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excitation energy from a localized state at an oxygen vacancy to
the conduction band; the same U value has been used to study
Li ion diffusion in anatase.18 Although DFT+U correctly
describes the localization of 3d electrons, it overestimates the
lattice constants of TiO2(B) by up to 3.7%. Good agreement

with experiment can be obtained with the HSE06 functional
(see Table S.I.4 Supporting Information), which includes a
portion of exact exchange and does not have any system-
specific parameters. Li ion binding energies are weaker using
HSE06 than DFT+U, by −0.36 eV at the A1 site in LiTiO2 and
−0.29 eV at the A2 site in Li0.5TiO2. We used the average value,
−0.32 eV, to correct our DFT+U values in larger cells, to match
the HSE06 functional. Theoretical charge/discharge voltages
are calculated as the energy to insert/remove Li atoms from the
most favorable binding site, assuming the transfer of one
electron per Li ion.
TiO2(B) has a monoclinic C2/m structure with an open

channel parallel to the b-axis that sits between axial oxygens.
The unit cell contains 8 Ti sites and 10 Li+ sites, giving a
theoretical capacity of 1.25 Li+/Ti (∼420 mAh/g). Li+ can bind
to three unique sites within the crystal; four A1 and four A2
sites sit near equatorial and axial oxygens in the titania octahera,
respectively, and two C sites lie in the open channel along the
b-axis. Two distinct Li+ insertion mechanisms are presented
here, and we start with the case of TiO2(B)-NP.
In the dilute limit (no interaction between Li+), the C site

(designated as yellow) is the most energetically favorable
binding site, with a binding energy of 1.55 eV. Li+ binding to
the A2 (designated as green) and A1 sites (designated as blue)
is 0.01 and 0.22 eV weaker than that to the C site, respectively.
Given the uncertainty in DFT calculations, the C and A2 sites
are expected to be equally occupied in the dilute limit. Once an
A2 site is occupied by a single Li+, the binding energy of
another Li+ to the neighboring sites is affected dramatically. Li+

binding to the nearest A2 and A1 site increases to 1.73 and 1.57
eV, respectively. This stabilizing feature is similar to that
observed for LiFePO4; multiple Li+ sharing an electron
localized on a transition-metal center strengthens the Coulomb
attraction.19 The nearest C site is then unstable due to the
repulsion of Li+ at the A2 sites.20,21 Therefore, when the voltage
reaches 1.54 V, the A2 sites and a dilute concentration of A1
sites will be filled. As the voltage decreases to 1.5 V, Li+ fills
alternating A1 sites, giving a Li+/Ti ratio of 0.75. The remaining
A1 sites fill at 0.98−0.56 V, reaching Li+/Ti = 1.0. With all A2
sites occupied, a new site then becomes stable in the open
channel along the b-axis at the midpoint between two
neighboring C. These sites, designated as C′, are less stable

Figure 3. Third cycle galvanostatic charge/discharge curves (a) and
differential capacity plots (b) for TiO2(B) nanosheets and nano-
particles at a charge/discharge rate of 25 mA/g.

Figure 4. DFT+U calculated site occupancies and potentials as a function of Li+ concentration in TiO2(B)-NS and -NP (left) with dC/dV plots
indicating DFT+U derived voltages and relative Li+ site filling (right). The calculated peak splitting, particularly apparent in the NP case, is due to the
response of the material Li+ insertion, resulting in a different energy to insert Li+ into the delithiated material as compared to the removal of Li+ from
the lithiated material. Blue, green, and yellow spheres and histogram bars correspond to A1, A2, and C sites, respectively.
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(see Table S.I.4 Supporting Information), which includes a
portion of exact exchange and does not have any system-
specific parameters. Li ion binding energies are weaker using
HSE06 than DFT+U, by −0.36 eV at the A1 site in LiTiO2 and
−0.29 eV at the A2 site in Li0.5TiO2. We used the average value,
−0.32 eV, to correct our DFT+U values in larger cells, to match
the HSE06 functional. Theoretical charge/discharge voltages
are calculated as the energy to insert/remove Li atoms from the
most favorable binding site, assuming the transfer of one
electron per Li ion.
TiO2(B) has a monoclinic C2/m structure with an open

channel parallel to the b-axis that sits between axial oxygens.
The unit cell contains 8 Ti sites and 10 Li+ sites, giving a
theoretical capacity of 1.25 Li+/Ti (∼420 mAh/g). Li+ can bind
to three unique sites within the crystal; four A1 and four A2
sites sit near equatorial and axial oxygens in the titania octahera,
respectively, and two C sites lie in the open channel along the
b-axis. Two distinct Li+ insertion mechanisms are presented
here, and we start with the case of TiO2(B)-NP.
In the dilute limit (no interaction between Li+), the C site

(designated as yellow) is the most energetically favorable
binding site, with a binding energy of 1.55 eV. Li+ binding to
the A2 (designated as green) and A1 sites (designated as blue)
is 0.01 and 0.22 eV weaker than that to the C site, respectively.
Given the uncertainty in DFT calculations, the C and A2 sites
are expected to be equally occupied in the dilute limit. Once an
A2 site is occupied by a single Li+, the binding energy of
another Li+ to the neighboring sites is affected dramatically. Li+

binding to the nearest A2 and A1 site increases to 1.73 and 1.57
eV, respectively. This stabilizing feature is similar to that
observed for LiFePO4; multiple Li+ sharing an electron
localized on a transition-metal center strengthens the Coulomb
attraction.19 The nearest C site is then unstable due to the
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Figure 4. DFT+U calculated site occupancies and potentials as a function of Li+ concentration in TiO2(B)-NS and -NP (left) with dC/dV plots
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relaxed surface lithiation energetics in these high-surface-area
materials. In particular, they found that the nanotube and
nanoparticle forms of TiO2(B) offer the highest overall capacity
along with the best rate performance.7 Figure 3a shows
galvanostatic charge/discharge curves for both TiO2(B)-NS and
-NP upon slow rate cycling (25 mA/g, 0.07 C) after the third
cycle. Both TiO2(B)-NP and -NS show a sloping profile
characteristic of nanostructured Li+ insertion materials with the
majority of the lithiation occurring below 1.7 V versus Li/Li+.1

The specific capacity was 259 and 275 mAh/g for TiO2(B)-NP
and TiO2(B)-NS, respectively, after the third cycle. The specific
capacity for TiO2(B)-NP is similar to what is recently reported
by Ren and co-workers.7 A recent report by Liu and co-workers
on the lithiation of porous TiO2(B) nanosheets demonstrated a
first charge specific capacity of 332 mAh/g at 0.1 C but did not
mention capacity after multiple cycles at that charge rate.8

Differential capacity plots (dC/dV) are often constructed
from galvanostatic charging curves in order to more clearly see
the Li+ insertion/deinsertion redox behavior of an electrode,
particularly when the plateaus are not obvious, as is the case for
many nanomaterials. Figure 3b shows dC/dV plots for both
TiO2(B)-NP and -NS morphologies. The reduction (lithiation
of TiO2(B)) portion of the dC/dV plot for TiO2(B)-NP shows
one large, well-defined peak at 1.55 V, a small shoulder at 1.5 V,
followed by a capacitive-like region extending from 1.4 to 1.0 V.
In contrast, TiO2(B)-NS shows a single peak centered near 1.5
V that is surrounded by a broad, capacitive-like envelope

stretching from 1.8 to 1.0 V. The nature of the sloping
galvanostatic profile and consequent broad reduction peak in
the dC/dV plot of TiO2(B)-NS is likely due to the increased
influence of surface effects that would change the overall
charging behavior for a high-surface-area 2-D nanostructured
material.16 The broad charge/discharge profile could also be
explained in terms of pseudocapacitive charging, which is a
surface-specific redox process. The extent of charge (Δq) is
dependent upon the change in voltage (ΔV), and thus, the total
charge passed, d(Δq)/d(ΔV), is the equivalent of capacitance
and gives rise to the sloping galvanostatic profiles.17 This Li+

insertion mechanism is consistent with what one would expect
for a nanosheet structure where surface charging would be the
main contributor to the total charge capacity. In contrast, while
the TiO2(B)-NP galvanostatic profile is also sloped, the dC/dV
plot reveals more discrete Li+ insertion/deinsertion redox
behavior. These effects can be difficult to elucidate because
defining the surface bonding structure and Li+ binding sites of
nanomaterials is typically inaccessible via traditional character-
ization methods. DFT+U calculations were performed to
determine a mechanism that explains the different charging
behavior observed for TiO2(B)-NP and -NS. Figure 4 presents
the DFT+U determined Li+ site occupancy within the TiO2(B)
structure as a function of voltage for 3-D (nanoparticles) and 2-
D (nanosheets) structures along with dC/dV plots with an
overlay of the DFT+U derived voltages and relative Li+

concentrations. The U value for Ti is taken from a study of
rutile TiO2, where it was adjusted to match the experimental

Figure 1. TEM (a) and HR-TEM (b) images of TiO2(B) nanosheets.

Figure 2. XRD (a) and Raman (b) of TiO2(B) nanosheets and
nanoparticles. Vertical lines represent ideal TiO2(B) diffraction
(JCPDS# 741940).
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K = !A "!
dA

#
!1 !! 2

lnA1 ! lnA2

Liquid Phase 

Percolation 
Onset 

Compressed Phase 

Barrier  
Compression 

Dense Film 
(LB Deposition) 

Aggregation 

b*+*(*-0*"e!9E('C'2"E!*2!'&:3!+.23*456!=KKU3!=M3!rUhKArUhUi!F.&&'!*2!'&:3!!"#$%&'"#(%)*"#+),"!=KM=3!E3!=KMUA=KMhi!b*+*(*-0*e!e!O:!QC/*('&4!*2!'&:3!O'-)CE4(!!=KM=!3=p3!ZhhKApKKK:!

200 µm 

SEM 

1 µm 

AFM Avg $h = 1.5 nm  

Selected Area  
LEEM “I-V” 

Au 

1 ML 

2 ML 

3+ ML 
-0.31 eV 

4 µm 

LEEM 

Electron 
Energy  

(eV) 

PEEM 

20 µm 

Au 

1 ML 

2 ML 
3 ML 

Overlap 

7@5&.*#3!7(%B+(<+&!K+'+(9.$+,!85!=22AL!722AL!#$,!=22K!

31.8 V 31.8 V 

LEED Au/SiO2/Si LEED Au thru hole in film LEED TiO2(B)-NS 

22.9 V 

Radial Average of 
TiO2(B)-NS LEED 

Anatase 
(11) 

(02) 
TiO2(B) 

(11), (01) 

(10) 

X0,3%)*+0,*$&,2$V)')/($Y0/U$
M%$*3)&.%$&!

•  O'()*!0$-I-E$E"!'(*'"!$+!,*-"*&.!/'01*,!
;4<=AB7!%*(*!,*/$"42*,!5.!O?!2*0#-4YE*:!!

•  ]4&C"!#',!,4"0(*2*!2#401-*""*"!$+!MALS!9O:!
•  ;4<=AB7!,*/$"42*,!+($C!%'2*(!%'"!&'()*&.!
'-'2'"*3!%42#!"$C*!;4<=>?@!/#'"*!/$""45&*:!

H)')(+!N%(G!

•  94-4C4W*!/#'"*!2('-"+$(C'I$-!E"4-)!-$-A
'YE*$E"!"E5/#'"*!+$(!O?A,*/$"4I$-:!

•  QC/($H*!YE'&42.!$+!O88F!4C')*":!
•  T*(+$(C!52#'5-4!(*'&AIC*!&42#4'I$-!"2E,4*"!
$-!;4<=>?@!'-,!'-'2'"*!-'-$"#**2":!
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