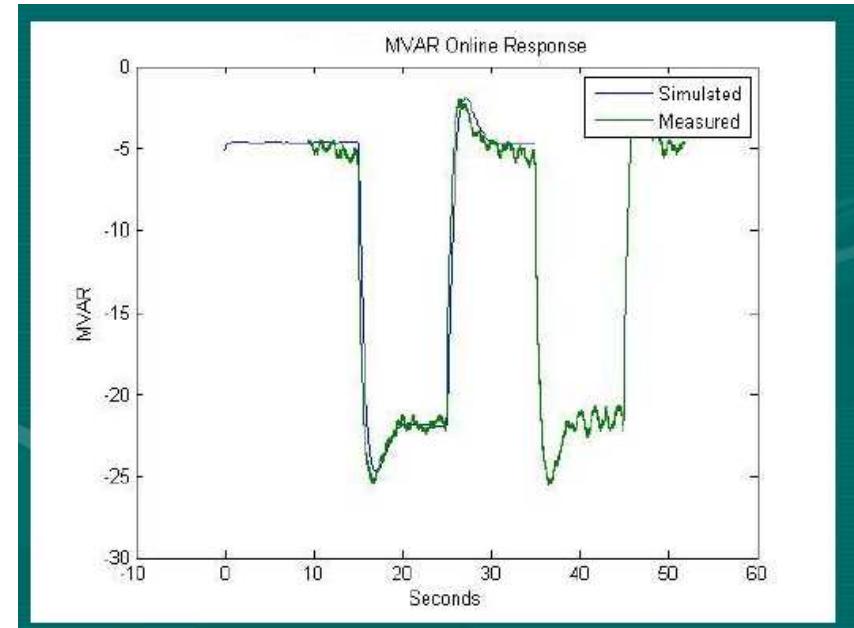
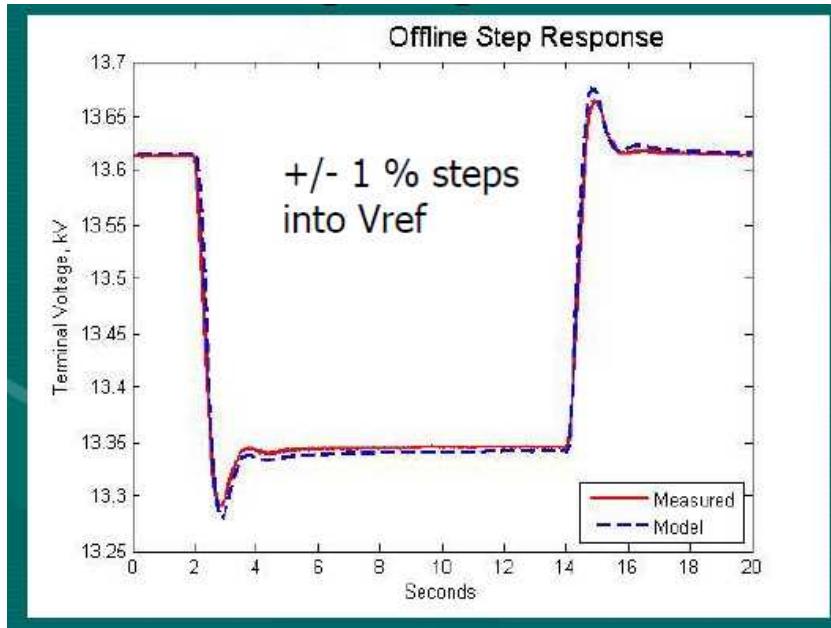
- Appendix B: Baseline testing requirements for the purpose of model validation
- Upon plant commissioning or to establish validity of model for the first time
 - Items 1-5: Guidelines conventional generator, excitation system, PSS, OEL, turbine control
 - Item 6: Guideline for variable generation (VG) plants
 1. Baseline turbine/inverter type test (unit make/model)
 2. Baseline plant test (for plant-level controls)

Recent WECC Guideline

- General guidelines for VG Baseline Type Testing
 - Baseline validation shall be against Reference Data
 - Reference Data can include factory test, field test, disturbance, simulated response from manufacturer-validated reference model
 - Voltage dip with residual voltage of 60% or lower
 - REMTF Comments Nov 2012
 - Clarify whether the “voltage” is positive sequence
 - Should balance detail versus over-specification. May be best to give an example of what we mean by “validation”
 - REMTF to collect comments for clarification

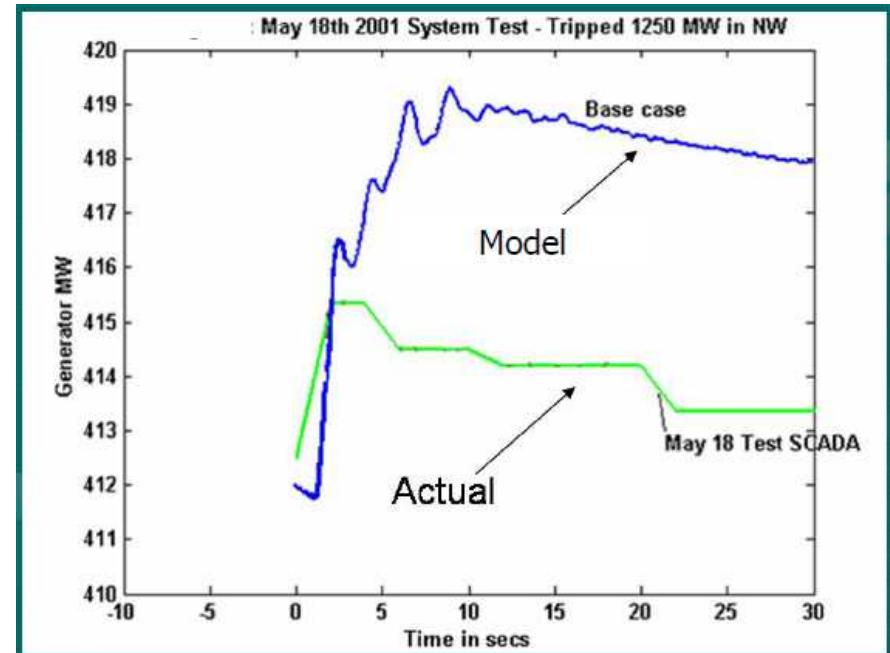
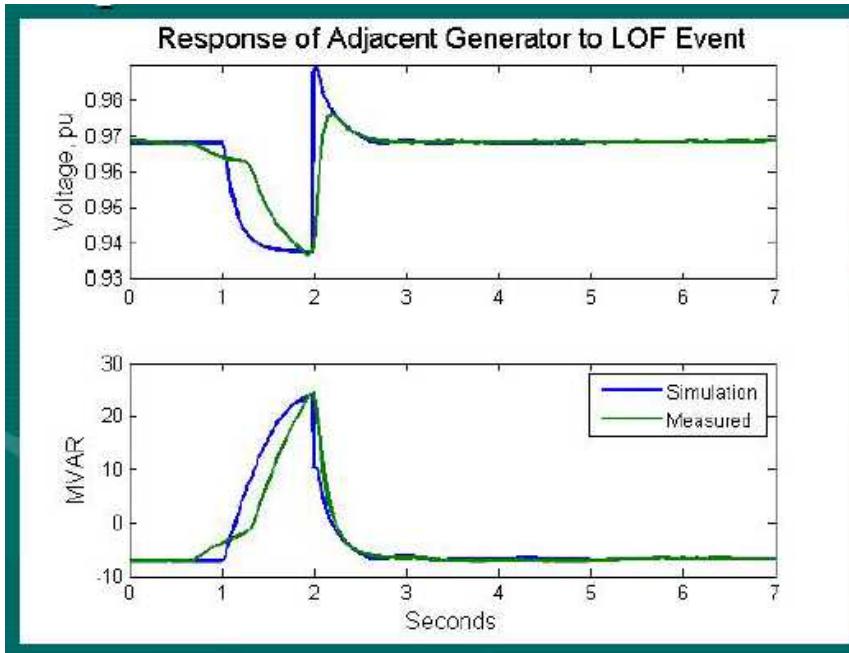
Recent WECC Guideline

- General guidelines for VG Baseline Plant Testing
 - Plant volt/var response test can involve change in control set points, such as a change of volt/var reference, or staged capacitor/reactor switching
 - Include dynamic response (or lack thereof) to a frequency event
 - Include steady state active/reactive output range and control capability
 - Validation against measured data is also acceptable, provided that the disturbance is sufficiently large



Recent WECC Guideline

- Validation at partial output
 - *Evidence of validation should be provided for partial output (40% – 60% of MW rating) and near full output (>75% of MW rating).*
- Validation measure of success
 - *The baseline validation should demonstrate a reasonable match between the WECC approved model and measured data with respect to reactive power response*

Recent WECC Guideline



- Successful model validation
 - Offline and controlled test typically produce good data and good isolation of specific controls

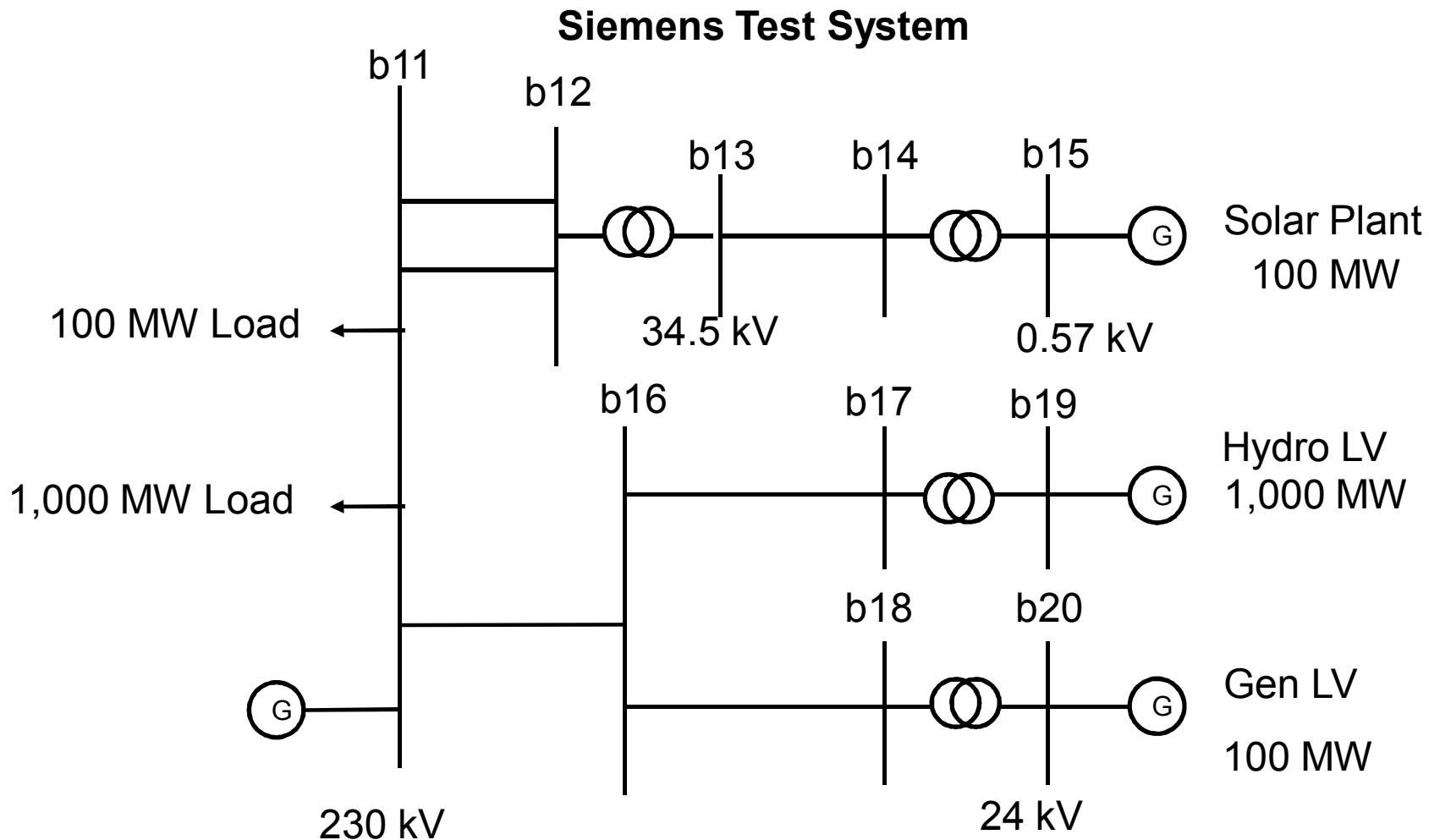
Recent WECC Guideline

- Successful model validation? Depends...
 - Harder to validate models against field disturbances
 - data quality issues, complex event, unbalanced conditions

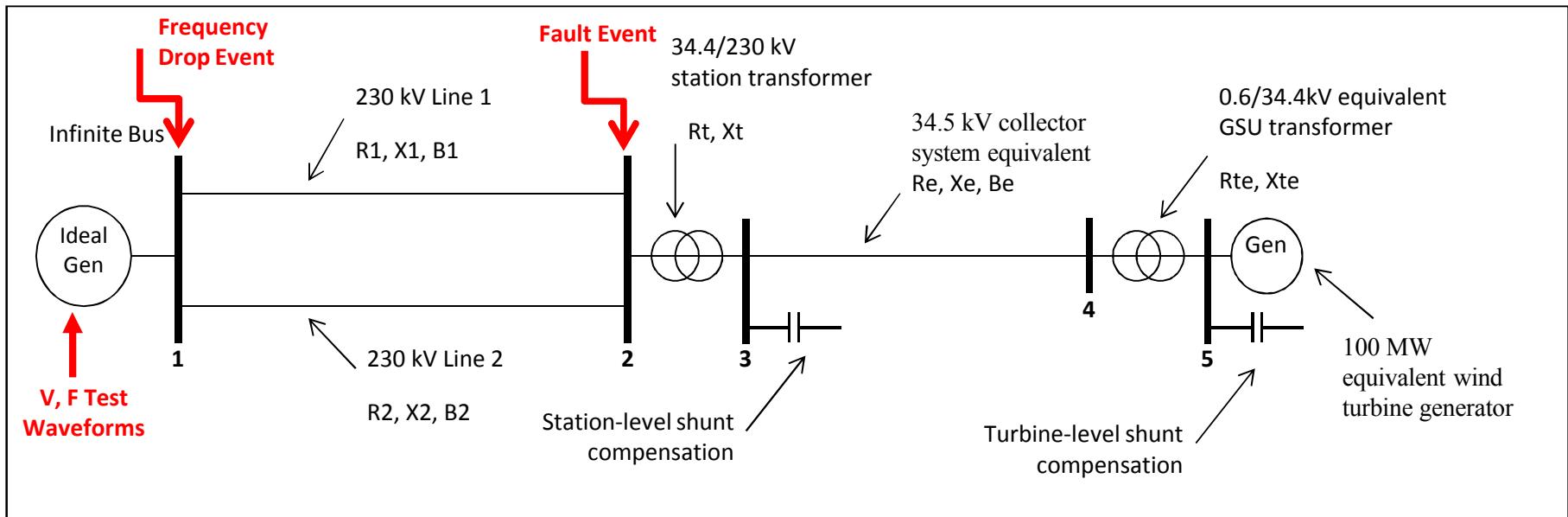
Other Items

- Continuing coordination with IEC WG27 TF88 on wind modeling
- Short Circuit Modeling
- MVWG Modeling Workshop
- Demonstration of EPRI WT3/WT4 model validation tool

Model Testing Slides



TESTING ≠ VALIDATION


- Testing: Reconciliation of model response to simulated disturbance with expected model response to simulated disturbance according to model specifications
- Validation: Reconciliation of model response to simulated disturbance with actual plant response to real-world disturbance according to field and/or test data

Generic Model Testing

WGMG Model Test System

Collector System Equivalent:

$$Rt = 0.0, Xt = 0.1$$

$$Re = 0.015, Xe = 0.025, Be = 0.01$$

$$Rte = 0.0, Xte = 0.05$$

Weak System (SCR = 10 at Bus 2):

$$R1 = R2 = 0.020$$

$$X1 = X2 = 0.250$$

$$B1 = B2 = 0.05$$

Strong System (SCR = 20 at Bus 2):

$$R1 = R2 = 0.010$$

$$X1 = X2 = 0.100$$

$$B1 = B2 = 0.02$$

NOTE: All impedances in pu of 100 MVA base, kV as shown

Dynamic Events for Model Testing

- Bolted 9-cycle, 3-phase fault at Bus 2 (POI. Using weak system
 - With loss of one 230 kV line
 - Self-clearing
- Frequency Oscillation test applied at Bus 1
 - 0.3Hz, 0.5Hz, 1Hz, 2Hz, 3Hz at amplitude 0.1p.u.
- Frequency Ramp test applied at Bus 1
 - up 0.03Hz/sec or 0.05%/sec
- Voltage Ramp test applied at Bus 1
 - up 0.05p.u./sec or 5%/sec
- Frequency Step test applied at Bus 1
 - 0.3Hz per step or 0.05%/step
- Voltage Step test applied at Bus 1
 - 0.05p.u./step or 5%/step
- Pmech set (WT1)
 - 0.25p.u. per step
- Frequency drop test applied at Bus 1
 - 1% drop