
Applications of Complexity Science
to Digital Systems

Jackson Mayo

Computer Sciences and Information Systems
Sandia National Laboratories, Livermore, California

December 13, 2012

Sandia National Laboratories is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2012-10574P

The problem

• Science today confronts “complex” systems that
behave as large-scale information networks and
do not yield to traditional analysis

– Complex systems can be engineered or evolved

– Basis for their intractability: Turing’s halting problem

• How can we design/analyze these systems?

– In particular, how can we deal with widespread digital
systems and consequent cybersecurity problems?

Infrastructure Computers Societies

2 Jackson Mayo Dec. 13, 2012

Characteristics of complexity

• Complex systems are characterized by large
numbers of interacting entities where even a few
entities can strongly affect system behavior

• Complex systems are irreducible; their behavior
is emergent and not evident a priori, but is
accessible via observation and simulation

• Examples are ubiquitous

– Living things and ecosystems

– Human societies, economies, and institutions

– Highly engineered artifacts – e.g., airplanes, nuclear
weapons

– Large-scale infrastructure – e.g., power grids

– Computer software, hardware, and networks

3 Jackson Mayo Dec. 13, 2012

The complexity problem has its roots
in theoretical computer science

• Theorem (Turing 1936, Rice 1953): No algorithm
exists to predict a priori the behavior of a generic
information processing system

– i.e., such a system is undecidable even if deterministic

– Abstract significance: A generic system with an
unbounded number of states is undecidable

– Practical significance: A real-world system, with a finite
exponentially large number of states but otherwise
generic, is effectively undecidable

22300300 statesstates

4 Jackson Mayo Dec. 13, 2012

What solutions are possible?

• We are researching improved analysis and design
approaches for complex systems

– Because complex systems are intractable in general…

– These approaches must rely on non-generic features
resulting from how the system is engineered or evolved

– That is, complex systems must be specially constrained
to be analyzable

• Two vital strategies:

– Reduce the complexity to enable exhaustive analysis
by formal methods (widely used in industry)

– Structure the complexity to enable probabilistic analysis
when exploring the entire state space is infeasible

5 Jackson Mayo Dec. 13, 2012

• Enormously complex hardware and software is created at
enormous cost

– Cost is recouped by stamping out millions of identical copies

• A kid in his basement can make it do something interesting but
unknown (unpredictable). He can be certain he can do the same
thing to your desktop PC (deterministic)

• In the general case, all digital designs share these problems

Economies of scale in computing:
Friend and enemy

Solution: Make the design less general, more analyzable

6 Jackson Mayo Dec. 13, 2012

Complexity space illustrates tradeoffs
in device engineering and analysis

• Formal methods
research directions:

•

parallel scalability of
algorithms,

•

mixed analog-digital
system verification

• Complexity theory
research directions:

•

diverse redundancy
as a vulnerability-
tolerant design,

•

more general criteria
for resilient designs

7 Jackson Mayo Dec. 13, 2012

Formal methods are a bridge
to complexity, filling an important gap

• Formal methods use computer analysis to verify
digital systems rigorously and exhaustively

– Applicable to less complex systems that are still beyond
the reach of manual analysis

– Widely used in high-consequence industrial applications
such as aviation and medical devices

• Verification of components does not generally
translate to verification of whole system

• Irreducible complexity enters when exploring entire
state space is infeasible

– Reliability and security assertions become probabilistic

• Both formal verification and complexity science are
vital for gaining confidence in digital systems

8 Jackson Mayo Dec. 13, 2012

• “Sandbot”: cyber model of
coordinated malware

• ​SOC (Bak et al. 1987) is
spontaneous development
of fractal phenomena with
power-law distributions

– Similar to thermodynamic
criticality but without tuning

• Illustrated by sandpile
model: physics-like cellular
automaton

– Sand is sprinkled randomly

– Avalanches occur at all scales

Self-organized criticality is
a simple example of emergent behavior

9 Jackson Mayo Dec. 13, 2012

Complexity is a fact of “life”

• Biological phenomena are a prototype and
inspiration for many complex domains

– Life involves a large chemical regulatory network

– “Game of Life” model is based on population dynamics

– Bio concepts pervade computing (viruses, mutations)

• Biology typifies complex couplings of manmade
systems – economy, energy, cybersecurity

Eukaryotic
cell-cycle
regulation

10 Jackson Mayo Dec. 13, 2012

Robustness is key to understanding
real-world systems with “organic” behavior

• Highly optimized tolerance (HOT, Carlson & Doyle
1999): Systems designed or selected to perform
well despite perturbations

• HOT systems exhibit power-law distributions but
have organic structure (not self-similar or fractal)

• Adapted robustness to one set of perturbations
induces extra fragility to different perturbations

• Indeed, rare but catastrophic failures are seen in
highly engineered/evolved systems

– Electrical blackouts, financial panics, epidemics, cyber
shutdown of Estonia, etc.

≠HOT Fractal

11 Jackson Mayo Dec. 13, 2012

Current work shows ways to address
“whole system” robustness and stability

• Cybersecurity vision: Create high-consequence
digital systems (e.g., smart-meter networks) in
new ways, so that they are analyzable

– Seek to understand computers as dynamical systems

• Toy example: “Growing” a digital circuit to add
two 1-bit numbers – a half adder

• There are many ways of composing logic gates to
implement this functionality

• Next slide shows two such “grown” circuits; each
performs as a half adder when run for 20 steps

– Shown correctly adding 1 + 1 to get the binary result 10

– They also respond correctly to the other possible inputs

12 Jackson Mayo Dec. 13, 2012

13 Jackson Mayo Dec. 13, 2012

Outputs

Inputs Inputs

Outputs

A B

What distinguishes the two
implementations? Resilience

• Resilience of a digital model to bit errors can be
assessed via growth or damping of perturbations

– Bit errors can represent breakdown of digital model, or
effect of untested states within the digital space

– Networks transition from stable to unstable based on
connectivity and logic (generalizing Kauffman 1969)

• Next slide: runs with 1% error rate per update

– States that deviate from the ideal run are outlined in red

• Circuit A has much less error in final output
(greater resilience) than circuit B – why?

– Here, average inputs per node (k) makes the difference

– More of our circuit analysis: Seshadhri et al. PRL 2011

14 Jackson Mayo Dec. 13, 2012

Outputs
(Average incorrect bits: 0.73)

Inputs Inputs

Outputs
(Average incorrect bits: 0.10)

A B

k = 1.5 k = 2.5

15 Jackson Mayo Dec. 13, 2012

Example illustrates potential to
quantify resilience implications of designs

• Results for these
half-adder circuits
can be obtained by
brute testing

• Systematic relations
to real-world design
parameters enable
assessing potential
catastrophic failures
too rare to be found
reliably through
testing

k = 1.5 (A)

k = 2.5 (B)

k = 2.0

Cases shown

16 Jackson Mayo Dec. 13, 2012

Bio-inspired “diverse redundancy”
can be leveraged for cybersecurity

• Use a voting system with members drawn
from the set of implementations

– Input processed by each in parallel

– Outputs compared to determine
response

• Keep intended functionality
while varying vulnerabilities
over space and time

• Similar to redundancy for
physical fault tolerance

• Diversity leverages a simple trust anchor (the voting
unit) for benefits at the complex system level

17 Jackson Mayo Dec. 13, 2012

Analyzable statistics arise from
an ensemble of undecidable programs

• For a specific feature set, there is a probability Pv that
a particular member of the set of implementations will
be susceptible to vulnerability v. For a voting system
of size N:

– The probability of success for the attacker is (Pv)
N/2

– The attacker “work” is the expected number of tries: (Pv)
−N/2

– The work for defender is the cost of producing N
implementations:  N

N

18 Jackson Mayo Dec. 13, 2012

How diversity’s benefits can be assessed

• Fuzzing approaches

– Fuzzing (automated randomized testing) can discover
faults in individual implementations and in voting systems,
and guide selection of the implementations

– Using the complexity perspective, we developed a
systematic way to generate test inputs for fuzzing,
published in 2011 Oak Ridge cybersecurity workshop

• Formal approaches

– Model checkers (e.g., NuSMV) can exhaustively evaluate
simple programs and thus can tell us how often the voting
system we create is provably fault-free

– We have implemented this technique for “string recognizer”
circuits, with promising results

19 Jackson Mayo Dec. 13, 2012

Complexity measure leads to
targeted fuzzing strategies

• Evolved and designed systems have coherence that
makes it useful to fuzz in “simpler” spaces

• Example: Fuzzing a program with patterns close to the
nominal input is more likely to find faults

• More generally: Inputs
that have a simple
description (relative to
available information)
should be targeted for
coverage because they
form a smaller “corner”
space (also more
attractive to attacker)

Simple description

Complex description

20 Jackson Mayo Dec. 13, 2012

Fault statistics of simple “grown”
programs seem to corroborate

• 16-bit “string recognizer” circuit (password checker)
has small enough input space for exhaustive fuzzing

• We measure complexity
(“entropy”) by an edit
function from the gold
string, initially bitwise
(approximate entropy
by Hamming distance)

• As expected, faults are
most common close to
the gold string

We can gain by forcing
the attacker into the
high-entropy region

21 Jackson Mayo Dec. 13, 2012

NuSMV formal analysis of diverse
string recognizers exposes voting benefit

22 Jackson Mayo Dec. 13, 2012

