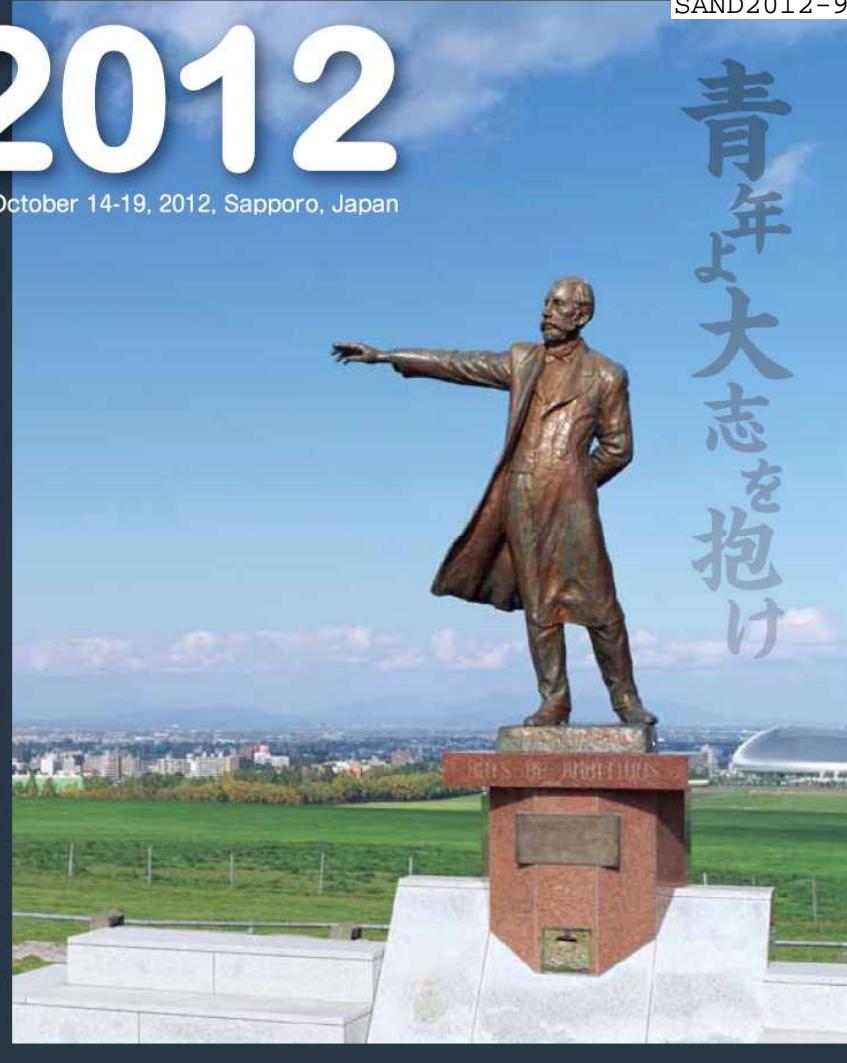


IWN2012

International Workshop on Nitride Semiconductors October 14-19, 2012, Sapporo, Japan


Abstract Book

Sponsored by
The Japan Society of Applied Physics

Co-sponsored by
The Japanese Association for Crystal Growth
The 162nd Committee on Wide Bandgap Semiconductor
Photonic and Electronic Devices,
Japan Society for the Promotion of Science

Review of IWN2012 A. Allerman

- **GaN Electronics**
- **Bulk GaN**
- **GaN on Si**

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

*K. Kishino(*1,*2), V. Ramesh(*1), K. Yamano(*1), and S. Ishizawa(*1)
(*1)Sophia University, Japan and (*2)Sophia Nanotechnology Research Center, Japan

Nanowire LEDs

Kishino – Nanocolumn LEDs

- Review of earlier work
- IR LED (86%InGaN)

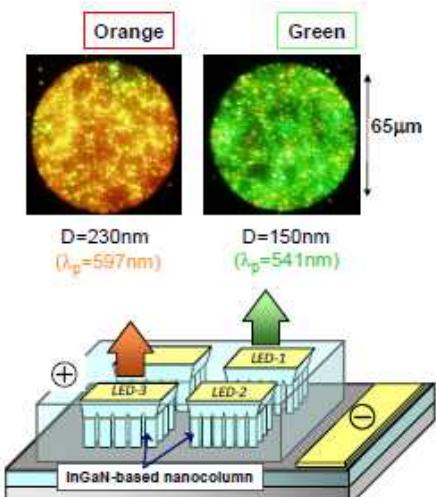


Fig. 3 Green and orange light nanocolumn LEDs monolithically integrated on the same substrate

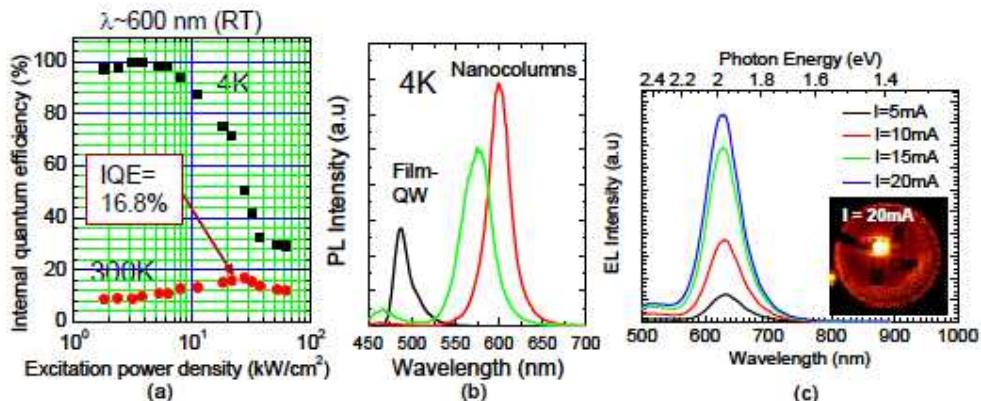
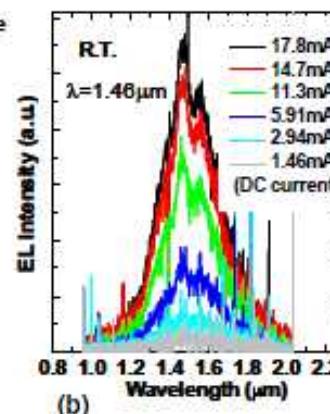
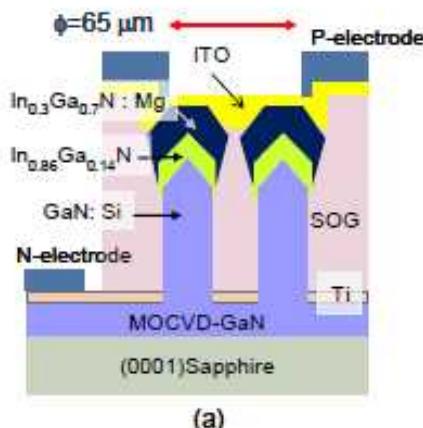




Fig. 1 (a) Estimation of internal quantum efficiency, (b) 4K PL spectra of red-emitting nanocolumns and film-QW ref. sample, and (c) spectrum of a red-emitting nanocolumn LED

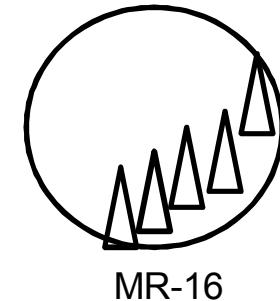
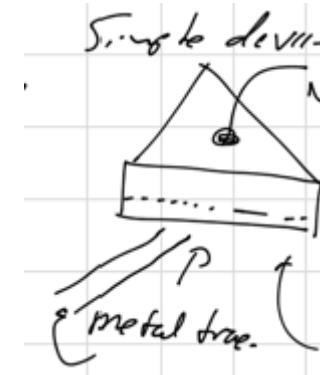
IR LED

Fig. 4. (a) Nanocolumn LEDs with In-rich $\text{In}_{0.86}\text{Ga}_{0.14}\text{N}$ active layer and (b) the infrared EL spectra emitting at $1.46 \mu\text{m}$.

* Michael R Krames

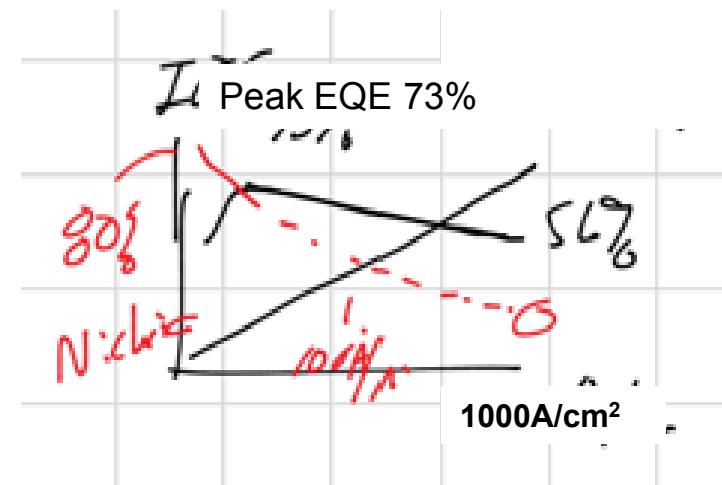
Soraa, Inc., United States of America

Droop



- Auger is it! (optical, electrical)
(Not carrier leakage from wells)
- Keep carrier density low
=> thicker wells, m-plane

LEDs are currently HVPE GaN (face?)
(working on bulk)

GaN on GaN


- low dislocation, reliability @ 1kA/cm²
- Thermal dissipation
- Less droop
- Cost driven by $1m/mm^2$

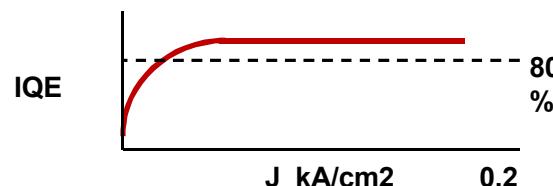
Very big proponent of GaN substrates

Simple chip: p-down mount
no substrate removal (heat spreader)

No change in P_o for 1000hrs, 160A/cm²

From ICMOVPE-16:

1. Droop largely due to polarization of QWs.... Go to non/semi-polar planes
2. Focused on EBL. InAlGaN improved EL.
3. Bulk GaN


MoA1-1 11:10-11:40 Improvement in Efficiency Droop of GaN-Based Light-Emitting Diodes by Optimization of Active Regions
[Invited] Hao-Chung Kuo, National Chiao Tung University, Taiwan

TuA1-5 10:00-10:20 GaN-Based Light Emitting Diodes with a p-InGaN Layer
P. H. Chen, Cheng Huang Kuo, W. C. Lai, L. C. Chang, and C. S. Lee, National Chiao Tung University, Taiwan

WeP-18 Enhanced Optical Power of InGaN/GaN Light-Emitting Diodes by Bandgap-Engineered Electron Blocking Layer
Sang-Jun Lee¹, Chu-Young Cho¹, Sang-Hyun Hong¹, Sang-Heon Han¹, Sukho Yoon², and Sung-Tae Kim², ¹Gwangju Institute of Science and Technology, Korea, ²Samsung LED, Korea

FrA1-1 09:30-10:00 In and Impurity Incorporation in InGaN
[Invited] Hiroshi Amano, Nagoya University, Japan

1. M-plane LEDs
IQE 96%
No droop to 600 A/cm-2
Doesn't understand why droop is so low.
4. C-plane LEDs
"Little" droop to 200Å/cm-2
5. IQE low at low current density
(point defects in InGaN?)

Rump Sessions

Rump sessions (Oct. 17 (Tue) 18:30-20:30)

What is the best substrate for nitride devices?

Organizers: Kou Matsumoto (Taiyo Nippon Sanso EMC, Japan)
Christian Wetzel (Rensselaer Polytechnic Institute, USA)

Room: Conference Hall

Recently, there have been many reports on new substrates for nitride semiconductors such as ammonothermal GaN and Si. However, advantages in the use of these new substrates instead of conventional substrates from a standpoint of final products are not clear yet. In this rump session, both crystal growers and device engineers will get together and discuss when and how these substrates will be used in mass-production.

Physics and Engineering of Light Extraction

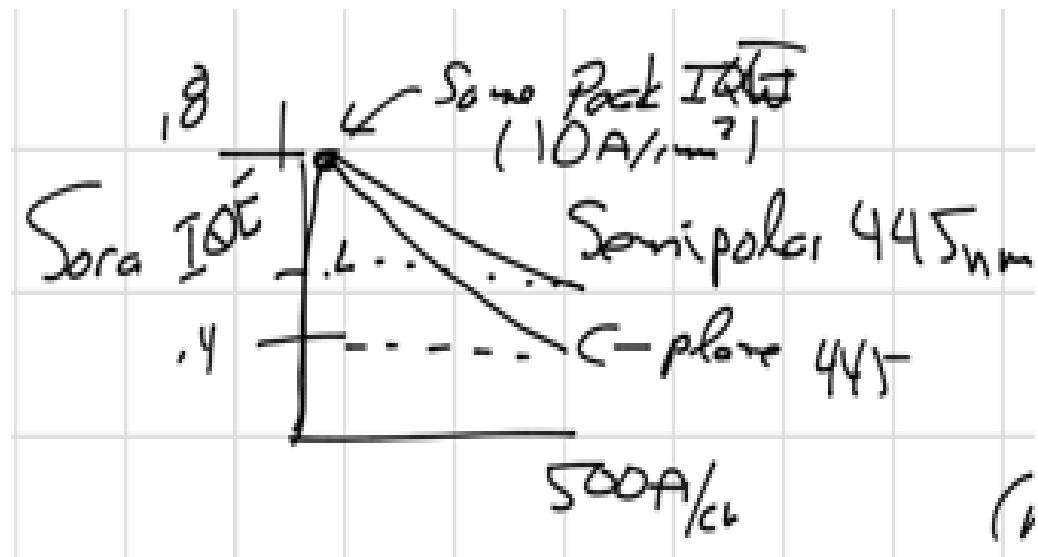
Organizers: Tu Li-Wei (National Sun Yet-Sen University, Taiwan)
Kazuyuki Tadatomo (Yamaguchi University, Japan)
Room: 107/108

In nitride-based LEDs, improvement of light extraction efficiency is still an important issue. Variety of approaches such as patterned sapphire substrate, nano-structure fabrication and surface plasmon has been studied for this purpose. In this rump session, physics and engineering of such approaches for improvement of light extraction will be discussed.

Strategies to overcome efficiency droop in high-power LEDs

Organizers: Ulrich T. Schwarz (Fraunhofer IAF, Germany)
TBA
Room: Mid-sized Hall

Several strategies have been suggested to overcome droop in higher-power, high-efficiency LEDs. This includes wide QWs, nanocolumn LEDs, semi- and non-polar LEDs, large area GaN on Si, and low dislocation (bulk) GaN. In this rump session, the potentials and/or limits of the diverse technologies, e.g. for high temperature operation, will be discussed.


What is the appropriate "gate structure" for normally-off operation?

Organizer plan: Umesh Mishra (UCSB, USA)
Masaaki Kuzuhara (University of Fukui, Japan)
Room: Small Hall

Power conversion applications using GaN transistors have been attracted much attention. Most important issue to enter these markets is how to realize "Normally-off" operation using GaN transistors. Many technologies to obtain normally-off characteristics are proposed in the literature. In this session, the current status and future prospect of gate structure technology for normally-off transistors will be discussed. Process technology, growth technology, and reliability will be focused, comparing different gate structures.

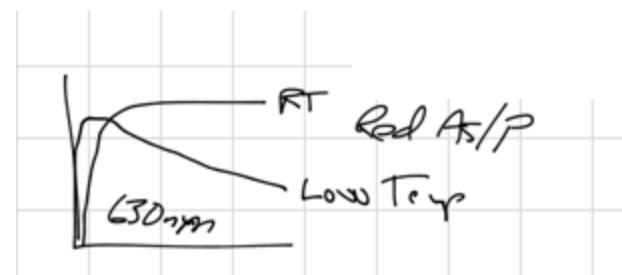
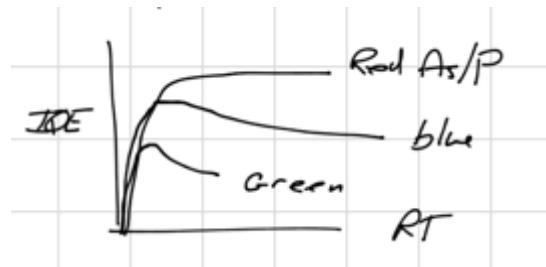
Soraa (?)

- Polarization fields contribute to droop
 - ➔ Lower carrier density
 - ➔ m-plane should help, not clear
- Compare LEDs on c- and m-
- M-plane has lower droop
 - ➔ Faster radiative recombination
 - ➔ 2x more active material
 - ➔ m-plane other material problems

Fred Schubert

- Presented was to reduce droop based on his explanation of droop

J3-1 (invited)
Unraveling the Mystery of the Efficiency Droop in GaInN
LEDs



*E. Fred Schubert
Rensselaer Polytechnic Institute, United States of America

Rump Session: Strategies to overcome droop

Jong-In Shim, Hanyang University

➤ For $I > I_{peak\ IQE}$

→ radiative recombination rate decreases
(appears that non-radiative recombination rate is increasing)

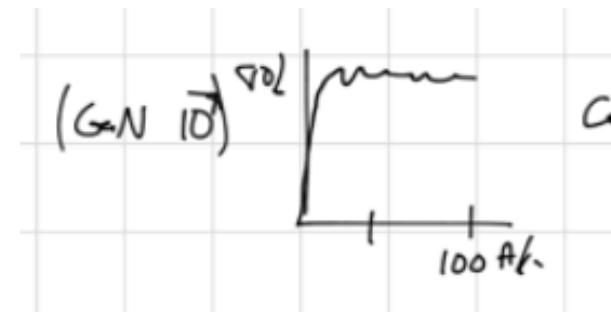
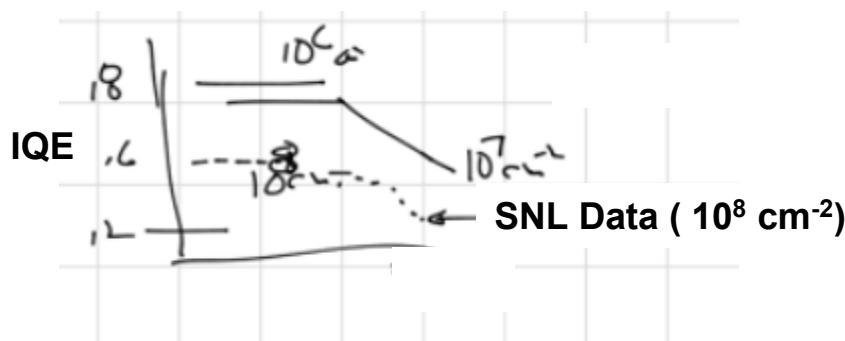
Radiative recombination rate will saturate more at a given current:

- High carrier density
- Low temperature
- Small active volume
- High piezoelectric field
- Unbalanced e- & h concentrations

J3-4 (invited)

12:00 - 12:30

Comprehensive Understanding of Efficiency Droop by the Saturated Radiative Recombination Rate in InGaN-based Light-Emitting Diodes

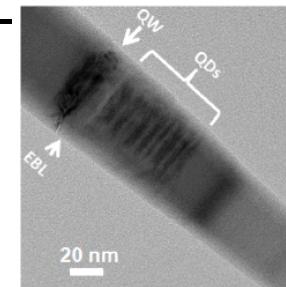


*Jong-In Shim(*1), Dong-Soo Shin(*1), Hyunsung Kim(*1), and Han-Youl Ryu(*2)

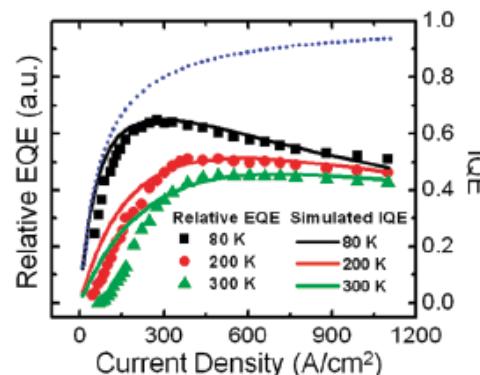
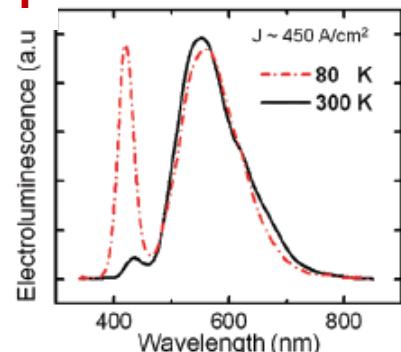
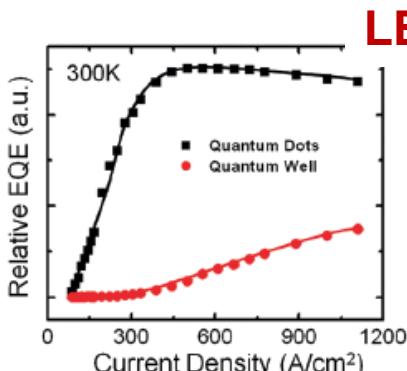
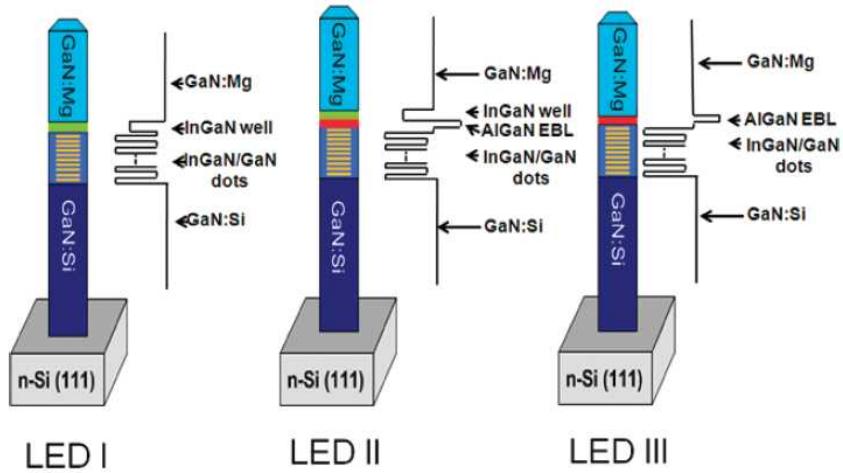
(*1)Hanyang University, Republic of Korea and (*2)Inha University, Republic of Korea


Rump Session: Strategies to overcome droop

Amano

1. Wants thick InGaN well, ~ 20nm, very hard
→ so thin barriers.
2. Low dislocations... bulk GaN (from ICMOVPE-16)

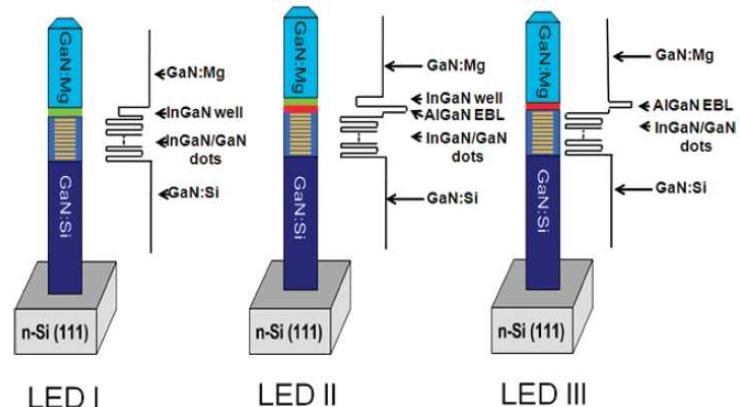

Rump Session: Strategies to overcome droop





NanoLetters 12 (2012) p1317

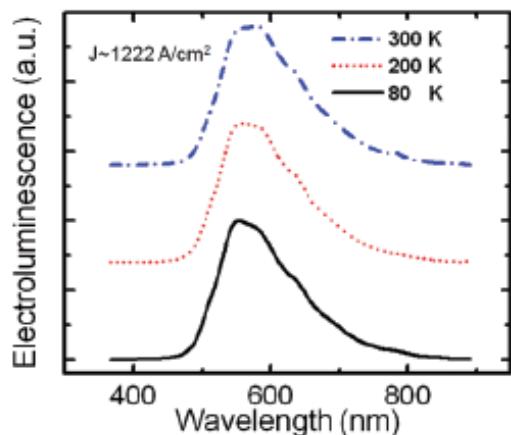
Controlling Electron Overflow in Phosphor-Free InGaN/GaN Nanowire White Light-Emitting Diodes

Hieu Pham Trung Nguyen,[†] Kai Cui,[†] Shaofei Zhang,[†] Mehrdad Djavid,[†] Andreas Korinek,[‡] Gianluigi A. Botton,[‡] and Zetian Mi^{*,†}

1. Electron leakage in GaN nanowire LEDs with InGaN dots embedded in GaN
2. Electron leakage is responsible for LED degradation with current
3. Adding a p-AlGaN e-block stopped leakage, no droop to 2200A/cm-2.
4. Clearly droop is not dominated by Auger

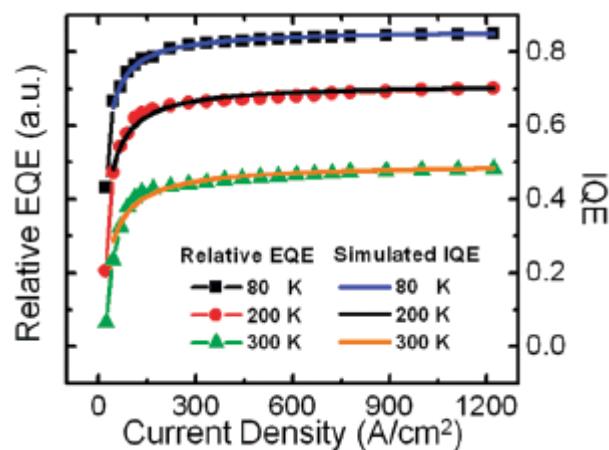


Rump Session: Strategies to overcome droop


NanoLetters 12 (2012) p1317

Controlling Electron Overflow in Phosphor-Free InGaN/GaN Nanowire White Light-Emitting Diodes

Hieu Pham Trung Nguyen,[†] Kai Cui,[†] Shaofei Zhang,[†] Mehrdad Djavid,[†] Andreas Korinek,[‡] Gianluigi A. Botton,[‡] and Zetian Mi^{*,†}



LED 2 – Add EBL between dots and QW

- No emission from QW
- No e- leaking to QW

LED 3 – EBL, no QW

GaN on “anything”

Higher surface migration
=> Lower T_g
=> No phase separation
=> No substrate interaction

Roll to roll processing:
Mica sheet
Large grain metal
Graphite sheet

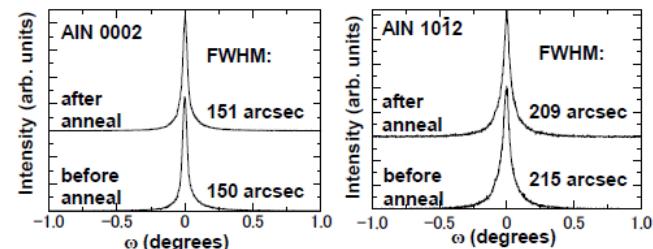
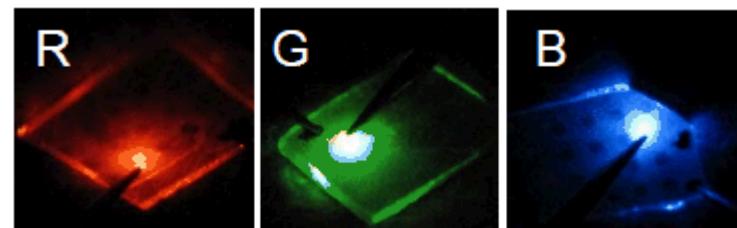
Might be same process as PLD presented at EMC and ICNS several years ago.
 (Univ. of Tokyo)

Table 1 Summary of growth techniques for GaN

	MOCVD	rf-MBE	Pulsed Sputtering Deposition (PSD)
Maximum growth rate	10 $\mu\text{m}/\text{hr}$	1 $\mu\text{m}/\text{hr}$	10 $\mu\text{m}/\text{hr}$
Typical growth temperature	1000–1200 °C	700–800 °C	0–900 °C
Cost for apparatus	High	High	Low
Substrate scale-up	Difficult	Difficult	Easy
Toxic gas	Necessary	Unnecessary	Unnecessary
Demonstrated devices	LEDs, LDs, HEMTs, Solar Cells, etc.	LEDs, LDs, HEMTs, Solar Cells, etc.	LEDs, HEMTs, and Solar Cells

Table 2 Typical optical and electrical properties of GaN prepared by PSD

Electron mobility	600–700 cm^2/Vs (at carrier concentrations on $10^{16}/\text{cm}^3$)
Hole mobility	5–15 cm^2/Vs (at carrier concentrations on $10^{17}/\text{cm}^3$)
FWHM of room temperature PL	30–40 meV

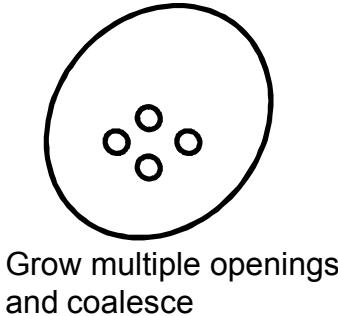
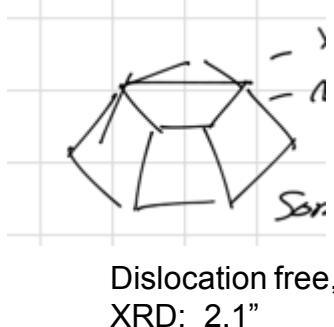
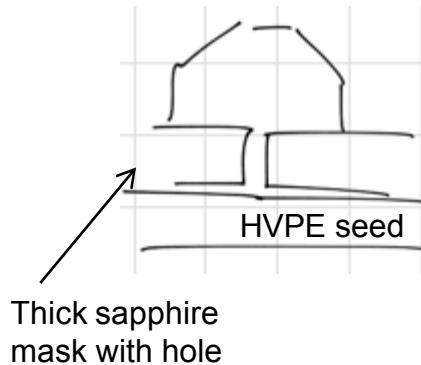
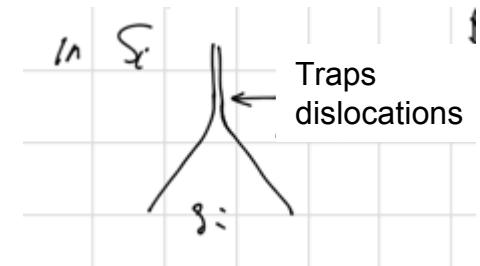
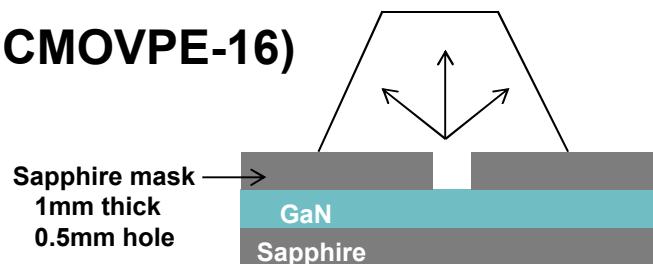



Fig. 1 XRCs for PSD-AlN grown at room temperature on 6H-SiC before and after annealing at 1200°C

Fig. 2 RGB LEDs fabricated with PSD on conventional substrate



**Start with HVPE seed and lower dislocations
 (some variation of “confined epitaxy”)**


**Like Amano, ELOG through opening
 Grow seeds together**

“Necked down” like in Si

Amano (ICMOVPE-16)

- Na Flux process, 800°C
- 1.6cm, 400hrs
- Single grain emerges from hole in sapphire mask
- Dislocations: 0 to 1000 cm⁻²
- XRD: (002) – 27"
 (102) – 26"

*Yutaka Mikawa, Hideo Fujisawa, Kazunori Kamada, Makoto Saito, Shinichiro Kawabata, Yuji Kagamitani, and Toshinari Fujimori
Mitsubishi Chemical Corporation, Japan

Super Critical Acidic Ammonothermal Technology (SCAT)

- 150 – 300 Mpa
- 500 – 650C
- 30-600 um/day
- (Sapphire, 20,000kg / 50 days)

Very nice 16x36x5mm GaN crystal

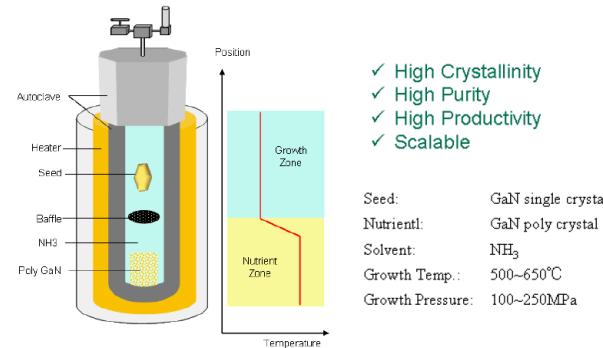


Fig. 1 Schematic diagram of SCAAT™ and its features

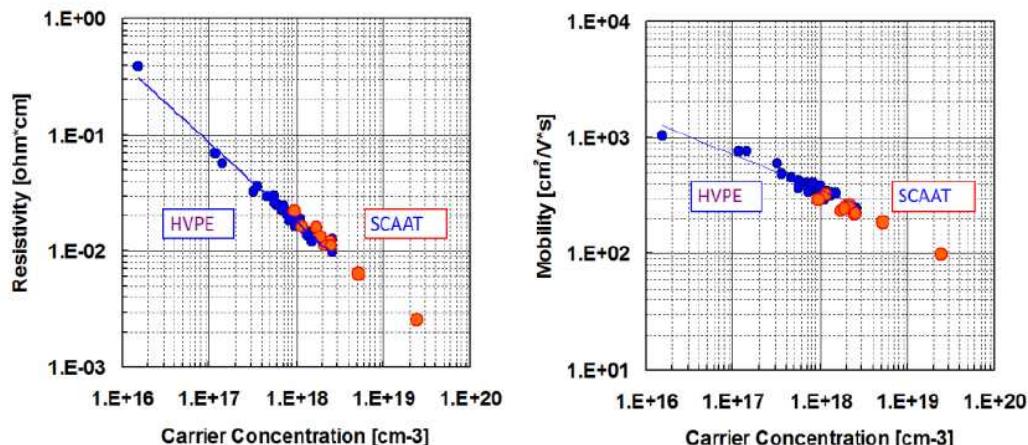
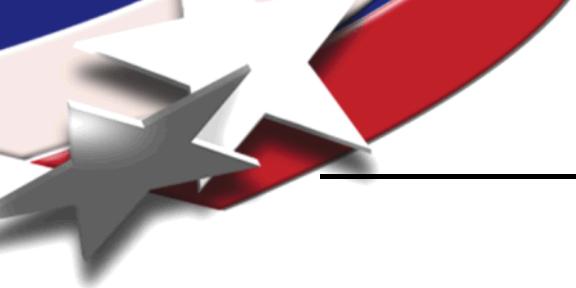


Fig. 2 Electric properties for SCAAT™ and HVPE GaN

GR1-2 14:30 - 14:45
High Quality, Low Cost Ammonothermal Bulk GaN Substrates


Dirk Ehrentraut, Rajeev T. Pakalapati, Derrick S. Kamber, Wenkan Jiang, Douglas S. Pocius, Bradley C. Downey, Melvin B. McLaurin, and ^{*}Mark P D'evelyn
Soraa, Inc., United States of America

For LEDs ... all the known reasons

Power Electronics. Now can consider vertical devices

SCoRa – Scalable Compact Rapid Ammonothermal

- 10-30um/hr => 5-100x higher than conventional ammonothermal GaN
- Dislocations 1e5 – 1e6 cm-2, XRD 300-200" (not state of the art)
- N-type background, yellowish

GaN Substrates

GR1-3 14:45 - 15:00
Properties of High Transparency GaN substrates obtained by ammonobasic technology

*Robert Dwilinski, Roman Doradzinski, Marcin Zajac, Romuald Stankiewicz, and Robert Kucharski
AMMONO SA, Poland

GR1-4 15:00 - 15:15
Powder synthesis and ammonothermal crystal growth of GaN using Ga metal as a starting material

*Chiaki Yokoyama(*1), Quanxi Bao(*3), Hiromi Sawayama(*1), Takanori Hashimoto(*1), Fukuma Sato(*1), Kouji Hazu(*1), Yuji Kagamitani(*2), Takayuki Ishinabe(*2), Makoto Saito(*2), Rinzo Kayano(*3), Daisuke Tomida(*1), Kun Qiao(*1), Shigefusa f Chichibu(*1), and Tohru Ishiguro(*1)

(*1)*Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan*, (*2)*Mitsubishi Chemical Corp., Japan*, and

(*3)*Muroran Research Laboratory, The Japan Steel Works, Ltd., Japan*

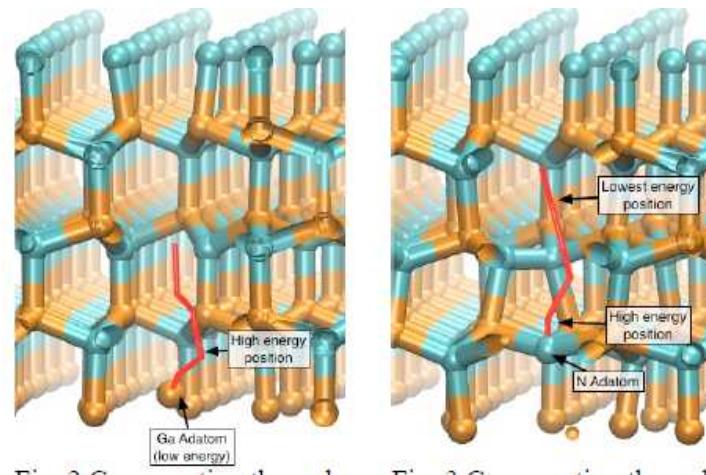
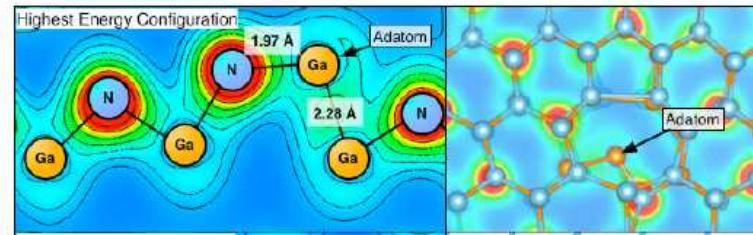
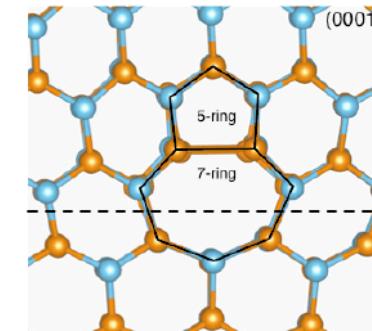
GR1-5 15:15 - 15:30
The coalescence growth of high-quality GaN crystals using the Na flux method

*Masayuki Imanishi, Kosuke Murakami, Hiroki Imabayashi, Hideo Takazawa, Yuma Todoroki, Daisuke Matsuo, Mihoko Maruyama, Mamoru Imade, Masashi Yoshimura, and Yusuke Mori

Department of Electrical, Electronic and Information Engineering, Osaka University, Japan

Many other presentations on GaN substrates.

*Matthew K Horton(*1), Gabor Csányi(*2), and Michelle A Moram(*1)




(*1)Department of Materials, Imperial College London, United Kingdom and (*2)Department of Engineering, University of Cambridge, United Kingdom

APL 97, 261907 (2010)

- Calculated activation energies for pipe diffusion Ga, N & vacancies along dislocations

Mechanism for dislocation climb?

- Open core dislocations (a-type) 4, 8 & 5/7 atom rings
- N diffusion in 5/7 ring, $E_a > 1.5\text{eV}$, complex, not rate limiting
- Ga diffusion in 5/7 ring, $E_a > 3.3\text{eV}$, Ga_v even higher E_a
- Si: $E_a > 5.5\text{eV}$, Mg: $E_a > 3.5\text{eV}$

High pressure growth of InGaN

How to grow better InGaN:

- $T_g < 800\text{C} \rightarrow$ Impurity incorporation is high
- $T_g > 800\text{C} \rightarrow$ In is lost from surface

High pressure is needed to keep In on surface

- Target growth to 10 atms.
- Novel 2-stage system for bubblers

Presented data on Xin vs. pressure in QWs

- QWs have poor XRD, gas change out at high pressure

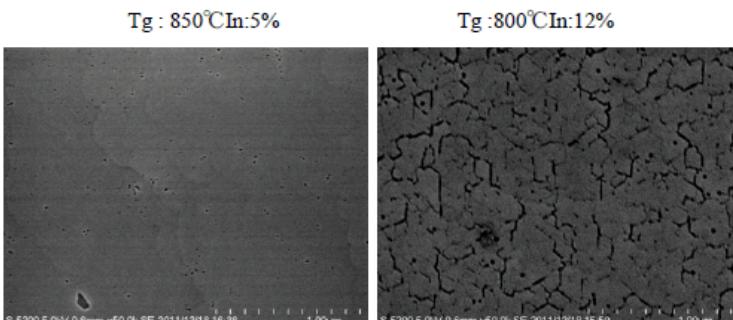
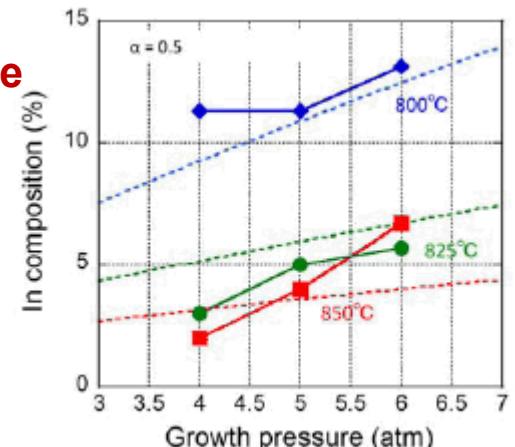
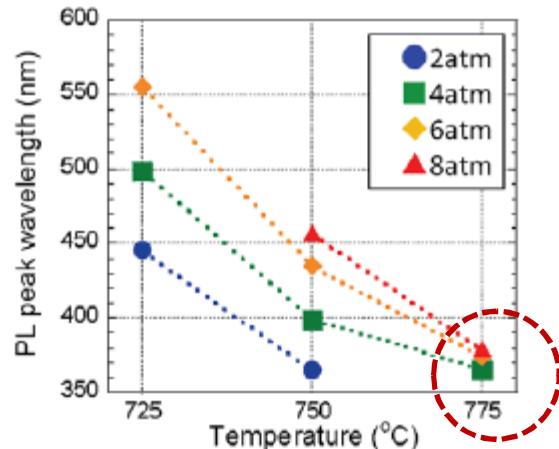




Fig. 2 SEM image of 90nm thick InGaN surface grown at 850°C, 800°C. The morphology was much improved at 850°C growth.

Xin vs Pressure,
--- thermo-analysis

PL-4 (plenary)

10:00 - 11:00

Current status and future prospects of GaN-based LDs

*Shinichi Nagahama

Nichia corporation, Japan

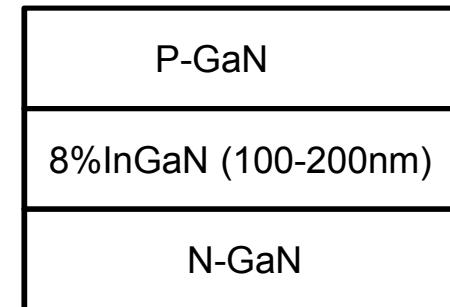
Power Blue and Green LD for micro-projectors

➤ c-GaN, cleaved facets

	525nm	520nm	450nm
I _{th} (mA)	430	360	230
J _{th} (kA/cm ²)	2.38	2.0	0.64
P _o (W)	0.83	0.97	3.75 (2.3A)
V _f (V)	4.81	4.74	4.29
WPE (%) @ 1.5A)	11.5	13.6	38.5% (2.3A)

*Motoaki Iwaya(*1), Mikiko Mori(*1), Shinichiro Kondo(*1), Shota Yamamoto(*1), Tatsuro Nakao(*1), Takahiro Fujii(*1), Tetsuya Takeuchi(*1), Satoshi Kamiyama(*1), Isamu Akasaki(*1,*3), and Hiroshi Amano(*2,*3)

(*1)Faculty of Science and Technology, Meijo University, Japan,


(*2)Graduate School of Engineering, Nagoya University, Japan, and

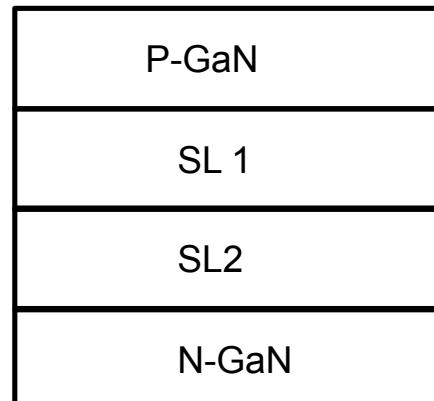
(*3)Akasaki Research Center, Nagoya University, Japan

Solar – Iwaya, Amano

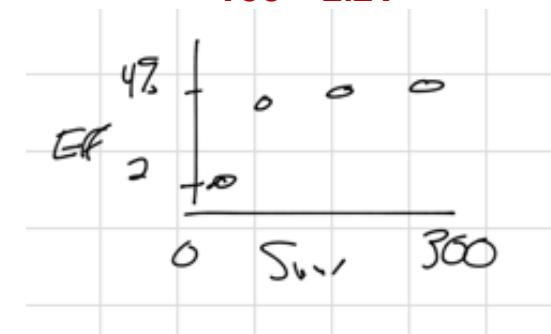
InGaN cell on free standing GaN

- Argued that InGaN can be produced economically
- Working toward multi-junction InGaN

1. Improved InGaN with GaN substrate


Too much strain
=> pits, misfit dislocations

2. Use InGaN SL rather than single layer

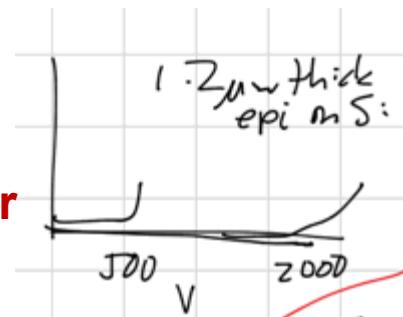
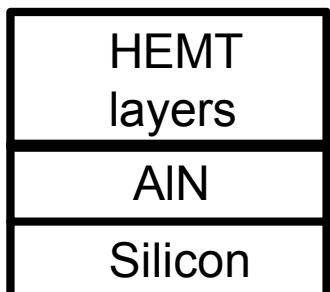

Use InGaN/InGaN SL

SL1: (3nm 6%, 3nm 17%)

SL 2: (3nm GaN, 3nm 17%)

@ 300suns: Efficiency – 4%
FF- 79%
Voc – 2.2V

*Daisuke Ueda(*1), Nobuyuki Otsuka(*1), Shuichi Nagai(*1), Noboru Negoro(*2), Takeshi Fukuda(*1), Hiroyuki Sakai(*1), Tatsuo Morita(*2), Tetsuzo Ueda(*2), and Tsuyoshi Tanaka(*2)



(*1)Advanced Technology Research Laboratories, Panasonic, Japan
and (*2)Industrial Devices Company, Panasonic, Japan

Review previous work

- 10kV HEMTs
- Gate Injected Transistor (p-AlGaN gate)

New work

1. AlN on Si (not in abstract)
 - Build HEMT structures on thick AlN/Si
 - Thinner epi with 2kV breakdown

HEMTS - Panasonic

2. Power switching required DC isolation
 - Use RF coupling circuit
“Drive by microwave”
 - DC isolation to 10kV
 - Monolithic DC-DC, inverters...etc.

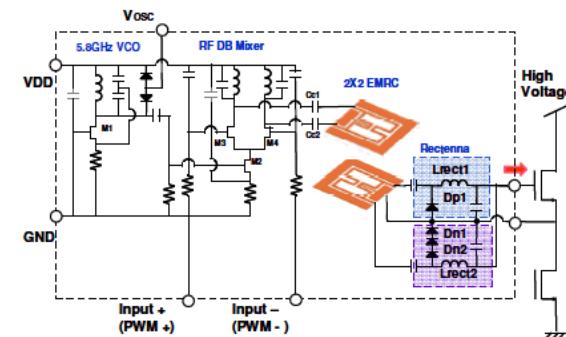


Fig.2 Drive-by-Microwave Circuit with “butterfly coupler”

ED1-1 (invited)

GaN Power Devices for Future Automotive Systems

Masakazu Kanechika

Toyota Central R&D Labs., Inc.

9:00 - 9:30

GaN devices will replace Si (IGBT, MOSFET)

GaN (vertical) - High power modules > 50kW
- GaN substrates

GaN on Si (lateral) – Low, mid-power modules

Challenges for GaN electronics

- Current collapse
- Avalanche capacity
- Insulated gate lifetime

Si devices survive avalanche event,
GaN doesn't

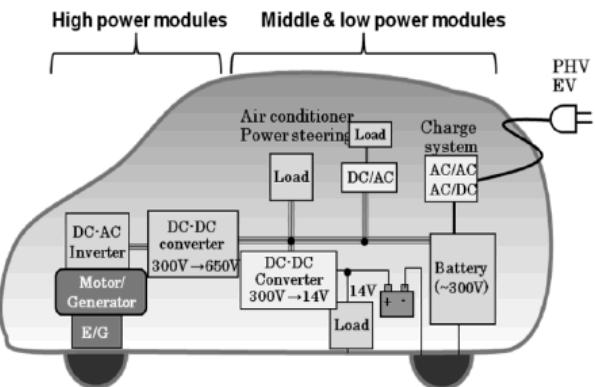


Fig. 1 Power modules in the HV/PHV

Current hybrids – 2 cooling systems
(engine - 100C, Si electronics – 65C)

S3-1 (invited)

GaN-on-Si: soon on the fast lane

*Alois Jakob Krost

Otto-von-Guericke University Magdeburg, Germany

16:00 - 16:30

Similar to ICMOVPE-16 talk

In-situ SiNx passivation critical

ED1-4

Design and Simulation of Novel Enhancement Mode 5-20kV GaN Vertical Superjunction HEMTs for Smart Grid Applications

*Zhongda Li and T. Paul Chow

Rensselaer Polytechnic Institute, United States of America

10:00 - 10:15

ED4-1 (invited)

GaN-on-Si: Recent progress for high performance power devices

*Marianne Germain, Stefan Degroote, Bram Sijmus, Domenica Visalli, and Joff Derluyn

EpiGaN nv, Belgium

9:00 - 9:30

Design and simulation of vertical GaN transistor

Talks by Transform

PL-3 (plenary) 9:00 - 10:00
High Efficiency GaN Power Devices: The Technology & Business Opportunities

*Yifeng Wu
Transphorm Inc., United States of America

ED1-2 9:30 - 9:45
First demonstration of high performance 1kV AlGaN/GaN HEMTs on Si and their use in the drive of both an induction motor and a permanent magnet motor

*Srabanti Chowdhury, Don Kebort, Jesus Magadia, Dietrich Graumann, Nick Fichtenbaum, Jim Honea, Yifeng Wu, Primit Parikh, and Umesh Mishra
Transphorm Inc., California, United States of America