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Facilities

 4 Uniaxial frames with pressure vessels (<1,000,000 lbs, 
<145,000 psi)

 Axial-Torsional frame (220,000 lbs, 7400 ft-lbs)

 True Triaxial system (σ2<14.5 ksi + σ3)

 10-10 /s < Strain rate < 10 2 /s 
 Creep Frames

 Split Hopkinson Bar

 -65oC < Temperature < 300oC
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Materials Testing

 70% Geomaterials
 Sandstone

 Salt

 Shale

 Granite

 Limestone

 30% Engineering Materials
 Bulk Metals

 Honeycombs

 Silicon Carbide

 Ceramics

 Carbon Composites
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Materials Testing
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 Uniaxial

 Axial – Torsion

 Hydrostatic

 Axisymmetric

 True Triaxial

 Active and Passive 

Acoustics

 Impact (Hopkinson Bar)

 Creep



Materials Testing Ex.

 Bolt Fatigue
 Performed testing to analyze the effect of damage accumulation on 

resonant frequencies 

 Sandia performed mechanical testing
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Specimen Preparation
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 Precision Machining

 Coring and subcoring

 Instrumentation
 Strain Gauges

 LVDT’s

 Acoustic Transducers

 Jacketing
 Viton

 Polyolefin

 PVC

 Copper

 Lead

 Urethane



Specimen Preparation/Analysis

 More Preparation 
 Epoxy impregnation

 Rhodamine doping

 Analysis
 LSCM

 Porosimetry

 Wavespeed

 Acousic event location

 Thermal conductivity
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Castlegate Sandstone

 Composed primarily of quartz grains cemented with calcite
 ~26% porosity

 ~0.2 mm grain size

 Fluvial

 Cored from an outcrop in Utah 

by Terratek

 Transversely isotropic
 10-15% stronger normal to bedding
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Sandstone Failure Structures

Aydin, Borja & Eichhubl, 2006



Yield Criteria
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Shear Band
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Shear Band
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Compaction Localization
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Compaction Localization
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Effect of Mean stress
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Yield Surfaces
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Localization Predictions
 Predicted shear band angle 

 Valid when:
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β – dilation coefficient
μ – local slope of yield surface
ν – Poisson’s ratio

(Rudnicki & Olsson 1998, 
Rudnicki & Rice 1975)



Strain Partitioning
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Separated Strains



Table of Band Angles
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Acoustic Emission System

 Strategic Test waveform 
digitizers

 60 db amplifiers

 Sandia built discriminator 
system

 Attached computer for data 
recording
 Control and data recording 

implemented through MATLAB
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AE Locating

 Events located through a simplex RMS error reduction routine 
by minimizing the error between the guessed location and 
the location calculated by the normalized event arrival times. 

 Planes are fit using a simplex least squared error routine 
where the error is minimized between the estimated plane 
and the data points in the axial direction.  

 Localization was determined by examining the normalized 
error returned from the LSE solver.
 When the error dropped below 100 the specimen was determined to 

have localized

 This drop correlates well with a tightening and a shift in the band 
normal angle.
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Localization
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NDE: Acoustic Tomography

 Track dynamic modulus

 Low velocity regions indicate damage

 Resolution increases with increasing

the number of crossing raypaths

 In the lab this is done with a number 

of source/reciever transducers

 In the earth this is achieved with 

a number of geophones

26

Charalampidou et al. 2012



NDE: DIC

 Utilizes pattern tracking

to calculate surface strain

 Can be performed in 2D

and 3D for surface strain

 Utilizing 3D voxel files

(μCT scans) volumes can be

correlated (calculate volume strains)
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Images from Ingraham et al. 2008



NDE: μCT-analysis

 CT measures density changes in the material and through a 
back projection algorithm applied to many radiographs taken 
from different radial directions develops a 3D map of density 
variation.  

 μCT data can be used to perform digital image correlation or 
digital volume correlation
 Pre and post test scans must be available

 Allowing for analysis of volume and shear strains in 3D

 If scans are of sufficient quality individual grains can be 
tracked
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NDE: μCT-scanning
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Ando et al. 2012



Constitutive properties of shale

 Little is known about the constitutive properties of shales
 Difficult to machine samples (friable)

 Difficult to perform consistent tests (specimen variation)

 High dependence on pore pressure

 Relatively impermeable (partially saturated)

 Requires large sample sizes of multiple materials
 Anisotropic

 Heterogeneous

30



Proppants in fractured shale

 Common problem in shale gas extraction is production 
decline of wells
 Restimulation (refracturing) of these wells often leads to increased 

production for a short period

 One thought regarding the reason for this is creep closure of the 
fractured rock around proppants
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Proppants in fractured shale

 Without proppants wells do not produce nearly as well
 Proppants are a catch 22

 Proppants are necessary to keep the fracture open and gas flowing

 Proppants introduce stress concentrations on the fracture surface 
accelerating creep in the region of the proppant.  

 Can we build a better proppant?

 Proppant distributions within fractures?

 Creep properties of shale
 Mechanism

 Mechanical

 Chemical

 Thermal effect

 Spalling

 Rate
32



Other interests

 Coupled mechanical-chemical-thermal response
 Effect of this on constitutive property evolution and diagenesis

 Improvement of existing models and codes used to perform 
subsurface modeling

 NDE techniques

 Complex testing systems

 Control systems and control theory
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Questions?
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