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Leadership-class HPC compute capabilities are ) e,
required for DOE policy and decision making

Laboratories

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and
adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

Exascale computing and beyond is required to simulate complex
phenomena that characterize the DOE mission space
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Resilience is one of the many research challenges ;) s,
posed by the shift to exascale computing

Laboratories

Exascale systems will experience errors/faults much more
frequently than petascale systems”

Cause: There is a significant increase in
the number of components with
insufficient improvements in mean time
to failure for each one.

Solution: True exascale resilience requires advancements in
= Fault detection, propagation, and understanding
= Fault recovery
= Fault-oblivious algorithms
= Stress testing of proposed fault-tolerance solutions

“Towards Exascale Resilience, Cappello et al., Intl. Journal of High Performance Computing Applications Nov 2009 vol. 23 no. 4 374-388
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Our goal: Discover the right approach for ) e,
extreme-scale, fault-resilient programming

Laboratories

The community needs to understand:

= Can MPI+X offer high scalability at exascale even in
the face of faults?

= |f not, which programming models can reach which
scales?

= |f no programming model can reach scales of
interest for a given application without algorithmic
changes, how might algorithms be adapted?

= What are co-design implications for tradeoffs
between memory, I/O, power, resilience,
application performance, and development effort?

Existing programming models are Asynchronous many-task (AMT)
inherently not fault-resilient programming models can be fault-resilient
Single Program Multiple Data (SPMD), implicitly Asynchronous execution and redundancy
synchronous algorithms cannot recover from minimize the impact of node degradation/failure
failure nor adapt well to node degradation and benefit scalability even without failure
Global check-points no longer feasible Synergistic with local check-pointing
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To achieve our goal, we must explore challenges ) s,
impeding the use of AMT programming models

Laboratories

= How does one intuitively express tasks to
achieve asynchronous execution?

= Task-Directed Acyclic Graphs (task-DAGs) can
depict data dependencies and flow; however
may not be enumerable until run-time

= What is the best approach for resilient decentralized
scheduling of tasks?

= How can missing task subgraphs be regenerated after failure using
asynchronous local check-points?

= Can our approach to resilience be leveraged to improve scalability
and avoid additive cascading delays?

Challenges will be explored via tests on hardware simulators
as well as tests on current system architectures

5



Sandia
Deliverables for FY13 i) datoat

= Creation of initial metrics for development effort and
performance profile analysis for non-MPI programming models

= Validation of simulator performance predictions with realistic
application workloads using Cielo and/or other current ASC
platforms

= Exploration of the programming model design space to include
1. Applications that are difficult to load-balance
2. New failure response strategies
3. Models of failure histories

4. Task-DAG scheduling frameworks




Specific FY13 efforts ) e

= Understand past and current PM and resilience efforts

= Develop metrics for fair comparisons between MPI and non-
MPI programming models both with and without faults

= Validation of simulator performance predictions of the cellular
automaton on Cielo

= Develop a shared-memory task-DAG API/runtime and add in-
memory redundancy and local check-pointing capabilities

= Port a simple conjugate gradient mini-app to our model

= Start extending the task-DAG API/runtime to work in a
distributed-memory environment

= Concurrently, starting porting more realistic mini-apps, starting
with mini-FE
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Some alternative programming models efforts L

DAGuUE/TBB:
= C++ libraries that include Task-DAG scheduling

= Key limitations: resilience not directly supported; explicit dependencies are
only among tasks

= Chapel/X10/Fortress:

= New parallel programming languages

= Key limitation: no direct path forward from currently implemented codes
= UPC:

= Extension of C rather than new programming language

= Key limitations: SPMD; number of threads fixed at start time
= Charm++:

= Very generic; no direct support for Task-DAG model or resilience
= ParalleX/HPX:

= Message-driven work-queue model using global address space

=  Scheduler and AGAS server are single points of failure

Sandia
National
Laboratories
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Performance metrics for comparisons between & o,
MPI and non-MPI programming models

Laboratories

= For different classes of applications (e.g., CPU-bound,
memory-bound, I/0O-bound), measure scalability and
performance in terms of:
= Time to completion (including checkpoint/restart)
= Progress made (e.g. iterations completed) in a period of time
= Processor utilization
= Communication cost

= Perform comparisons both in the absence of failures and
under different rates of failure

= Use failure models where failed nodes either leave the
computation permanently (fail-stop) or rejoin after some
delay (fail-delay)
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Validation of simulator performance predictions ) s,
for the cellular automaton on Cielo

Laboratories

= Task-driven cellular automaton code scales up to 50,000 cores

= |nthe process of performing analogous scaling studies using SST
Macro to validate performance predictions
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http://dx.doi.org/10.1145/1964218.1964220
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Our approach: tasks depend only on data; ) e,
dependencies among tasks are implicit
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Bipartite DAG of
tasks and data

LEEL

= Explicit dependencies of tasks on data allows automation of
data replication, check-pointing, and other FT mechanisms
= Leverage resilience work on local check-pointing (ASC)
= Differs from approaches for DAGUE, TBB

= Dynamic scheduling may allow us to make more intelligent
scheduling decisions based on the time needed to retrieve a
dependency from a remote node

= Leverage data stores from FOX (DOE ASCR X-Stack) and/or Nessie
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Our approach: tasks depend only on data i) e

Laboratories

*= Transaction-like semantics of tasks allow them to safely be
replayed in the event of failure

= Tasks can modify state only by producing defined, write-once results,
unlike in ParalleX/HPX

= Leveraging the resilience API from Bob Lucas's group would allow us to
respond to failures instead of abort
= Fully dynamic scheduling may allow us to adapt to
dynamically-changing resources as nodes drop out due to
failure or are added when no longer needed by other jobs

=  Resources not fixed at execution time like in UPC

= The task-DAG API/runtime can be provided as a library,
potentially allowing it to integrate with legacy codes
= Not an entirely new language like Chapel, X10, Fortress

= We can evaluate our approach at exascale both with and without faults

using SST/macro simulation
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