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Introduction

 The power system is operated in a conservative way

 Operation of the system closer to its stability limit saves 
money (e.g., transmission deferral).

 Inter-area oscillations are difficult to detect

 Inter-area oscillations can cause blackouts (e.g., WECC 1996)

 Loading of transmission paths follow several stability “limits” 
(e.g., thermal, voltage)

 Inter-area oscillations limits loading of transmission paths

 Building new transmission is a very expensive and time 
consuming task.
 $1M - $4M / mile depending on voltage class (345kV-765kV), terrain, 

right of way, environmental mitigation requirements, etc.

 3-5 years for permitting, 2+ to build



What are Inter-area Oscillations?

 Oscillations (modes) in power systems can be divided into:
 Local modes

 Oscillations associated with electrically “close” groups of generators.

 Generally observed at frequencies >1 Hz.

 Sometimes caused by inadequate tuning of control systems (exciters, 
HVDC converters, SVCs).

 Inter-area modes

 Oscillations associated with the flow of power between “electrically far” 
areas.

 Generally observed at frequencies between 0.1-1 Hz.

 Groups of generators in one area swinging against another group of 
generators in another area.

 Occur across weak or heavily loaded transmission paths. 

 Local and inter-area modes are small-signal stability issues.



Example of Inter-area Oscillations

 Small 2-area, 4-generators, 7-bus system

 Impedance of lines connecting areas 1 and 2 are 
approximately 10X higher than intra-area lines.

 PSLF simulation

 Fault at bus 5



Thermal Generation

 Area 1
 Load: 1,000 MW

 Gen1: 900 MW (1,200 MVA), Gen2: 400 MW (600 MVA), total: 1,300 
GW (1,800 MVA)

 Area 2 
 Load: 1,500 MW

 Gen 3: 582.8 MW (1,050 MVA), Gen 4: 650 MW (1,050 MVA), Total: 
1,233 MW (2,100 MVA)



Thermal + Wind Generation

 Replace Gen 3 (Area 2) with a type 3 wind farm

 Asynchronous generator connected through power 
electronics

 No inertia contribution



Simulation Results - Thermal



Simulation Results – Thermal + Wind



Inter-area Oscillations in the WECC

 PSLF models of the WECC for several cases were employed

 Small signal disturbance: 1.4GW breaker insertion (Chief Joe) 
at different buses in the system

 Generator speeds were tracked

 Mode shape was determine using Prony analysis
 Damping

 Frequency

 Phase

 North – South Mode (N – S)

 Alberta – BC Mode (AB – BC)

 Other modes: BC Mode (0.6Hz) and Montana Mode (0.8Hz)



Light Summer 2012

 N-S Mode

 0.24 Hz



Light Summer 2022

 N – S Mode

 0.29 Hz



Heavy Winter 2012

 N-S Mode

 0.24 Hz



Heavy Winter 2022

 N – S mode

 0.24 Hz



2012 Light Summer

 AB – BC Mode

 0.40 Hz



2022 Light Summer

 AB – BC Mode

 0.47 Hz



2012 Heavy Winter

 AB – BC Mode

 0.35 Hz



2022 Heavy Winter

 AB – BC Mode

 0.39 Hz



Mitigation Strategies

 Control of real power injection into the grid at strategic 
locations
 Generators

 Energy storage

 HVDC converters

 Control of real power flow at strategic branches in the grid
 FACTS

 Transmission switching

 Control of reactive power injection into the grid at strategic 
locations
 Power electronics based resources (e.g., wind and solar generation)

 FACTS (e.g., SVCs)



Simulation Results – Thermal + Wind



Sim. Results - Thermal + Wind + Ctrl



Conclusions

 Increases in renewable generation penetration will change 
mode shapes in the WECC

 Modes seem to remain well damped, but it could change 
depending on the location of new renewable plants

 Active power control, using either curtailed wind plants or in 
combination with energy storage helps reduce inter-area 
oscillations
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Want to read more…

 Renewable Source Controls for Grid Stability by R. Byrne et al. 
SNL report, to be released Nov. 2012.

 Power System Oscillations by G. Rogers

 Power System Stability and Control by P. Kundur
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