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Abstract. Molecular dynamics (MD) simulations must take very small
(femtosecond) integration steps in simulation-time to avoid numerical
errors. Efficient use of parallel programming models and accelerators in
state-of-the art MD programs now is pushing Moore’s limit for time-per-
MD step. As a result, directly simulating timescales beyond milliseconds
will not be attainable directly, even at exascale. However, concepts from
statistical physics can be used to combine many parallel simulations to
provide information about longer timescales and to adequately sample
the simulation space, while preserving details about the dynamics of the
system. Implementing such an approach requires a workflow program
that allows adaptable steering of task assignments based on extensive
statistical analysis of intermediate results. Here we report the imple-
mentation of such an adaptable workflow program to drive simulations
on the Summit IBM Power System AC922, a pre-exascale supercomputer
at the Oak Ridge Leadership Computing Facility (OLCF). We compare
to experiences on Titan, Summit’s predecessor, report the performance
of the workflow and its components, and describe the porting process.
We find that using a workflow program managed by a Mongo database
can provide the fault tolerance, scalable performance, task dispatch rate,
and reconfigurability required for robust and portable implementation of
ensemble simulations such as are used in enhanced-sampling molecular
dynamics. This type of workflow generator can also be used to provide
adaptive steering of ensemble simulations for other applications in addi-
tion to MD.
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1 Introduction and Background

Molecular dynamics (MD) simulations of condensed-matter systems require small
steps in simulation-time, due to the accumulation of numerical error caused by
a discretized model of a continuous physical process; classical simulations are
limited to a maximum simulation-step size of about 2-5 fs for all-atom models,
otherwise unacceptable drifts in simulation energy occur. The best-performing
MD programs used for computational biophysics on High Performance Com-
puting (HPC) systems calculate an MD step in the range of 1 ms clock time,
which is close to the performance roof-line set by the clock speed limit. This
constrains the timescale that a simulation can model, to a regime on the order
of milliseconds. Obtaining simulation-times in the range of seconds or minutes,
timescales relevant for comparison to experimental measurements, is therefore
not possible.

To overcome this Moore’s-law limitation on our ability to sample configura-
tional space with physical accuracy, ensemble methods using many parallel sim-
ulations are increasingly being used [47, 57, 4, 25]. Using multiple parallel, short
simulations throughout the simulation space, to reconstruct sampling equivalent
to much longer simulations with statistical methods, is an approach frequently
taken in MD simulations of condensed phases [22, 55, 27, 11, 53, 18]. Here we re-
fer to these methods as enhanced-sampling molecular dynamics (ESMD) [9].
For example, algorithms derived from the fluctuation-dissipation theory of near-
equilibrium statistical mechanics [26, 20] can be coupled with mathematical con-
cepts from time-series and spectral analysis to determine rates and energetic
barriers of physical processes [20, 55, 22]. The process of interacting with a en-
semble simulation’s progression to obtain optimal sampling of regions of interest
is known as adaptive sampling [25, 21]. Markov-state methods use the assump-
tion that the dynamics trajectory can be approximated as a Markovian process
on some timescale [40]. The appropriate timescale can be determined by a statis-
tical analysis of correlations of features of the system, chosen to best describe the
system’s evolution in time [10, 36]. Simulations can be launched from different
points in the simulation space and new simulations can be started in regions that
are under-sampled and important to the process of interest, based on additional
statistical methods, in a progressively adaptive manner. If the final sampling per-
formed by the simulations has been properly steered by this interactive analysis
to cover the simulation space, a transition matrix can be assembled to report on
transition rates between states. This Markov model can provide important long-
timescale physical information such as kinetics, free energies, and dwell times of
metastable states.

1.1 Scientific Workflow Platforms

Ensemble simulations require some type of workflow manager, or top-level pro-
gram that manages parallel distributed tasks and then reduces the data into a
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final form. For simple ensembles, home-made scripts can be used. However, as
the workflow becomes more complex these scripts create impractical amounts of
work and potentially can back-up shared launch-nodes and file systems.

For adaptive sampling MD implementations, the type of steering interaction
used requires more complex solutions than simple checkpoint/restart manage-
ment; new simulations must be initialized from correctly chosen conformations
extracted from previous trajectories and the simulation program’s starting files
must be assembled in an automated manner. Additionally, records of the steering
steps taken, analysis performed, and simulations launched throughout a com-
plex ensemble workflow must be recorded as provenance metadata in a man-
ageable format for later use, along with, potentially, more fine-grained logs of
the compute components for benchmarking performance and debugging. Work-
flows should be able to support long-running heterogeneous applications such
as multiple rounds of ensemble simulations combined with analysis tasks. State-
of-the art molecular simulation requires that a workflow management program
be able to integrate many separate jobs that each use, potentially, accelerators
such as graphics processing units (GPUs), various levels of parallelism includ-
ing threading and Message Passing Interface (MPI), along with multiple nodes
each. Managing ensemble-workflows of these types of programs quickly becomes
a non-trivial task. Along with ensemble-workflows to increase sampling of the
conformational or energetic space, workflows to incorporate large datasets of ei-
ther experimental data, or simulations at higher levels of theory, have recently
become feasible.

Existing workflow programs have application programming interfaces (APIs)
with different levels of complexity. General-use programs [2, 24, 16, 14, 13, 54] and
some programs specific for ESMD [41, 7] have been developed. Radical Pilot
(RP) [32, 52] is written in Python, and has been used on a variety of compute
resources, including some HPC systems for which it must be explicitly ported
by the developers. Recently, some general-purpose [31, 32] and some ESMD-
based workflow programs [37, 7] have been able to scale to tens of thousands of
cores on HPC systems. The Ensemble toolkit [8] runs on top of Radical Pilot,
has recently added adaptable workflow functionality, and has been used on the
Extreme Science and Engineering Discovery Environment’s (XSEDE) resources
and on the Oak Ridge Leadership Computing Facility’s (OLCF) Titan computer,
a Cray XK7 [6, 5]. However, none of these programs has been written specifically
for pre-exascale and exascale use. As HPC systems approach exascale, we may
find that some solutions may fail on these machines.

HPC-Specific Solutions Groups in many areas of computational science are
realizing that a need for HPC-specific workflow managers exists. There is a
need for well-supported workflow programs that can handle account allocations,
schedulers, and multiple levels of parallelism within each component, and can
scale to thousands of nodes (hundreds of thousands of cores).

To address this need, the Swift/T dataflow parallel scripting language and
runtime system was created to allow for the construction of large, scalable work-
flows on HPC systems [56]. The original Swift implementation was able to achieve
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a task-dispatch rate of 500 tasks launched per second, but these were dispatched
from a single node, and thus the program was limited by the memory of that
node. To overcome this limitation, inclusion of the Turbine engine allowed for
the control of the program to be coordinated by several nodes, relieving these
memory constraints and promoting scalability [56]. With this improvement the
task dispatch rate exceeded 60 thousand tasks/sec and Swift/T was able to use
64 thousand cores at greater than 90 % efficiency.

However, the Swift/T platform will not persist over multiple instances re-
source allocations, for example, over several jobs that use the (often short)
allowable job time limits on many HPC systems such as at the OLCF. Fur-
thermore, there is a limitation of fault tolerance handling, and hence the entire
workflow may terminate when one task fails [15]. Other HPC-specific workflow
efforts include those at the Livermore National Laboratory, focusing on devel-
opment of workflow managers that can provide experimental data analysis and
visualization, and incorporate some simulation as well [28], and initiatives within
the Exascale Computing Project [33] such as the Advanced Technology, Devel-
opment, and Mitigation (ATDM) software technology effort, to develop a variety
of solutions to support data management and workflows, primarily in nuclear sci-
ence. However, these developments have not yet provided an HPC-based solution
directly usable for adaptive enhanced-sampling workflows in MD.

Performance Portability Over HPC Systems Performance portability is
essential for longevity of software products; with Department of Energy sys-
tems, architectures are cutting-edge and vary significantly between generations.
Therefore, strict protocols for software design must be maintained to obtain
robust, efficient and portable computational solutions [44, 45, 35, 51]. Portable
software design for HPC should include standard, well supported languages,
modular, linear design, and simple construction [44, 45]. Recent solutions for
scientific workflow management systems have involved the use of a number of
programming languages, and heavily nested programs, including extensive use
of Python. Testing these solutions on the OLCF Summit IBM Power System
AC922 computer will expose potential portability problems with programs that
were deployed on previous HPC systems, thus facilitating a portable solution for
adaptive MD workflows on future HPC systems.

Use of Database Management Programs The use of database manage-
ment systems within scientific workflow platforms is not a new concept; in 1998
Ailamaki and co-workers noted that a database management system (DBMS)
has many essential properties of a workflow management system and with a
data-object view of scientific workflows the DBMS could be effectively used to
manage related parallel computational tasks [3]. The performance and variety
of DBMS implementations have grown significantly in recent decades, and non-
relational (NoSQL) databases have been found to perform better than relational
(SQL) ones in a number of areas [34, 29]. Recently several scientific workflow
management solutions have incorporated both SQL and NoSQL DBMSs into
their software design. For instance, Copernicus uses the Python interface with
sqlite, and Fireworks [24] and RP use MongoDB for task management. The use
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of DBMS in scientific workflow programs has been discussed in recent literature
within the context of HPC and massively parallel distributed solutions [49].

Current Work Here we test the performance and portability of a workflow
management program driven by a DBMS on HPC systems. This was imple-
mented first on the Titan supercomputer with the adaptive sampling method
within ESMD as a use-case. With this method we use inverse-count sampling
[21] from a Markov model built with a TICA [43] and PCCA++ [23] analysis
pipeline. The program, written in Python, has a database-centric architecture
and uses the MongoDB NoSQL DBMS for status synchronization. The use of
the DBMS allows for reliability and fault tolerance while the use of NoSQL pro-
vides a more flexible, distributed and scalable solution [46]. Here, we discuss the
successive porting of components of this program to the Summit computer and
testing for function and performance.

2 Building an Adaptive Ensemble-Simulation Program

We describe the implementation and performance testing of a Python program
designed to create HPC-based scalable workflows for adaptive sampling of MD
simulations. To run reliably and independently over possibly weeks to months,
which can be typical of many use-cases, the program was designed as a dis-
tributed application that can run from a laptop or directly on an HPC resource
and can automate asynchronous workflow creation and execution. The program,
available at https://github.com/markovmodel/adaptivemd, is an extension of
a previous version of the code that was implemented [38] on smaller systems,
and used programmatic elements from the “OpenPathSampling” program [39,
50].

The program consists of a Python layer that interacts with a MongoDB
database via the PyMongo interface [42]; worker units called executors use
Python subprocesses to execute tasks. The database functions as a tool for a
Python-based distributed task scheduler: as a peer-to-peer data sharing plat-
form, and as a database for provenance information, task input data and reduced
output data. The distributed task model could also allow for the use of different
computer architectures for different computational tasks, where each may per-
form more optimally. Fields a user provides allow the program to bind resource-
specific properties to the task descriptions at run-time. Several resources can be
configured to be used simultaneously in this distributed computing model, and
tasks can be targeted to any available resources.

While the program has an API that can be used to manage a number of
different kinds of simulations and analysis or steering methods, our currently
implemented use-case seeks to improve the sampling of the slowest processes
in a biomolecular simulation, using unbiased MD replicates and Markov-state
modeling. The intent is to allow adaptive sampling procedures to either be fully
automated or to proceed with varying amounts of user interaction at a number
of levels, including, potentially, run-time steering. Run-time adaptions can be
made to 1) task properties such as analysis type or parameters, 2) workload
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properties such as task count, or 3) workflow properties such as convergence
criteria. Using its native executor class, the program can address the entire
chain from a workflow-generating instance down to task execution.

1

2 de f generate work f low ( length , l oops ) :
3

4 f o r in range ( loops ) :
5 r e s t a r t f r a m e s = sampl ing funct i on ( p r o j e c t . models . l a s t )
6

7 t r a j s = p r o j e c t . n e w t r a j e c t o r i e s ( r e s t a r t f r a m e s )
8 model = model l e r . execute (∗margs )
9 ta sk s = [ t . run ( ) f o r t in [ model ]+ t r a j s ]

10

11 p r o j e c t . queue ( ta sks )
12

13 y i e l d any ( [ t . i s done f o r t in ta sks ] )
14

15 p r o j e c t . workers . command( ”shutdown” )
16

17

18 p r o j e c t . add event (
19 generate work f low ( n md steps , n workloads )
20 )

Listing 1.1. A simple workflow generating function that runs a fixed number of workloads with
MD replicates of a fixed length. This generator can be written by a user (more sophisticated workflow
generators are provided in the program) and given to the project event loop.

Listing 1.1 illustrates a simple workflow generating function that runs a fixed
number of workloads with MD replicates of a fixed length. This generator can
be written by a user (more sophisticated workflow generators are provided) and
given to the project event loop, and must yield functions that return Boolean
values. At runtime, the current Boolean function will be executed repeatedly
in the event loop value until it evaluates to True, in this case when any task
completes. On this event, the application will iterate the generator to yield a
new function, executing a code block in which additional tasks are queued in the
project and specified in the new progress function.

Our aim here is to test the scalability, robustness, and performance of this
method on large HPC resources at the OLCF. To keep configuration and instal-
lation simple while providing reliable workflow execution on a wide range of com-
putational resources, we have separated the workflow platform into hierarchical
levels of complexity, and create removable interfacing with other Python-based
workflow programs. The current implementation can function with or without
an interface to RP.

Unlike a single large job that runs on an HPC system, workflows involve many
initialization times over the course of the program. This initialization overhead
may have a non-negligible impact on overall performance of the workflow and
must be optimized. File accesses, such as accessing executables and task de-
scriptions, must be handled efficiently when they occur repeatedly through the
workflow. For example, launching many concurrent instances of an executable
involves a decision about whether all executors access the same executable file,
receive copies of the file, or access the file from the database. This decision may
have to be made for many different executables and/or analysis tasks that may
need to access the same copy of a Python library. The optimal decision will vary
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based on the task, the number of executors, and the size of files transferred,
which may include larger data files and a library of dependencies. The optimal
solution for a particular part of the workflow may vary by HPC system as well.

2.1 Using a Database Program to Support Interactive, Adaptable
DAG-based Task Scheduling, Analysis and Provenance

For adaptable and steered simulation workflows, we would like to allow as little or
as much manipulation of the directed acyclic graph (DAG), which represents the
workflow, as desired, including possibly an on-the-fly interaction which would re-
sult in a constantly-adapting DAG. The database queuing functionality provides
the potential for run-time steering of complex workflows: the database program
facilitates multiple live connections who query a consistent state. This transfer
of information allows for on-the-fly receipt of reduce operations, sampling from
the database and the tasks in the workflow, and synchronization of new tasks to
be executed, by executors who are distributed on arbitrary resources.

An immediate, reliable, and fault-tolerant utilization of tasks is therefore
facilitated by the database program, as is the ability to increase file accessibility
and redundancy. The DBMS provides the requirements to perform task-to-data
targeting; code can be added that queries a task property and accepts or rejects
a resource assignment.

Provenance data is an important consideration for workflows with many tasks
[12, 48]. The MongoDB dataflow collections provide a reliable mechanism for
storing and managing our queues of tasks and their metadata. This metadata can
facilitate the management of provenance information. In our usage, the database
contains mainly the metadata about what happens, using a “pretask, main task,
and posttask” abstraction.

2.2 Use of Radical Pilot

To test if the RP intermediate job manager can provide more robust workflow
management, we created a version of the program on OLCF Titan which inte-
grated with RP. This tool can enhance run-time error detection and correction
functionality. However, it has a much higher installation and configuration over-
head if not already available on a user’s resource: it requires the developers to
specifically configure the program for a particular HPC system. Results on Titan
with and without the RP interface are reported below.

2.3 Experiences and Performance on OLCF Titan

A complete Markov-model ESMD workflow with TICA and PCCA++ analysis
was deployed on the Titan Cray XK7 computer at OLCF, using the OpenMM
simulation engine [17]. The program used the following versions of key programs:
Mongo 3.3, PyMongo 3.6, Python 2.7.13, PyEmma 2.4, Numpy 1.15, OpenMM
7.0.1, and CUDA 7.5. Titan uses the Cray Linux Environment as its operating
system. Titan nodes each contain a 16-core 2.2GHz AMD Opteron 6274 (Inter-
lagos) processor and NVIDIA Kepler K20X GPU.
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Fig. 1. Parallel performance of ensemble simulations on Titan, using Radical Pilot (RP) interface.
Single round of tasks, 3 replicates, 1 task per node. Tasks were molecular dynamics simulations of
small proteins using the OpenMM [17] MD program. a) Time for each component of the workflow.
b) Total non-execution time (lag) divided by total tasks c) Time for task execution only, for varying
workload sizes.

Fig. 1 illustrates performance of the workflow program with the RP interface,
including the components of different parts of the workflow, and the latency (non-
task time) divided by number of tasks. This normalized latency reports on the
cost-per-task of the workflow program’s overhead. The program was successfully
implemented with and without the RP layer. Without RP, up to 5000 parallel,
single node simulation tasks were executed with greater than 90% weak scaling
efficiency (data not shown), but we were unable to execute use-case workflows
including analysis tasks at this scale: our program deploys a number of executor
units, and due to the large number of executor-associated connections to the
database, and on Titan, network congestion and high hardware utilization made
the database host unreliable in transferring the analysis output data with O(103)
tasks. To improve the network congestion of the stand-alone program, a splitting
of traffic to the database server could be accomplished by the use of sharding. In
addition, accessing the shared Python libraries with multiple tasks at start-up
frequently resulted in a failure to find the file handles for the programs executed
by tasks. This seemed to be caused by conflicting file reading attempts, and was
mitigated by a spacing out task launch times by small time increments.

A reduction in sensitivity to analysis-task synchronization was found when
using RP. A single RP Agent replaces the program’s executor reads from the
database, reducing connection-associated network congestion and overhead on
the host. The DBMS interactions are replaced by writing to local files. RP builds
an execution script from each task’s instructions, and replaces the spaced task-
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launch procedure with a uniform initialization time. We did not observe filesys-
tem errors at high scale, however the scaling of the RP version of the program
stops at about 8000 nodes on Titan, at which point the RP program crashes
with an out of memory error for the array used to keep track of the tasks. This
limitation is currently being addressed by the RP developers. Figure 1.a shows
weak-scaling performance using Radical Pilot to execute up to 4000 single-node
tasks. The total workflow duration is shown partitioned to 4 duration intervals.
The time to schedule, then dispatch, tasks, as well as latency between termina-
tion of the final task and workload termination, are seen to increase with scale.
Figure 1.b shows that these scheduling and shutdown latencies combine to a
per-task cost that stabilizes to about 0.1 seconds per task with 500 or more
tasks. Initial bootstrapping of the environment is seen to be independent of the
number of tasks, and Figure 1.c shows that the main simulation task duration
is also largely independent of scale.

3 Experiences and Performance on OLCF Summit

We approached the transition from Titan to Summit by testing isolated compo-
nents before then testing several executables run by tasks within the program.
OLCF Summit consist of 4608 IBM Power System AC922 nodes. Each node con-
tains two IBM POWER9 processors and six NVIDIA Volta V100 accelerators.
Summit uses Red Hat Enterprise Linux Server release 7.6 (Maipo) as an operat-
ing system. Currently RP is still being ported to Summit by the developers, so
here we can only consider building and testing the program’s stack without RP.
We tested the performance of two MD programs to determine the optimal re-
source configurations for different sized biomolecular systems. Then after testing
system functionality when scaling to thousands of simultaneous executables, we
test the program itself. With the success of each component, we can interpret the
contributions of each to the performance of the workflow program on Summit.

3.1 Python packages on Summit: Scientific Libraries

Although Python is not traditionally used for parallel programming, HPC cen-
ters are increasingly seeing a large amount of Python usage as a wrapper-level
“glue” for compiled libraries, especially for machine learning [30]. While Python
is often referred to as a portable, ubiquitous language, on Summit we have
noted several challenges in porting portions of our Titan workflow. Many Python
packages contain inner regions of code written in C/C++ for performance, and
also may require calls to additional libraries. On Summit, we found that the
NumPy (https://www.numpy.org/) configuration interface does not support
the native Summit Engineering and Scientific Subroutine Library for linear al-
gebra. A version of OpenBLAS (http://www.openblas.net/) is available in a
Power8 version and also in a PowerPC version, but there is no version of BLAS
(http://www.netlib.org/blas/) optimized for Power9 that can be incorpo-
rated into NumPy easily. In addition, for future incorporation of RP, a Python
virtual environment must be used, and we have found that a pip installation
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of numPy using a virtualenv is not able to find the Power8 version of Open-
BLAS. The analysis portion of our workflow uses the Python package PyEMMA
for Markov modeling [43]. This package in turn uses the MDTraj Python pack-
age (http://mdtraj.org/1.9.0/). MDTraj contains several libraries written in
C/C++ that contain hard-coded x86 single instruction, multiple data (SIMD)
vector intrinsic functions, and therefore, the MDTraj package and PyEMMA
cannot be built on Summit without manual removal of these SIMD-containing
portions. Without MDTraj, streaming “load iterators,” of large trajectory files
cannot be utilized, and other essential processing tools for the OpenMM program
become unavailable. Due to our distributed computing capabilities, we are able
to run the analysis tasks on another computer, but this can become inconvenient
when the MDTraj frame-finding tool cannot be used within a task running on
Summit.

3.2 Single-node Performance of Two State-of-the-Art Open-Source
MD Programs

Measuring the single-node performance of the underlying MD programs used as
the ”engine” in the ensemble simulation is important for determining which pro-
gram and configuration will be used in the workflow for a particular biomolecular
system. These choices may vary with system size, and the requirements for indi-
vidual simulation lengths which are ultimately dictated by the system kinetics
and the resources available.

Table 1. Single-node performance for OpenMM on Summit. Sim-time: simulation time,
perf: performance.

Size Sim-time (ns/day) Time (ms/step) Perf. (steps/sec)

29 K 292 0.6 1690
134 K 97 1.8 561
1 M 11 15.7 64

While the workflow program we are developing can use any executable, here
we investigate single-node performance of two open source MD programs that
are of the best-performing for systems under 1 M atoms, OpenMM [17] and
GROMACS [1]. We used OpenMM version 7.3, GROMACS 2018.3, CUDA 9.2,
and gcc 6.4, with Spectrum MPI version 10.2. These programs both make heavy
use of the GPUs, and GROMACS also uses several layers of parallelism on the
CPU: MPI, OpenMP, and SIMD. GROMACS allows the user to specify if the
Particle Mesh Ewald (PME) calculation should take place on the GPU or the
CPU. Single-GPU GROMACS calculations used 1 MPI rank when PME was
calculated on the CPU, and 2 ranks when PME was on the GPU. 6-GPU version
used 6 MPI ranks. All simulations used 2 fs timesteps, and the NVT ensemble.
OpenMM tasks used 1 GPU and 7 CPUs.

Tables 1, 2 and 3 display single-node performance of these two programs
on Summit. We found that on Summit, these programs perform one MD step
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Table 2. Single-node performance for GROMACS on Summit, One GPU. First value:
PME calculated on CPU, Second value: PME calculated on GPU. Sim-time: simulation
time, perf: performance.

Size Sim-time (ns/day) Time (ms/step) Perf. (steps/sec)

29 K 284/253 0.6/0.7 1644/1464
134 K 64/56 2.7/3.1 370/324
1 M 8/6 21.6/28.8 46/35

in sub-millisecond compute times on a single node, for systems with tens of
thousands of atoms. GROMACS obtains under 2 ms per step for systems of
around 100 K atoms on a single node, and close to 20 ns/day for a 1 M atom
system on a single node, using 2 fs simulation-time integration steps. This is a
result which previously was only attainable using hundreds of nodes on Titan.
As a result, with adaptive sampling effective timescales of tens of milliseconds
within a few weeks of simulation will be possible.

Thus it is possible to, for instance, run close to 24 thousand simultaneous MD
tasks with a system of about 130 thousand atoms using OpenMM, with 6 tasks
per node, and obtain close to 100 ns/day, providing for excellent sampling within
the MSM method. One could choose to use half of a Summit node, or an entire
node, with GROMACS, and obtain about twice the simulation time, per day,
versus OpenMM, for a system of around 30 K atoms or 1 M atoms. The choice
of whether to run six times more tasks, or aim for longer simulation times per
day, per task, will depend on the biomolecular system and the conformational
space that must be sampled.

Table 3. Single-node performance for GROMACS on Summit, 6 GPUs. First value:
PME calculated on CPU, Second value: PME calculated on GPU. Sim-time: simulation
time, perf: performance.

Size Sim-time (ns/day) Time (ms/step) Perf. (steps/sec)

29 K 231/423 0.8/0.4 1337/2448
134 K 66/110 2.6/1.6 382/637
1 M 11/18 15.7/9.6 64/104

Using Several Nodes Per Job With GROMACS Unlike OpenMM, GRO-
MACS uses MPI. The implementation allows for linear scaling over tens of thou-
sands of cores for larger systems. It is therefore possible to perform ESMD on
systems containing several million atoms. On Summit, the simulation of 1 M
atoms should be efficient on even a handful of nodes. We found the most ef-
ficient workflow configuration for running many parallel simulations of a 1 M
atom system when using the GPU-offloaded PME calculation was three nodes
per simulation instance. After this number, the GPU-based PME calculation
suffers from high communication overhead, and performance is greatly improved
by moving the PME calculation to the CPU.

Figure Fig. 2 shows scaling of the 1 M atom system over 16 Summit nodes,
using the GPU-based PME. Without GPU-PME, 100 ns/day can be achivied
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Fig. 2. Performance of GROMACS on Summit, 1 M atom system. Left panel: Using GPU offloading
of the PME calculations as well as the non-bonded forces. Right panel: Without PME offloading.
Configuration used 6 GPUs and 6 MPI ranks per node, with 7 OpenMP threads per MPI rank. PME
offloading quickly becomes inefficient but can provide a good solution when using about 3 nodes per
task. GROMACS scales linearly to much higher node counts when PME offloading is not used.

using 50 nodes. It should be noted that on Titan the same sized system achieved
this performance using 1024 nodes. For ensemble MD, depending on available
resources and timescales required, many tasks each using small numbers of nodes,
or fewer tasks each using dozens of nodes could be performed.

3.3 Performance of Allocation Management Tools: Running
Thousands of Small Concurrent Workflow Tasks

Here we describe tests of the allocation management system along with other
aspects of system performance on Summit when running thousands of parallel
tasks without an MPI programming model. This is relatively non-standard, his-
torically, for HPC computing. However, the feasibility and appeal of ensemble
simulations on these large systems is increasing, and thus this model is becoming
more popular.

Fig. 3. Performance of concurrent tasks launched from a single jsrun on Summit, CUDA/C exe-
cutable. Left panel: a single executable was read by all processes. Right panel: executable was copied
and each process read its own file. Copy time not included in total job time. Tasks were run 6 per
node.
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There are two configurations for launching multiple jobs within our work-
flow program. A single jsrun command (the IBM Job Step Manager tool for
launching jobs) can launch thousands of instances of an executable using mul-
tiple resource sets, or thousands of tasks can each call a different instance of
jsrun. Neither situation is commonly anticipated in the optimization of large
HPC computers. In the following we describe the performance and stability of
the Summit software stack under both configurations, without the workflow pro-
gram.

Single jsrun Running Thousands of Tasks Using a single instance of jsrun,
up to 27600 simultaneous executions of simple programs were performed, using 6
instances per Summit node. This utilized up to 4600 of the 4608 nodes on Sum-
mit. Figures 3 and 4 show results from these tests, using a CUDA/C executable
or a C executable with OpenMP directives. For the latter, we used the HACCmk
cosmology microkernel [19]. In contrast to on Titan, we found that on Summit
no errors were encountered while attempting to access the same executable by
multiple processes, as there were on Titan. However, this procedure resulted in
a large initialization overhead. In addition, in this situation the execution times
of the tasks increased for high node counts (Figure 3, left panel). Figure 4
shows performance of CPU executables, without threading (left panel) and with
OpenMP threading (right panel). Total job latency was similar between the two
versions. In both cases, for over 20,000 concurrent executions, job latency was
appreciable and similar, and less than for the GPU executable. This difference
may be a result of system fluctuations, however, such as batch node traffic. In
all cases, the latency was significant and could cause job time to be more than
double that of task time. However, with long running tasks, these effects become
less noticeable.

Fig. 4. Performance of concurrent tasks launched from a single jsrun command on Summit, CPU
executable. Left panel: C executable, no OpenMP or other threading in executable. Right panel:
OpenMP-containing executable run with 7 threads. Tasks were run 6 per node. Total task time for
single executable is, left: 60 seconds, right: 113 seconds.

Thousands of Parallel jsrun Instances We found that on Summit, thou-
sands of concurrent instances of the jsrun tool were not allowed due to process
limits set on the batch nodes. This behavior prevents more than 1000 tasks from
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being launched simultaneously from 1000 jsrun calls. Unfortunately this pre-
vents the scaling of a workflow to all of Summit when using MPI-containing exe-
cutables and single-node jobs, because they cannot be launched inside the same
jsrun instance or they will couple. Therefore under the current circumstances
the scaling to all of Summit of GROMACS inside of the workflow program would
require the use of multiple nodes per simulation.

3.4 Testing the Adaptive Workflow with Executables Containing
CUDA and OpenMP

Here the full workflow program was tested using executables containing CUDA,
and C with OpenMP. MongoDB is a document database and thus each com-
munication requires opening of a file. We used Mongo version 3.6.11 with the
ppc64le build, PyMongo 3.7.2, Python 3.7.3, and NumPy 1.15.4.

Fig. 5. Timelines of workflows for 60, 300, 1800, and 4200 tasks. Due to the short duration of tasks
used here, under 1000 executors stay busy as previous executors pick up tasks after they finish. At
around 2000 tasks, incorrectly inherited ulimit settings limit the number of file handles allowed and
tasks are rejected, however, all required tasks are completed.

We discovered a bug in the Summit IBM Spectrum Load Sharing Facility
(LSF) batch scheduling system’s configuration that propagates the wrong envi-
ronment inside of a jsrun instance: while the hard maximum limit for number
of file handles per process (ulimit -n) is set to around 65 K on the compute
nodes, the jsrun environment incorrectly inherits the settings from nodes with
a limit set to 4096. The database program requires two files opened to support
a connection to each executor. Therefore, for concurrent launching of 6 tasks
per node (run by 6 executors) using all of Summit, about 54 K files need to
be opened by a single database process. Due to the current file limit problem,
only 2048 executors can be launched at a time if connecting to a single database
host. Fault tolerance is provided by programmatic elements within the workflow
and facilitated by the DBMS. As tasks are not bound to executors, the limited
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executors are able to execute well over 2048 tasks successfully: while some ex-
ecutor connections are rejected due to file limits resulting in failure to initialize
the executor process, remaining tasks are taken up by executors after previous
tasks are completed.

Figure 5 shows a breakdown of the timelines for components of single-
workload jobs with 60, 300, 1800 and 4200 tasks. Each task contained an exe-
cutable in CUDA/C and had a duration of about 60 seconds. Timestamps were
taken at the start and end of each component of the workflow by each executor.
Due to short duration of the tasks, executors were able to finish tasks before
all executors were dispatched and start additional queued tasks. Under 1000
executors completed the 1800 task workflow, as all 1800 tasks were running or
complete with 800 executors yet to dispatch. In the 4200 task workload, connec-
tions from executors numbered 2000 and above were rejected by the database
host due to the above mentioned ulimit settings. All tasks finished successfully.

Fig. 6. Task completion profiles of workflows for 300, 900, 1800 and 6000 tasks.

Figure 6 shows task completion timing profiles for workflows with 300, 900,
1800 and 6000 total tasks. These plots show that all tasks in each case were
completed the rate at which this was accomplished for each workflow instance.
900 tasks are completed faster in the 900-task workflow job than are completed
within the 1800 and 6000-task jobs, we found this is due to the ulimit settings
that caused the database to close some existing executor connections as new
connection requests were handled. This resulted in a latency as the running
tasks had to start again in new executors due to this executor connection failure.
Figure 7, left panel, shows the task dispatch rate for varying task numbers using
the CUDA executable. This rate is calculated before any task rejections occur.
The maximum task dispatch rate of 19.4 tasks/sec was achieved for 4200 tasks,
and a rate of about 18 tasks/sec is maintained from 2400 to 6000 tasks. A similar
rate is achieved by other ensemble simulation workflow platforms [37]. This rate
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is much lower than that achieved by Swift/T, but for the type of workflows
targeted here, where tasks will run for hours to days, this latency is negligible
compared to the total runtime of the workflow. If rapid dispatch and deployment
of thousands of short simultaneous tasks is required as part of a workflow, it is
possible that an instance of Swift/T can be executed inside of the workflow.
Figure 7, right panel, shows the changes in the ratio of total workflow time to
task number as it varies over job size. The ratio stays between 0.3 and 0.1 for
all jobs with over 1000 tasks. This shows that the overhead is stable for large
job sizes, and that the cost-per-task stabilizes for these large jobs. This overhead
will be negligible for long jobs such as are common in MD simulations.

Fig. 7. Left panel: Task dispatch rate over number of tasks. Right panel: change in workflow time
to task ratio over number of tasks in worflow job.

4 Conclusions and Future Work

We have shown that the use of a DBMS can provide the infrastructure for a fault-
tolerant, scalable, adaptable workflow generation program that can be used to
implement ESMD methods such as adaptive sampling with Markov models. De-
spite limitations imposed by system-level problems that must be corrected by
the vendor and system administration personnel, on the Summit supercomputer
preliminary tests of the components as well as initial tests of the complete pro-
gram show that a workflow solution that uses Python and the MongoDB DBMS
to create a dataflow-based platform for this type of workflow can be effective.
Future work will involve implementation of the complete adaptive Markov-model
workflow using several MD simulation programs, and investigation of possibili-
ties for reducing database traffic using different database configurations.
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