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Project Vision: A Scientific Approach to 
Nuclear Waste Reprocessing

• The amount of nuclear waste produced and stored can be greatly reduced through 
reprocessing, where fuel rods are separated into various streams, some of which 
can be reused in reactors

• Current process developed in the 1950s and is dirty and expensive
– U/Pu separation is the most critical => PUREX

• Our approach =>use science and simulation-based approach to develop a modern 
reprocessing plant
– Leverage unique Sandia capability, SIERRA Mechanics, to model coupled 

physics via high performance computing
– Models of reprocessing plants are needed to support nuclear materials 

accountancy, nonproliferation, plant design, and plant scale up

Secretary Energy Chu is very supportive of the “closed fuel cycle” 
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Detailed Model of PUREX‐type Processes
• Spent fuel rods are sheared and dissolved in acid
• Concentrated aqueous solution is then emulsified in a liquid‐

liquid extraction continuous contactor with a organic solvent 
continuous phase (TBP/dodecane)

• Uranium and plutonium oxide ions are then preferentially taken 
up by organic phase

• Centrifugal contactors used to enhance mixing and form 
aqueous droplets in organic continuous phase

• Maximize surface area for potential mass transport across the 
interface

• Up to five phases can occur simultaneously
• Criticality issues determine scale‐up



Missing Physics Models To Be Developed 
at Multiple Length Scales

• Droplet‐scale model
– Interfacial mass transfer and fluid mechanics
– Surface variables, surfactants and Marangoni effects 
– Advection and diffusion in concentrated ionic, multiphase 

solutions 
• Stefan‐Maxwell equation for mass flux

• Single‐stage models 
– Direct numerical simulation of multiphase, turbulent, 

immiscible flows with interfacial mass transport
– Integration of neutronics for criticality
– Solid‐fluid interactions models for complex rotors

• Unit‐operations, column scale simulations
– Optimization
– Solvent evaluation, virtual radioactive experiments
– Reduced‐order column model based on population 

balances
• Integration with plant flow sheets models for nonproliferation

– High‐fidelity plant model for non‐proliferation, process 
control, and accident mitigation

• Validation at all scales
– Droplet‐scale experiments
– Contactor‐scale experiments



Annular Centrifugal Contactor
= Separation Region

= Mixing Region
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•Separation Regions
•Mixing Regions

= Light Phase
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Contactor – Mixing Region
ksgs Turbulence Model with a Single Phase

Side View

Bottom View

•Sierra/Aria transient turbulence model of contactor – largest production Aria calculation to date
•Currently working on two-phase models of contactor mixing zones
•Working on diffuse interface and CDFEM implementation



Droplet‐Scale Methodology: Conformal 
Decomposition Finite Element Method

Simple Concept
 Use one or more level set fields to define materials or phases
 Decompose non‐conformal elements into conformal ones
 Obtain solutions on conformal elements

Related Work
 Li et al. (2003) FEM on Cartesian Grid with Added Nodes

– Focus on Cartesian Grid.  Considered undesirable because it 
lost original mesh structure.

 Ilinca and Hetu (2010) Finite Element Immersed Boundary
– Focus on solid‐fluid with Dirichlet BCs

Properties
 Supports wide variety of interfacial conditions (identical to 

boundary fitted mesh)
 Avoids manual generation of boundary fitted mesh
 Supports general topological evolution (subject to mesh resolution)
 Similar to finite element adaptivity
 Uses standard finite element assembly including data structures, 

interpolation, quadrature
•CDFEM shown convergent for steady flow, Noble et al, IJNMF, 2010
•Extension to moving boundary problems



CDFEM – Constrained Spaces for 
Stability and Robustness

•Discrete Space Considerations in CDFEM
– Anecdotal evidence for space requirements

• Static, diffusive problems have shown optimal 
convergence rates using subelements

• Dynamic, advection problems have shown 
poorly controlled modes in pressure‐velocity 
and level set fields

– Since interface is discretized as piecewise linear (PL)  
function on parent element, it follows that level set 
field should be constrained to be piecewise linear

– A sufficient condition (but possibly overly strict) for a 
piecewise linear level set function is constraining 
velocity to be piecewise linear

– Piecewise linear velocity suggests piecewise linear 
pressure

– Constraints are imposed using linear system 
infrastructure used for hanging node constraints

– Space used by Fries et al, 2010 for XFEM of  two‐
phase and free surface flows since unconstrained 
space was unstable

Discrete spaces used in this work
 Level set is PL on parent element
 Velocity is PL on parent element
 Pressure is PL on parent element 

for each phase (separate PL field for 
each phase)



2D Rayleigh‐Taylor Instability using 
CDFEM

2.254% (1.95493)
h=1/20; t=h/3

1.014% (1.97972)
h=1/40; t=h/3.0

0.89% (1.9822)
h=1/80; t=h/3.0

0.145% (1.9971)
h=1/160; t=h/3.0



Fluid Flow Focusing Droplet 
Generator

CDFEM method is able to transition from coflowing fluid to 
droplet generation regimes. 



Mixing Two Fluids in a Centrifugal 
Contactor (CVFEM/Level Set)



2phase Contactor: CVFEM/LS



• Test Materials:  PDMS and Water
• Rotor Speeds:  1100 – 2100 rpm
• Camera focused at inner surface of outer 
cylinder

• Camera is about 2 mm above bottom of 
rotor

• Total liquid height in gap is about ¾ ‐ 1in
•Drop size detection limit – 30 µm

Centrifugal Contactor Experiments

1100 rpm 1300 rpm 1700 rpm

High Speed Camera



Drop Size Analysis

ImageJ

*For brevity here, not all droplets were circled

Based on a calibration image (209 pixels = 0.625mm), ImageJ calculates the 
diameter of each of the indicated (yellow) circles.  These data are then transferred 

into Excel where probability densities of the distributions are calculated.
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Drop Size Measurements in a Centrifugal Contactor

Oil In

Oil 
Out

Water 
Out

Water 
In

• Laser fluorescence is used to measure oil droplet size 
distributions in a turbulent, three-phase mixing system

• Drop size distributions are the result of an equilibrium state 
between drop breakup and coalescence

• Drop size distributions are lognormal for all rotor speeds 
tested

• Distributions narrow and shift to smaller sizes with 
increasing rotor speeds as the larger droplets break 

• Mass transport experiment underway
• Average drop size and Sauter mean diameter show a power 

law dependence on rotor speed
• Two presentations, collaboration with ANL, and AIChE 

paper underway
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In mixing zone

M
ixing zone

Separation zone

continuous phase: dense fluid

dispersed phase:    less dense fluid

•Turbulent shear
• Breakup, mass transport
• Population balance model developed 

Population Balance Model of Drop Size 
Distribution and Mass Transport

• Proceeding paper completed summarizing the droplet 
size distribution

• Chemical Engineering Science article in preparation
• Extension to mass transport is next step

breakup rate daughter drop distribution



A Formalism Developed for Interfacial 
Mass Transport

  g g g g g
s k kY  n u u j

Diffusion and convection of species 
k in phase g to the interface:

  g l l l l
s k kY  n u u j

Diffusion and convection
of species k in phase l to  :
the interface:

suInterfacial velocity
guMass‐averaged velocity of phase g = 
luMass‐averaged velocity of phase l = 

g
kS

Source term of species 
k in phase g due to 
interfacial reactions

Source term of species 
k in phase l due to 
interfacial reactions

l
kS

1,...,
surf
k Nc  There may be a surface phase, 

consisting of species with 
concentrations, ck and surface site 
fractions k with surface area A and 
surface tension .



Mass Flux Across the Interface

Phase A
C0A

Phase B
C0B

kf

kr interface the at B phase in
 0 speciesof  ionConcentrat C

interface the at A phase in
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Constants  k,k
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• Species diffuse and advect on either side of the interface and 
experience a jump in concentration at the interface 

• This is natural to implement with CDFEM



Example Problem: Interfacial Mass 
Transfer with Moving Interface

0 0 f 0 r 1

1 1 f 0 r 1

f r

0 1

0 1

D C k C k C
D C (k C k C )
k = 1,  k   2
D D 0.05

C  1, C  0

A

B

A B
init init

  

   


 

 

0

1

mass0= C

mass1= C
phaseA

phaseB

dxdy

dxdy





Interfacial, initial 
conditions, and 
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CDFEM implementation allows easy application of concentration jumps



Mass transport with advection



Droplet‐scale Experiment in Microfluidic 
DeviceGoals: 

• Create uniformly sized droplets
 Flow Focusing Microchannel

• Understand flow field inside/around droplets
 Phantom high speed camera

• Understand liquid-liquid mass transfer
 Ocean Optics spectrophotometer

Droplet fluid
Continuous
Fluid

Orifice

Outlet

100 μm

Continuous
Fluid

h = 27 μm

Decreasing inner flow rate



Official Use Only

Official Use Only

Model System Developed for 
Mass Transfer Validation

Water
Dodecane

TTA
Water

Xylenol 
Orange

Dodecane
TTA—Nd3+

Xylenol
Orange

—Nd3+

• A nonradioactive model system was chosen based on Nd, 
which has behavior similar to Pu/U 

• A spectrophotometer 
is used to watch 
Nd3+ transfer from 
the water to the 
dodecane

Dodecane
TTA

Water
Nd3+

XO



Droplet Scale Experiments

23

Dodecane
TTA

Water
Nd3+

XO

Monodisperse drop generation in a flow‐focusing microfluidic chip 
studied: Droplet size correlated with flow, fluid conditions.
C. C. Roberts, R. Rao, A. Grillet, C. Jove‐Colon, C. Brooks, M. Nemer, Lab Chip, 2012, 12 (8): 1540

Flow interior to the droplets visualized using particle tracking. 

Model system mimics processing: Concentration quantified by color
Nd(XO)(aq) + 3 HTTA(o) + 2 TBP(o) ↔ TBP(TTA)3(TBP)2

(o) + 3 H+(aq) + XO(aq)

Mass transfer coefficients measured for numerous flow rates, species 
concentrations to aid understanding contactor experiments.

Presented: AIChE 2011, 2012; APS DFD 2011. Manuscript in preparation.



• Log K from extraction and solubility data  
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Extraction of Uranyl Nitrate by TBP/AMSCO
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Two‐Phase Cantera Model

• Reaction set built in Cantera based on experimental data
• Cantera coupled to Dakota to determine Gibb’s free energies for each species
• Proceedings paper and SAND report completed.
• Journal article submitted to Separations Science and Technology
• Cantera included as a library in Sierra Mechanics



Mixed‐Fidelity Plant Scale Model
(Embedded technology  UQ, Optimization, Bifurcation Analysis)

Chop &
Dissolver

Centrifuge
& Filter

Account-
ability
Tank

Hulls &
UDS
Wash

Dissolved
Fuel

Undissolved
Solids (UDS)

Nitric 
Acid

H
ul

ls
W

as
he

d 
H

ul
ls

U
D

S/
H

ul
ls

 L
ea

ch
at

e

SNF

Nitric 
Acid

G
as

es
R

el
ea

se
d

Surge
Tank

UREX
Feed

Adjust

Mixer
Settler
Tanks

N
itr

ic
 A

ci
d

Solvent
Waste

Clarifie
d

Liquor

URE
X 

Feed

UREX Contactors TBP
Solvent

Sc
ru

b

St
rip

U/Tc Strip Product

TB
P 

So
lv

en
t

Effluent
Wash

CCD-PEG 
Contactors

Recycled
Solvent

CCD-PEG Solvent Effluent
Wash

UREX
Holding

Tank

U/Tc Strip
Product U/Tc Product

UREX
Raffinat

e

Sc
ru

b 

St
rip

CCD-PEG Raffinate

Effluent
Wash

Effluent
Wash

Cs/Sr
Holding

Tank

Cs/Sr
Product Cs/Sr Product

Cs/Sr Strip Product

Mixer
Settler
Tanks

Stripper
Mixer
Settler
Tank

N
itr

ic
 A

ci
d

TRUEX Raffinate

TRUEX Contactors

O
xa

la
te

Sc
ru

b

TRUEX Product

So
lv

en
t

Effluent
Wash

Effluent
Wash

TRUEX
Raffinate

Tank

TRUEX 
Raffinate

CCD-PEG
Raffinate

Reduction
Vessel

Fe
 S

ul
fa

m
at

e

TRUEX
Feed

Sc
ru

b

St
rip

TRUEX
Waste

Mixer
Settler
Tank

TALSPEAK 
Contactors

Sc
ru

b

RE Waste

So
lv

en
t

Effluent
Wash

Effluent
Wash

TRU
Holding

Tank

RE Waste

TRU
Product

Feed
Adjust
Tank

N
itr

ic
 A

ci
d

TALSPEA
K

Feed

RE
Product

Tank
RE Waste

TRU 
Product

St
rip

Clarifie
d

Liquor

Solvent
Waste

UREX Raffinate

Recycled
Solvent

Solvent
Waste

TRUE
X

Product

Recycled
Solvent

Solvent
Waste

TRU 
Product

Large-scale PDE 
System: SIERRA

ODE 
System

DAE 
System



Accomplishments and Future Work
• Droplet-scale model using CDFEM have been developed and verified 

on a published 2D benchmark problem from Hysing et al, 2009
• Mass transport has been incorporated into the CDFEM model
• A nonradioactive model system was developed using Nd and xylenol

orange, with a new spectrophotometer to give quantitative mass 
transport data for the validation study

• A quantitative droplet-scale mass transport validation experiment is 
underway using the spectrophotometer

• Advanced thermodynamic models have been developed for the Uranyl 
Nitrate system and are under development for the Nd system

• Single-phase turbulent contactor simulations have been completed
• Working towards modeling two-phase flow in a centrifugal contactor 

using first a diffuse level set method and then CDFEM
• Collaboration with Marianne Francois (LANL) for DOE/NEAMS
• Hired post-docs Christine Roberts, Nick Wyatt and staff Martin Nemer
• Network modeling and criticality modeling will be a focus of next FY
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Two‐Phase Cantera Model

Sierra/Aria 3D transient 
turbulent model of contactor


