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What Are the DOE National Labs?

= “Together, the 17 DOE laboratories comprise a preeminent
federal research system, providing the Nation with strategic
scientific and technological capabilities:

= Execute long-term government scientific and technological missions,

often with complex security, safety, project management, or other
operational challenges
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= Develop unigue, often multidisciplinary, scientific capabilities beyond

the scope of academic and industrial institutions, to benefit the
Nation’s researchers and national strategic priorities

= Develop and sustain critical scientific and technical capabilities to
which the government requires assured access”

Source: energy.gov
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What Do the National Labs Do? )

= Office of Science Labs
= “Advance the science needed for revolutionary energy breakthroughs
= Unravel nature’s deepest mysteries

= Provide the Nation’s researchers with the most advanced large-scale
tools of modern science” - science.energy.gov

= National Nuclear Security Administration (NNSA) Labs

= “Maintain the safety, security and effectiveness of the nuclear
deterrent without nuclear testing” - nnsa.energy.gov

= Multiprogram activities: leverage science and technology capabilities
for other customers in both government and industry




Where Are the DOE National Labs? @&s.
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Sandia’s Sites i

Tonopah, Nevada

Amarillo, Texas Kauai, Hawaii




Nuclear Weapons )

Pulsed power and radiation Design agency for

effects sciences nonnuclear components

= Neutron generators

=  Arming, fuzing and
firing systems

= Safety systems
= Gas transfer systems

Warhead systems engineering Production agency
and integration - -
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Defense Systems and Assessments ) s,

Synthetic aperture radar Support for NASA Support for ballistic

———W missile defense

Mower
activity natl

Ground sensors for future
combat systems

Human
footprints




Energy, Climate, and Infrastructure Security ()&,

Crosscuts
Energy Infrastructure and enablers
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International, Homeland, and i) e,
Nuclear Security
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Homeland defense and force protection
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. . . . Sandia
Science and Engineering Foundations L

Fomputipg anq . . Nanodevices and
information science Materials science microsystems

AV
AR

Radiation effects
Engineering and high-energy
sciences Geoscience density science Bioscience




Our Workforce mh

= Onsite workforce: 11,711
= Regular employees: 9,238

" Gross payroll: ~$981M Research & Development
Data for FY12 through end of September staff(4,682) by diSCipline

Mechanical

engineering, 17% Computing, 18%

Electrical

engineering, 20% Physics, 6%

Other

engineering, 15% Other fields, 11%
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Chemistry, 5%

Mathematics, 2%

Other science, 6%
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Cielo (LANL/SNL) by Numbers

Operational Time Frame 2011
Theoretical Peak Performance 1,374 TF
HPL (Linpack) Performance 1,110 TF using 142,272 cores
Cabinets 96
# Compute Nodes 8,944
# Compute Cores 143,104

Compute Processor

Dual AMD Opteron™ 6136 eight-core
“Magny-Cours” Socket G34 @ 2.4 GHz

Compute Memory

286 TB DDR3 @ 1333 MHz
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Compute Memory BW

763 TB/s

Service Nodes

272 AMD Opteron™ 2427 six-core
“Istanbul” Socket F @ 2.2 GHz

User Disk Storage

7.6 PB User Available Capacity

Parallel File System

Cray DVS and Panasas PanF$S

Parallel File System BW

~160 GB/s

High Speed Interconnect

Cray Gemini 3D Torus ina 16 x 12 x 24
(XYZ) Topology

Bi-section BW

6.57 x 4.38 x 4.38 (XYZ) TBI/s

System Foot Print

~3,000 sq ft including Storage

Power Requirement

3,980 KW running HPL

Operating System

Cray Linux Environment

A 32,768-core CTH simulation run on
Cielo helps designers understand the
response of structures under severe
blast loading conditions



Cielo Hardware Architecture

= AMD Magny-Cours Node 7 4."‘['4
= Dual-socket AMD 6136 Processors i 5‘-*‘-*
= 2 x8 =16 total cores N7 {-ﬂ
= 2.4 GHz core frequency T Ll A5 M SN

= 32 GB of 1333 DDR3 memory
= 64 GB for Visualization Nodes
= 153.6 peak DP GFLOPs
= 85.3 peak GB/s memory BW
=  Gemini High-Speed Interconnect
= 3D Torus topology
= 16x12x24
X bisection: > 6.57 TB/s
Y bisection: > 4.38 TB/s
Z bisection: > 4.38 TB/s
= Node Injection
> 6 GB/s/dir sustained BW
> 8 MMsgs/sec sustained
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Acceptance Applications ) .

A transport reaction code to simulate the
SNL Charon X X X performance of semiconductor devices
under irradiation

Explicit, multi-material shock

SNL CTH X X A hydrodynamics code

Continuous Adaptive Mesh Refinement
(CAMR) code: Hydrodynamics with
adaption and high-explosive burn
modeling

LANL xNOBEL X X X

Multi-dimensional multi-material Eulerian
LANL SAGE X X X hydrodynamics code with adaptive mesh
refinement.

Algebraic Multi-Grid linear system solver

LLNL AMG2 X X X
2006 for unstructured mesh physics packages

Single physics package code.
LLNL UMT2006 X X X X X X Unstructured-Mesh deterministic
radiation Transport.



Capability Improvement Summary %

CieloPpplication®Performance®Relative@o@Purplel

16.0H

14.07 13.87 Avg of all 6 Apps |-
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3D RAGE simulations on the Cielo supercomputer to simulate i) fmat
a 1Mton surface explosion on Asteroid 25143 ltokawa

= Significant public interest in this topic
= Several Hollywood movies; interest from government; popular articles

= We use the shape of the Asteroid Itokawa, which is not a near-Earth hazard, simply
to have a nonspherical geometry

= Many methods of Potentially Hazardous Objects (PHOs) mitigation have been
proposed:

= Nuclear options: Explosive disruption; stand-off momentum/velocity transfer
= Non-nuclear methods: gravity attractors; solar energy absorption (paint) etc.

= For this simulation we use the RAGE hydrocode in 3D with a 1 Mton energy source on
the surface of the object

= Here we use realistic (nonspherical) shapes and explore a “rubble piles” composition,
i.e., where the asteroid has experienced many disruptive interactions, recombined, and
is composed of many smaller “rocks.”

= This simulation currently has run only to 25 ms; interesting mitigation occurs after ~5 s
for this explosion energy. This is still running on Cielo.

= Never before: Cielo is the first computer big enough to run this problem in 3D.



Cool, a Movie! ) i,
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(Now on YouTube: )


http://youtu.be/hOcNbAV6SiI
http://youtu.be/hOcNbAV6SiI

Sequoia (LLNL) by Numbers T

Operational Time Frame 2013
Theoretical Peak Performance 20 PF
HPL (Linpack) Performance 16.3 PF using 96 racks
Cabinets 96
# Compute Nodes 98,304
# Compute Cores 1,572,864 (with 4 threads/core)
IBM BlueGene/Q Chip: 16 (user-
Compute Processor accessible) cores @ 1.6 GHz
Compute Memory 1.5TB DDR3 @ 1333 MHz
Compute Memory BW 4 PB/s
. 768 Dual eight-core Intel
UL TS “Sandybridge” @ 2.6 GHz
User Disk Storage 50 PB User Available Capacity
Parallel File System Lustre/Netapp
Parallel File System BW 512 GB/s
. 5D Torus and Tree-Structured
High Speed Interconnect Collective Network
Bi-section BW 60 TB/s
System Foot Print ~4,000 sq ft
aeweilioqiiomant 9.6 MW The Cardioid electrophysiology tool
Operating System Lightweight Compute Node Kernel run on Sequoia simulates heartbeats at

a resolution of 0.05-0.1 mm to study
drug-induced arrhythmia.
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System-on-a-Chip design: integrates processors, = 16 user + 1 service + 1 redundant cores
memory and networking logic into a single chip = Each 4-way multi-threaded, 1.6 GHz 64-bit PPC
= L11/D cache = 16kB/16kB
= |1 prefetch engines
= Each has Quad FPU (4-wide double precision, SIMD)

= Peak performance 204.8 GFLOPS @ 55 W
= Central shared L2 cache: 32 MB

= eDRAM

= Multiversioned cache, supports atomic ops
Dual memory controller
= 8-16 GB external DDR3 memory
= 1.33Gb/s
= 2 * 16 byte-wide interface (+ECC)
Chip-to-chip networking
= 5D Torus topology + external link
- 5x 2 + 1 high speed serial links
= Each 2 GB/s send + 2 GB/s receive
: - = DMA, remote put/get, collective operations
i il 1k External (file) 10 -- when used as 10 chip
i ,_2 LH i ipUL f = PCle Gen2 x8 interface (4 GB/s Tx + 4 GB/s Rx)

HEE 14 S s L i B = Re-uses 2 serial links

SR TR 1 * Interface to Ethernet or Infiniband cards
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Sequoia: From Chip to System ) .

4. Node card
3. Compute card 32 compute cards,
2. Module One single chip module, Optical modules, link chips,
1. Chip Single chip 16 GB DDR3 memory torus

16 cores

o O\ -

5b. I/O drawer
8 1/0 cards
8 PCle Gen2 slots

6. Rack

2 midplanes
7. System
' ‘ 1,2, or 4 1/0 drawers 20 PEs
5a. Midplane e
16 node cards — =




Computational Grid Constructed Using =
Actual Human Heart Data

VTK FE mesh
(blue/white edges)

“Generation of cardiac Introducing M-cell islands
fibers




Sequoia’s Five Levels of Parallelism 0.

= Nodes: MPI/SPIto communicate data between disjoint
address spaces.

= Cores: Leverage shared address space across multiple cores
using OpenMP or similar on-node parallelism model.

= Threads: Multiple threads per core cover latencies and may
allow for better register usage, reduced pipeline stalls, etc.

= SIMD: Quad double precision SIMD units execute up to 8
floating point operations per cycle.

= Functional Units: Algorithms and threading must balance use
of integer and floating point functional units.
&
27

= Also consider pipelines, prefetch, DMA, ...
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Load Balance for Complex Geometri@

WorkBound Method:

* Choose dimensions of
| “basic block” that defines
= - work load upper bound.

* Loop over xy-columns,

e adding planes to a given

o task until cost function nears
or equals upper bound.

« Constraining the x- and y-
dimensions to SIMD- and
register-friendly sizes yields
better time to solution.

. |2




Threading Time Line

Reaction (14 cores)

Diffusion (2 cores)

Announce
to Reaction

|l

areior

alo

Wait for
Integrator
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Overheads of MPl and OpenMP ) S

-—

370 Million Cells 1.6 Million Cores
1600 Flops/cell

60 us per iteration

MPI Halo Exchange
SPI Halo Exchange !
OMP Fork/Join

L2 Atomic Barrier i

<— 60 us target

0 50 100 150 200 250 300
Time (usec)

|2




Peak Performance and Scalability @&z
Measured peak performance: 11.84 PFlop/s (58.8% of peak)

* 0.05 mm resolution heart (3B tissue cells)
* Ten million iterations, dt = 4 usec
» Performance of full simulation loop, including /O, measured with HPM.

1007 T T T T T T ] .
T —ommmmmmeeeeee———————-1 60 beats in 67.2 seconds
- real time . ]
| . = e *T—— 60 beats in 197.4 seconds
- N *® .t
20 L 3
2 - . .
2 L e 1 Extreme strong scaling limit:
§ [ * § _
= " . 2 e CTOM el 0.10 mm: 236 tissue cells/core.
..’ B 0.13 mm heart (180M cells) .
[ Ll v perminy| | 0.13 mm: 114 tissue cells/core.
0.1;% | | | | | | =

1024 2048 4096 8192 16384 32768 65536
number of BG/Q nodes

. |2
T




Activation in the 0.1 mm Heart ()
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Challenges for Exascale ) .

= Sequoia: 20 PetaFlops Max performance
= ~10MW of power

~40km (25 miles) of cable

= Goalistoreach 1 ExaFlops (1000 PetaFlops) by end of decade

2X-3X power is okay ... 20X-50X is not!
" Need efficiency improvements in every system component
Must tolerate very low Mean Time Between Failure (MTBF)
= At any point in time, some part has failed

Node-level computational performance must improve
" Manycore chips =2 More on-node parallelism

Key question: How will we program this thing?




Multicore in Supercomputers ).

Cores per Socket - Systems Share Cores per Socket - Systems Share
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Multicore in Supercomputers ).

Cores per Socket - Performance Share Cores per Socket - Performance Share
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Coping with Multicore ) .

= Many LANL/SNL apps still use message passing everywhere

= One MPI process per core

= More use of shared memory programming at LLNL

= Began when ASCI White (circa 2001) lacked the network bandwidth to
support one MPI process per core

= Even with enough network bandwidth, algorithmic limitations
of some applications require a shift to multithreading...




Scaling Preconditioners for Multicore M.

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

Percent Time

100%

80%

60%
40%
20%

0%

Charon Timing Breakdown on TLCC
Strong Scaling 28M Unknowns

& Charon minus solver

Solve time due to iter
increase

i Solve time due to iter
cost
& Preconditioner setup
128 256 512 1024 2048 4096
# Procs

38

# Iters
0533555555

# Linear Solver Iterations
per Newton Step

128 256 512 1024 2048 4096

Observe: Iteration count increases with number of subdomains.
With scalable threaded smoothers (LU, ILU, Gauss-Seidel):

= Solve with fewer, larger subdomains.

= Better kernel scaling (threads vs. MPI processes).

= Better convergence, More robust.
Exascale Potential: Tiled, pipelined implemen

Three efforts:
=  Level-scheduled triangular sweeps (ILU solve, Gauss-Seidel).
= Decomposition by partitioning
= Multithreaded direct factorization

# MPI| Ranks
4096 1
2048 2 129
1024 4 125
512 8 117
256 16 117

128

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and

Michael A. Heroux and Erik G. Boman, VECPAR 2010.




The Programming Challenge ).

= Scientific codes often O(million) lines

= Diverse development teams
= Physicists / Chemists
= Mathematicians
= Computer scientists

= Project managers
= Many have a useful life of 30+ years

= Compare to ~5 year useful life of a machine

= Want to transition between machines as painlessly as
possible
= Minimal porting effort desirable

= Unlikely to commit resources for complete overhaul

39




Exascale Testbeds )

= Expectations: These systems are needed for exploratory R&D
and pathfinding explorations of:
= Alternative programming models
= Architecture-aware algorithms
= Low-energy runtime & system software
= Advanced memory sub-system development

= |tis more important to explore a diverse set of architectural
alternatives than to push large scale.




Testbed Platforms

= |ntel Many Integrated Core
(MIC) / “Phi” co-processors

= AMD Fusion heterogeneous
CPU/GPU

= Convey HC-lex

= Tilera TILE-Gx36 processors

Sandia
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Intel MIC / “Phi” Architecture ) .

= 57 or 60 x86 cores on chip, each with 32KB L1 instruction
cache, 32KB L1 data cache, 512KB L2 cache

= Each X86 core has a 512-bit vector unit, allowing 16 single
precision or 8 double precision floating point ops / instruction

= |ndividual L2 data caches kept coherent by ring network (64B
each way), also connected to the on-chip memory controllers

= 4 hardware threads / core,
enough to stay busy while 1R 1

filling an L1 cache miss Lo, e
'GDDR MC. i: _1D | l..md ...IDJ L.m L@m
GDDR MC .s [‘ﬂj["] m'] [‘d]_"] rﬁﬁ ¢~ GDDRMC

o T —W

-

= |mplemented on a PCl card,
with its own memory,

connected to host memory via ;m
PCl using DMA operations

210)




42-Node Testbed (84 MICs) T .

Arthur mory riew ated Cores (MIC) Esastabe Test Macl ine
InfiniBand Diagram - QDR Fat Tree with 5 36-part Switches
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Arthur Diagrams
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Photographs

z — Victor Kuhns

43




Sandia

AMD Fusion CPU/GPU Architecture @i=.

= The Llano Fusion has four K10 x86 cores on chip, each with
64KB L1 instruction cache, 64KB L1 data cache, 1IMB L2 cache

= The Radeon HD 6550D has 400 shader cores @ 600Mhz
= 5SIMDs
= 20 Texture Units
= 2 render backends
= 32 Z/Stencil ROPs
= 8 color ROPs
600 MHz GPU clock rate




Sandia

104-Node AMD Fusion Testbed Lf

= Each Node has
= One Llano Fusion APU
= One 256GB Micron C400 SSD SATA
6Gb/s, MLC NAND Flash drive
= 100 nodes have 16GB DDR3-
1600MHz

= 4 nodes have 8GB DDR3-
1866 MHz

= |nterconnection Network:
Qlogic QSFP QDR Infiniband

Photographs

— Victor Kuhns
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Convey Advanced Architecture ) .

= Convey GV HC-1EX Board
= |ntel Nehalem Quad-core X86 @ 2.13GHz
= 4 Xilinx Vertex6 LX760 FPGA Co-processor

= 8 Xilinx FPGAs for programmable memory controllers that support 16
channels of Convey-designed Scatter-Gather DIMMs

e

l4_
:*i !i

|

16 channei
SG-DIMMs. or
DDA DiMMs




Tilera Streaming Architecture ) 5.

= Liberty Chassis — Four Tile-Gx8036 processor platform

= Each Tile-Gx8036 Processor has 36 cores @ 1.2GHz
= 16GB DDR3-1333MHz, 9MB coherent L3 cache
= 256 KB L2 cache/core

= 32KB L1 instruction cache/core & 32KB L1 data cache/core
= Tilera’s iMesh on-chip network

MiCA DDR3 Controller

2 UART, 2 USB
ITAG, I’C, 5PI

PCle 2.0 - B Lanes

PCle 2.0 - 4 Lanes

PCle 2.0 - 4 Lanes

Flexible I/O

MiCA DDR3 Controller

47




Testbed Experiments ) .

= Run Mantevo proxy applications (http://mantevo.org)
= |nitial testing with miniFE, miniMD, and miniGhost
= Evaluate programming models (e.g., OpenMP, OpenACC, OpenCL)

= Validation of SST Architectural simulation results
(http://code.google.com/p/sst-simulator/)

= System Software R&D

= Portals4 network stack

= Kitten LWK OS

= Qthreads multithreading runtime

= Power management

= |/O experiments with SSDs

48




Summary ii

= DOE National labs such as Sandia solve complex problems in
the national interest.

= Strategic scientific and technological capabilities

= Supercomputer simulations play a large role in the science
and engineering work of the labs.

= Scale has progressed from the first 1 Tflops machine in 1997 to a 20
Pflops machine today

= Reaching the goal of exascale computing will require
significant innovation.

= New advances in hardware, software, and algorithms

Sandia
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Laboratories
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