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A Look Back at the
ULS. Department of Energy’s
Aquatic Species Program:
Biodiesel from Algae

T

Cyanobacteria. This group 1s prokaryotic, and therefore very different from all
other groups of microalgae. They contain no nucleus, no chloroplasts, and have
a different gene structure. There are approximately 2,000 species of
cyanobacteria, which occur in many habitats. Although this group 1s
distinguished by having members that can assimilate atmospheric N (thus
elimiating the need to provide fixed N to the cells), no member of this class
produces significant quantities of storage lipid; therefore, this group was not
deemed useful to the ASP.
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Why Cyanobacteria ?

Advantages of Cyanobacteria for Fuel Production
Desirable strain traits

» Easily transformed

* Homologous recombination — targeted genome

integration

» Gene expression not complicated by RNAI
« Established genetic tools
« Fast growth rates and strain robustness
Process design advantages
» Product excretion enables continuous production
» No extraction process required

» Lower nutrient requirements (N&P)
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Target Fuel: Free Fatty Acids (FFA)

Desirable Product Characteristics 0

* Photoautotrophic growth H OMN\/\/\/\
» Naturally produced biomolecule FFA: hexadecanoic acid

« High energy density

« Natural fuel excretion/secretion? FEA
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Outline

. Engineering a model cyanobacterium Synechococcus elongatus
PCC 7942 for FFA production

. Physiological effects of FFA production in cyanobacteria

. Seg-ing targets for improving FFA production

. Is cyanobacterial host selection critical for FFA production? ...
Synechococcus sp. PCC 7002: Another model host

. Biofuel toxicity for cyanobacteria
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Genetic Engineering of Cyanobacteria to Produce FFA

FFA
Synechococcus elongatus PCC 7942 A
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7942: wild type; SE01: Aaas; SEQ02: Aaas, ‘tesA; SE03: Aaas, fat1; SE04: Aaas, fat1, rbcLS; SE05: Aaas, fat1, rbcLS, accBCDA

aas — acyl-ACP synthetase / long-chain-fatty-acid CoA ligase
‘tesA — truncated thioesterase from Escherichia coli

fat1 — acyl-ACP thioesterase from Chlamydomonas reinhardftii
rbcLS — native RuBisCO o
accBCDA — multi-subunit acetyl-CoA carboxylase from C. reinhardtii (chloroplast associated) Natiorial
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7942 Strain Construction

Plasmid Construct

pSE15 Aaas SEO1
pSE16 Aaas, Ptrc - tesA SEO02
pSE17 Aaas, Ptrc - fat1 SEO03
pSE18 Aaas, Ptrc - fat1 - rbcLS SE04, SE05
pBCDA | PLlacO1 - accBCDA




FFA Production in Engineered 7942 Strains

7942: wild type; SEO01: Aaas; SE02: Aaas, ‘tesA; SE03: Aaas, fat1;, SE04: Aaas, fat1, rbcLS; SEO05: Aaas, fat1, rbcLS, accBCDA 1

Excreted FFA _ _
60 « All engineered strains produce and

REhes excrete FFA

50
« Without thioesterase expression,

FFA only accumulate during
stationary phase
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Does Increasing Gene Expression Improve FFA Production?
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FFA Production
seo, 40 )4

200 1 35 | -=-SE04
c
S 150 -
@
2
w 100
£
B
8 50
(W]
b
P i

fatl .
50 ¥ L rbcS
O [ [ [
0 100 200 300 400 500
« No inducibl Time (h) | promoter

improves rbcLS expression

| o

Sandia
National
Laboratories



Does Increasing Gene Expression Improve FFA Production?
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Outline

. Engineering a model cyanobacterium Synechococcus elongatus

PCC 7942 for FFA production

» Engineered 7942 produces and excretes FFA, but the overexpression of
rate-limiting steps and optimization of recombinant gene expression

does not improve FFA yields.

. Physiological effects of FFA production in cyanobacteria

. Seg-ing targets for improving FFA production

. Is cyanobacterial host selection critical for FFA production? ...

Synechococcus sp. PCC 7002: Another model host

. Biofuel toxicity for cyanobacteria
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Physiological Effects: Growth, Stress, and Cell Death

Oxidative Stress

- Final cell concentration reduced by more than 9 | oo
80% in SEO05 and SEQ7 %0 )

~
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* FFA-producing strains have elevated levels of
reactive oxygen species (ROS) and increased
cell death / membrane permeability
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7942: wild type; SEO01: Aaas; SE02: Aaas, ‘tesA; SE03: Aaas, fat1;, SE04: Aaas, fat1, rbcLS; SEO05: Aaas, fat1, rbcLS, accBCDA 1
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Photosynthetic Effects

* Photosynthetic yield drops to zero in FFA-
producing strains

 Bulk absorbance measurements indicate a
selective degradation of chlorophyll-a pigment

« Hyperspectral confocal fluorescence microscopy
shows photosynthetic pigments are aggregating
at the cell poles in the engineered strain SE02

PC APC Chl a RGB

7942

SEO02
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7942: wild type; SEO01: Aaas; SE02: Aaas, tesA;

Photosynthetic Yield
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SEO04: Aaas, fat1, rbclS; SEQ5: Aaas, fat1, rbclLS, accBCDA 1
13 SEO06: Aaas, Fat1, P rbcLS; SEO7: Aaas, Fat1, Py rbcLS, P, accBC P, accDA /
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Possible Mechanisms of FFA Toxicity

. . . Thylakoid Membrane Composition
Mechanism 1: Engineered strains have altered 80 ! = .

membrane composition
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* Increased levels of saturated FA and lower
levels of polyunsaturated FA in thylakoid
membranes
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* Leads to increased membrane viscosity and
potential effect on phycobilisome attachment
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Ruffing AM, Jones HDT. Physiological effects of free fatty acid production in genetically engineered
14 Synechococcus elongatus PCC 7942. (2012) Biotech. Bioeng. 109 (9): 2190-9.
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Outline

Engineering a model cyanobacterium Synechococcus elongatus
PCC 7942 for FFA production

» Engineered 7942 produces and excretes FFA, but the overexpression of
rate-limiting steps and optimization of recombinant gene expression

does not improve FFA yields.

Physiological effects of FFA production in cyanobacteria

» These effects limit FFA production and must be addressed.

. Seg-ing targets for improving FFA production

|s cyanobacterial host selection critical for FFA production? ...

Synechococcus sp. PCC 7002: Another model host

. Biofuel toxicity for cyanobacteria
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Can S. elongatus be engineered to overcome these effects?

RNA-seq to identify genetic response to FFA Cell Growth
production ool

« Jstrains: 7942, SEO1, SE02
« 2 time points: 100h, 240h

OD(730nm)

« 3 biological replicates
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7942: wild type; SEO1: Aaas; SE02: Aaas, TesA



RNA-seq Analysis of FFA-Producing Cyanobacteria

Up-Regulated Genes (150)
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Differential Gene Expression: Fold change > 2, p-value < 0.05. Lo
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RNA-seq Analysis of FFA-Producing Cyanobacteria

Down-Regulated Genes (204)
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|dentifying Targets for Improving FFA Production

100h 100h 240h 240h SEO1
SE02 : SEO1 SE02:7942 SE01:7942 SE02:7942 240h :100h Average Overexpress
Locus Product FC PValue FC PValue FC PValue FC PValue FC PValue FC or Knockout
Hypothetical Proteins
444 |hypothetical protein 3.19|3.6E-15( 3.83| 6.6E-20 2.01|{1.6E-03| 4.05(3.6E-23 3.27|Knockout
1561 |hypothetical protein 2.43|1.6E-13| 3.69]|2.3E-12| 2.14]|1.2E-05| 2.40|2.4E-06 2.67|Knockout
1023 |hypothetical protein 2.02|1.5E-05| 2.39|5.2E-07| 2.11]|8.2E-05| 2.06| 3.6E-06 2.15|Knockout
1476|hypothetical protein -8.08| 1.4E-03|-5.41| 6.3E-05|-4.87| 2.3E-03|-2.38| 1.3E-08 -5.18|Overexpress
1655(hypothetical protein -3.07|4.9E-07|-4.03] 2.9E-09(-2.60] 1.6E-08 -2.22|1.1E-06 -2.98|Overexpress
900[hypothetical protein -2.74(5.9E-11|-4.03]| 1.8E-07(-2.03| 4.1E-05]-2.90| 4.1E-02 -2.92|Overexpress
B2632|hypothetical protein -2.66|6.1E-12|-3.50|1.9E-10(-2.26] 3.2E-09] -2.30] 2.3E-05 -2.68|Overexpress
122|hypothetical protein -2.06| 3.4E-04|-3.38| 5.2E-08|-2.03| 5.5E-05( -2.65| 2.3E-05 -2.53|Overexpress
1845|hypothetical protein -2.34|5.4E-05|-2.14|5.1E-08]-2.64]| 3.0E-01|-2.01| 5.2E-10 -2.28|0Overexpress
ROS Degrading Proteins
1214|glutathione peroxidase 2.04|1.3E-06( 3.22|7.7E-11 2.63|Overexpress
437|glutathione peroxidase 2.83| 7.5E-09 2.25|2.4E-04 2.54|0verexpress
801|superoxide dismutase 2.70|1.2E-10( 2.42(7.2E-12 2.56|Overexpress
1656(catalase/peroxidase HPI -2.38|4.6E-05 -2.38|Overexpress
Potential FFA Exporters
transport system
2175|substrate-binding 2.23|1.5E-03| 3.76|3.3E-14 2.99(Knockout
ABC-transporter
1224|membrane fusion 2.23|4.7E-06| 3.26|6.0E-14 2.74|Knockout
1464 |porin 2.28|5.1E-02 2.28|Knockout
porin/major outer
1607|membrane protein 2.16|3.4E-06 2.16|{Knockout

National
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FFA Production in Overexpression Mutants

pSA used to construct overexpression
mutants (PLlIacO1 expression)

SEO02 (Aaas, tesA) is used as the host strain

SEO02a contains genome integration of the
empty plasmid, pSA

For each target gene, 2 transformants were
screened for FFA production
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Overexpression of Hypothetical Proteins

W SEO2a#1
B SB2632#1
W S1655#2
ES0122#3
1 ES1476#1
W S0900#1

W SEQ2a#3
W SB2632#2
B S1655#5
O S0122#4
ES1476#2
W S0900#2

239
Time (h)

20

No statistically significant change in FFA
production for any of the hypothetical
protein or ROS-degrading overexpression
mutants

High variability between biological
replicates, particularly during late time

points

Sandia
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Photosynthetic Yield in Overexpression Mutants

» After induction at 96h, photosynthetic yield
(F,’/F ) drops to zero in the control strain
(SEO02a).

» Overexpression of several target genes
prevents this drop in photosynthetic yield in
the mutant strains.

Overexpression of ROS-degrading Proteins
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Overexpression of Hypothetical Proteins

W SEO2a#1
B S1655#2

B SE02a#3
B S1655#5

W SB2632#1 M SB2632#2
mS0122#3 [OS0122#4

21

Overexpression mutants with high F,/'/F "

S1655 — hypothetical protein

S0122 — hypothetical protein (putative
diguanylate phosphodiesterase)

S0900 — hypothetical protein (glutamine
synthetase)

S1214 — glutathione peroxidase
S0801 — superoxide dismutase

Sandia
National

S1656 — catalase/peroxida National
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Outline

Engineering a model cyanobacterium Synechococcus elongatus
PCC 7942 for FFA production

» Engineered 7942 produces and excretes FFA, but the overexpression of
rate-limiting steps and optimization of recombinant gene expression

does not improve FFA yields.

Physiological effects of FFA production in cyanobacteria

» These effects limit FFA production and must be addressed.

. Seg-ing targets for improving FFA production

» Several potential target genes have been identified.

|s cyanobacterial host selection critical for FFA production? ...
Synechococcus sp. PCC 7002: Another model host

Biofuel toxicity for cyanobacteria

Sandia
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r



Synechococcus sp. PCC 7002: Host for FFA Production

Synechococcus sp. PCC 7002

23

Model cyanobacterium (genetic tools
available)

Marine strain
High light tolerance

Higher tolerance of biofuels compared
to other model cyanobacteria

Genetic modifications

Ethanol Toxicity
OM 0.05M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M

L At iir 4 e ,l.._._ 1|_._'__. 0

'!f 4! tl

7oq2

6803

7942

m. ll[i Mn Ll

S. elongatus 7942  Synechococcus sp. 7002

Aaas/fadD SEO1 SO01
Aaas/fadD, ‘tesA SEO02 S02
Aaas/fadD, Fat1 SEOQ3 S03
Aaas, Fatl, rbcLS SE04
Aaas, Fatl, rbcLS, accBCDA SEQ05
Aaas, Fatl, P g rbclS SEO06
Aaas, Fatl, Ppgpa rbcLS, P, accBC P, accDA SEO07
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FFA Production in 7002 Strains

o FFA Production
—e—7002_30C A
-€&-7002_38C

>0 - 501_30C [ s i
—=—501_ A 7002: wild type
-&-501_38C ;

40 - ——502_30C / S01: AfadD
= -A-502_38C / _ ‘
< -¢--503_38C - S03: AfadD, fat1
L

20

10

0

0 100 200 300 400 500
Time (h)

* FFAis produced and excreted by engineered 7002 strains

» 45-fold more FFA is produced using the E. coli thioesterase (‘tesA, S02) compared to the
C. reinhardtii acyl-ACP thioesterase (faf7, S03)

* The optimal growth temperature (38°C) leads to more FFA production compared to 30°C



Physiological Effects of FFA Production in 7002 Strains

» Photosynthetic yields (F,'/F,’) remain
constant at 30°C for the FFA-producing 7002
strains.

» At 38°C, there is a gradual decline in
photosynthetic yield throughout FFA
biosynthesis for all 7002 strains, yet this
effect is most severe in the highest yielding
FFA strain, S02.

0.4

Absorbance Spectra

Normalized OD (with 0.025 offset)

N PBP Chl-a

——7002_30C ——S01_30C ——502_30C ——S503_30C
-==-7002_38C =---S01_38C ==---502_38C =----S03_38C
T T T T
300 400 500 600 700

Wavelength (nm)

800

Photosynthetic Yield
0.7

—-e-7002_30C -#-S01 _30C —A—S02_30C —4—S03_30C
06 |

-€-7002_38C -£+-501_38C -#-502_38C -4--503_38C

- G\
0.3 N T BR8N
A IS xS ' Y
-‘A\ \\\6 ‘E\._\~ ‘.Gs‘
02 - ~ a. ~o.
\ﬁs ‘%\ .."- © -.-"'e
S S~ E\
A."- "’6 Sso
01 - AL el Ba__
0 | \ \ A
0 100 200 300 400 500
Time (h)

25 7002: wild type; S01: AfadD; S02: AfadD, ‘tesA; SO03: AfadD, fatl

* No change in photosynthetic pigments
for 7002 strains at 30°C.

« S02 shows degradation of both
phycobiliprotein and Chl-a pigments at
38°C.

» This response differs from that of 7942,
which showed selective degradation of

Chl-a.
/" Sandia
National
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Outline

Engineering a model cyanobacterium Synechococcus elongatus
PCC 7942 for FFA production

» Engineered 7942 produces and excretes FFA, but the overexpression of
rate-limiting steps and optimization of recombinant gene expression

does not improve FFA yields.

Physiological effects of FFA production in cyanobacteria

» These effects limit FFA production and must be addressed.

. Seg-ing targets for improving FFA production

» Several potential target genes have been identified.

|s cyanobacterial host selection critical for FFA production? ...
Synechococcus sp. PCC 7002: Another model host

» Physiological effects of FFA production are minimized in 7002 at 30°C.
Membrane desaturation may play an important role in FFA tolerance.

r

Biofuel toxicity for cyanobacteria
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Biofuel Toxicity for Cyanobacteria

Model cyanobacteria: . Biofuel Toxicity: 50% Growth Inhibition

» Synechococcus elongatus PCC

7942 (freshwater) 500 -

» Synechocystis sp. PCC 6803 200
=

(freshwater) 8
» Synechococcus sp. PCC 7002 ‘E 300

(marine) £
] © 200 -

Biofuels:

» Short and long chain alcohols 100 -
 Fatty acids (saturated and o |

unsaturated

) o\\d\N\\ o\ \“\“\\ Ao \\}N\\ oo \“‘4\\ oo \\}N\\ e \N@\ (\e\{{\w\
« Alkanes and alkenes w0 e o oa T eafT a8 e
W Le e

* Highest concentration tested.
» 7002 has higher tolerance of short-chain alcohols

» 7942 has higher tolerance of unsaturated fatty acids

» Saturated fatty acids and alkanes/alkenes do not appear to be toxic to cyanobacteria

Sandia
National
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Mechanisms of Biofuel Tolerance: Membrane Structure/Permeability

Degree of Saturation

« ESI/MS analysis of membranes from

7942, 6803, and 7002. 80 -
> 7002 has higher amounts of 70 u 6203
unsaturated fatty acids in its g00 7002
membrane. 2 50
£ ]
« Construct 7002 mutants: £ 30 1
~ 7002AdesB 20 1 1 -
10 -+ F
- 7002AdesE N 1 B (T
— 7002AdesF 0 1 2 3 4 5 6

# of double bonds in lipid molecule

Comparative Genomics: Desaturases
7942 6803 7002

Locus Description Locus Description Locus Description
delta-9 acyl-phospholipid
2561 |desaturase 2538 |acyl-CoA desaturase, desC |A2198|delta-9 acyl-lipid desaturase, desC

to SYNPCC70025_A0159, desA

1594 |[fatty acid desaturase, desA [A2756 |homolog
1727 |delta 15 desaturase, desB |A0159 |omega-3 acyl-lipid desaturase, desB
syn-2, delta 9 acyl-lipid fatty acid
1931 |delta-6 desaturase, desD |A1989 |desaturase, desF

A2833 |fatty acid desaturase, desE _

S Lauuiawiles
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Mechanisms of Biofuel Tolerance: Efflux Pumps

Comparative Genomics: Efflux Proteins

7942

Description

6803
Description

Locus

Description

1869

cation efflux system protein

1991

cation or drug efflux system
protein

A0587

cation efflux system protein CzcA

1938

multidrug-efflux transporter

1260

qguinolene resistance protein
NorA

A0589

arsenite efflux pump ACR3

2032

multidrug-efflux transporter
quinolene resistance
protein NorA

1494

cation or drug efflux system
protein, AcrB, TtgB, MexF
BLAST hit

2369

hydrophobe/amphiphile
efflux-1 HAE1, AcrB, TtgB,
MexF BLAST hit

2483

Probable multidrug resistance
protein norM (Multidrug-
efflux transporter)

cation diffusion facilitator

cation or drug efflux system

A1013

hydrophobe/amphiphile efflux-1 (HAE1) family
protein, AcrB, TtgB, MexF BLAST hit

1989 (family transporter 2125 |protein A1574 |RND family efflux transporter MFP subunit
cation or drug efflux system
1699 |MATE efflux family protein | 2737 |protein A2463 |cation efflux system protein
multidrug efflux MFS cation or drug efflux system
792 |transporter 3105 |protein

A1483

A0719 multldru effluxtransnrter

RND family efflux transporter MFP subunit

e Construct 7002 mutants:

29

7002AA1013

- 7002AA0585

7002AA0719
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Mechanisms of Biofuel Tolerance: Stress Response

Comparative Genomics: ROS-Degrading Enzymes

7942 6803
Locus Description Description Locus Description

801 1451 |superoxide dismutase, sodB | A0242 |Mn-superoxide dismutase, sodB
1214 1769 |glutathione peroxidase A0117 |glutathione peroxidase
1399 |catalase HPI, katG A2422 |catalase/peroxidase HPI, katG
peptide methionine methionine sulfoxide
1937 |sulfoxide reductase 46 |reductase A A0215 |methionine sulfoxide reductase A
methionine sulfoxide methionine sulfoxide

glutathione peroxidase 1305 |glutathione peroxidase A0970 |glutathione peroxidase

methionine sulfoxide
reductase A (protects against

od 3se B 218 |reductase B A0672 |methionine-R-sulfoxide reductase

B2620 |putative catalase 239 |oxidative stress)
. Growth Inhibition
» 7942 overexpression mutants 1.2
-8-7942
— 7942 1214 — 7942 0437 1 =-7942 1214
£
- 7942 1656 - 7942 0801 %08 —-7942_1656
8 I 7 —-7942_0437
° 1\
> All mutants overexpressing ROS- 806 27942 0801
degrading enzymes showed reduced Eo.
growth inhibition with linolenic acid =
addition. 02 -
0 - il .
0 50 100 150 200
30 Linolenic Acid (pM)
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Outline

Engineering a model cyanobacterium Synechococcus elongatus PCC 7942 for
FFA production

» Engineered 7942 produces and excretes FFA, but the overexpression of
rate-limiting steps and optimization of recombinant gene expression does
not improve FFA yields.

Physiological effects of FFA production in cyanobacteria

» These effects limit FFA production and must be addressed.
Seq-ing targets for improving FFA production

» Several potential target genes have been identified.

Is cyanobacterial host selection critical for FFA production? ... Synechococcus
sp. PCC 7002: Another model host

» Physiological effects of FFA production are minimized in 7002 at 30°C.
Membrane desaturation may play an important role in FFA tolerance.

Biofuel toxicity for cyanobacteria

» 7002 has high tolerance for short-chain alcohols; 7942 has tolerance for
unsaturated fatty acids (UFAs).

» ROS-degrading enzymes are important for UFA tolerance./

Sandia
National
Laboratories



32

Conclusions and Contributions

+ Advancements in engineering cyanobacteria for FFA production
» Successful FFA production and excretion in two cyanobacterial hosts
» Cloning and expression of green algal genes for FFA synthesis

> Investigation of inducible and native promoters for gene expression

» Characterization of the effects of FFA production in cyanobacteria

» Physiological effects: cell growth, stress, cell death, photosynthetic yield,
photosynthetic pigments

> ldentification of target genes affecting cell physiology during FFA
production (RNA-seq, mutants)

* Host strain selection and characterization
» Minimal physiological effects of FFA production in 7002 at 30°C

» Degree of membrane saturation and ROS-degrading enzymes are
important for biofuel tolerance.

g
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Spectroscopic Signatures of Algal Pond Health

Reflectance measurements for real-time monitoring of algal ponds

1 | 1 | 1
50 Chl-a r~ - . 5
/ “al
40 — / —
) = e
e o /
v I T | T |
0 2 4 B B 10
1 1 1 1 1
50 — Carotenoids - - i
40 — r
20 /
20 — /
- 7 4
0 T | | | T
0 2 4 & 8 10
| | | | 1
- K -
R ”_Ba-::scatter rr‘ﬁf"_
E 204 , - -k
a :CIAChl-a + C2 Acaroteoids + C3Aother + awater il -} ’ . ' =
/ (3' 1.0 = , L

b,=C,B P e
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33 Nannochloropsis salina growth. (2012) Algal Research. 1 (1): 22-31.



Delineating Stress and Programmed Cell Death in Green Algae

34

Stress is important for high TAG Chlamydomonas reinhardtii CC-125

biosynthesis in algae.
Control Stress PCD-like Necrotic
However, stress can also lead to (OM NaCl)  (0.15M NaCl) (0.25M NaCl) (0.25M NaCl)

programmed cell death (PCD) and
necrotic cell death.
It is necessary to understand the

boundaries between stress, PCD, and

necrosis. Cell Death (SYTOX)
gRT-PCR and RNA-seq to identify 100 —e—
genetic markers specific to PCD 90
80 -
» Metacaspase 70 A
E 60 - -e-Control
® gy -B-Stress
RNA-seq - 0.25M NaCl : Control 2 20 | —-PCD
: 0h : i 3h _ = 30 —4-necrotic
2 ] 20 |
- 3 » 10 ~
N |- :
' ’ 0

Testn sz et e Tess

resf bassbean resfbassbean
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Metabolic Engineering of an Agrobacterium sp.

Engineered Agrobacterium sp. ATCC 31749 as a
whole-cell biocatalyst for production of medically-
relevant oligosaccharides.

Optimized environmental variables for maximum
oligosaccharide production using metabolic flux
analysis.

Sequenced, assembled, and annotated the genome
of Agrobacterium sp. ATCC 31749.

Designed custom microarrays for transcriptome
analysis of polysaccharide (curdlan) production.

Generated knockout mutants to identify regulatory
factors affecting polysaccharide production in this
Agrobacterium.

Georgia/ < fuie
- o' Tech fﬁ(DUt__,((‘gﬂS;;

a-Gal epitope
(Gal-a1,3-Gal-1,4-Glc)

H
oH oH

(0]

(0]
HO (e}

OH HO OH
NH
|

H,COC

LacNAc
(Gal-B1,4-GIcNAc)
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RNA preparation: . :ﬁETTTT
* Hot-phenol extraction of RNA %%%THHHQ T ET TTTT L
- Quant-iT Ribogreen for RNA quantitation p H uih

Data Analysis
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RNA-seq Protocol

RNA Nano 6000 kit with Agilent 2100 Bioanalyzer
RiboZero rRNA Removal kit for Gram-negative bacteria

FastQC for assessing read quality

Cutadapt to remove adapter sequences and low quality nt calls (phred < 20)
Prinseq to remove polyA/T ends and reads < 20 nt

Bowtie for read alignment, best alignment selected

HTSeq used to obtain read hit counts from Bowtie alignments

EdgeR for differential gene expression analysis and significance testing

— Normalization methods: trimmed mean of M-values (TMM), relative log
expression (RLE), and upperquartile normalization (UQ)

— Fisher’s exact test to compute p-values
- Fold changes > 2-fold with p-values < 0.05 were considered to be
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Metabolic Flux Analysis (MFA)

Flux Enzyme(s) Citrate-free 5 g/L sodium
citrate
v;*  sucrose hydrolase 19 100
v;*  glucose accumulation i3 24
v;*  fioctose accumulation 43 28
Vi ghucokinase 16 73
vy fractokinase 15 o
Vg phosphoglucose 1somerase 15 a0
Vs phosphoglucomutase -0.08 90
¥ UTP glucosze- | -phosphate uridylyitransferase -0.08 90
vy*  curdlan synthase 039 04
Yo UDP-galactose 4 -epmmerase 047 86
v,*  pld-galactosyltransferase (glucose as substrate) -0.23 36
vi:* Pl 4-galactosyltransferase (GlcNAc as substrate) 017 i3
viy*  Pli-galactosyltransferase (manmose as substrate) 007 1.6
v;s  glucose-6-phosphate dehydrogenase; 6-phospho- 31 153
glucolactonase
vis  G-phosphogluconate hydrolase; 2-keto-3-deoxy- 3 153
gluconste aldolase
vie  glycerol-3-phosphate dehydrogenase 3.5 24
vir*  glycerol kinase -3.3 24
vig  glyceraldehyde-3-phosphate dehydrogenase; 27 177
phosphoglycerate kinase; phosphoglycerate mutase;
pyruvate kmase
vy pyruvate dehydrogenase 58 330
vy*  acetyl-CoA synthetase 17 25
¥y citrate synthase 41 308
vy;*  citrate uptake 0 28
Vg aconitaze 41 310
vy  isocitrate dehydrogenase 41 34
Wiy a-ketoghutarate dehydrogenase complex 41 il4
vy,  succimyl-CoA synthetase 41 314
vyr  succmate dehydrogenase; fiunamse 41 31l
vy malate dehydrogenase 41 308
vy  isocitrate lyase; malate synthase 0 -18
Yio oxidative phosphorylabon (NADNADH) 205 1466
vy oxidative phosphorylation (FAD/FADH:) 41 31
¥;:  mamtensnce energy (ATP consumption) T84 5316

2, Values pormaiized based on sucrose conyomption @ the 5 gL sodiven cirste resction.
* Messured flux

Sugrose
Glc‘\m v ]
Gl ATP Fru L Fru
ATP
lCﬁ\DP ml(
ADP
Yy Vg
Crd "I—E UDFG 'ﬂ(% G1F“"! GEP FEP
l oA [+ ] |
¥ * Glyceral
Lac = UDP-Gal P3 6PG Vo] C”"
l{r— GlcHNAC ADP
BA—— cAP ~=— Clyseral-3-F
LacNAG
NADH
NAD
(
Vg
NADH + 2 ADP NAD + 3 ATP NADH
2 ADP
FADH, + 2 ADP m.- FAD + 2 ATP ¥ C
V3] PYR*— ™2 ATP

ATP == % app

NAD
C
MADH

Vi
ACoh ———® Acatate

\ﬁDF’ ATR
CIT
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