
A Scalable Graph Analytics Framework for
Programming with Big Data in R (pbdR)

S.M.Shamimul Hasan, Drew Schmidt, Ramakrishnan Kannan, Neena Imam
Computing and Computational Sciences Directorate

Oak Ridge National Laboratory, Oak Ridge, TN, USA
Email: {hasans, schmidtda, kannanr, imamn}@ornl.gov

Abstract— Real-world complex systems are often represented
as graphs. This approach has had tremendous success across
many disciplines including biology, economics, engineering,
physics, and the social sciences. The advancement of modern
technologies enables the explosive growth of massive graphs.
Analyzing the structural properties and dynamics of these
massive graphs is crucial to researchers for improving their
knowledge about complex systems. Many graph analysis li-
braries are available in many programming languages. One
such is R, a popular programming language that supports
sophisticated data analytics and visualization capabilities. Many
domain experts prefer to use R over the numerous alternatives.
However, it has no distributed graph analysis capabilities. In
this paper, we present a distributed graph analytics framework
for R called programming with big graph using R (pBGR.) Our
proposed framework is developed on top of the Programming
with Big Data in R (pbdR) ecosystem that provides scalable R
packages for distributed computing in data science. We present
an early prototype implementation of this framework using
the distributed-memory parallel graph library CombBLAS, and
evaluate the framework’s current performance. Our experimen-
tal results demonstrate that the proposed framework is capable
of performing large-scale parallel graph mining through the
easy-to-use R language, which is valuable to many domain
experts.

Index terms— R, pbdR, pBGR, CombBLAS, Titan

I. INTRODUCTION

Graphs are getting larger across a wide range of disciplines,
including biology, economics, engineering, physics, and the
social sciences [1], [2]. So there is great need for scalable,
distributed algorithms for the analysis of large graphs [3],
[4], [5] that cannot be analyzed on a single machine.
However, it is often the domain scientists themselves who
are analyzing these large graphs, in order to capture trends,
links, associations and relations [6]. Therefore, the software
implementing these scalable algorithms would ideally also
be easy to use.

The choice of a graph analytical library is largely decided
by the choice of a programming language. For example., in the
case of Python, NetworkX is the defacto graph analytic library,
Stanford Network Analysis Project (SNAP) for C++, and
igraph for R. R is a popular statistical programming language
that supports advanced data analytics and visualization capa-
bilities. It is among the top ten programming languages in the
ranking of the Institute of Electrical and Electronics Engineers
(IEEE). This is a testament to the power of the data analytics

environment it provides, since it is generally not well-
regarded as a programming language. Although R is a useful
environment for data analysis, it does not handle big data
or work with HPC “out of the box”. Nevertheless, because
of the sophisticated statistical and data analysis capabilities
of R, many domain researchers prefer to use R for big data
analysis in spite of sub-optimal performance over native
HPC libraries in large distributed computing environments.
To address this issue of scalability, the “Programming with
Big Data in R (pbdR)” project was created [7]. It provides
a collection of highly scalable R packages for distributed
computing and profiling in data science. The performance
of pbdR packages can be remarkably faster than R on large-
scale datasets, which need not fit into the memory of a single
multicore processor. Indeed, pbdR uses the collective memory
of a distributed multiprocessor computer (a cluster) that is
orders of magnitude larger than that of a single processor.

One of the limitations of pbdR is that it does not support
any form of graph processing. Towards this end, in this
paper, we propose a graph analytics framework for pbdR.
Our proposed framework is developed by integrating the
pbdR architecture with well-established distributed graph
analysis libraries. Our work involves the enhancement of
the abilities of pbdR through the provision of easy-to-use
high-level operations to analyze and manipulate large graphs.
The targeted users of our framework are data scientists who
may lack in-depth knowledge of distributed computing or
the particulars of graph algorithms. In our opinion, providing
domain researchers the opportunity to efficiently explore large
scale graphs will enhance scientific discovery. The rest of the
paper is organized as follows: Section II presents related work,
Section III describes the proposed framework, Section IV
provides our experimental results, and Section V concludes
the paper.

II. BACKGROUND

There are many graph analysis tools available, with varying
features. NetworkX is perhaps the most common tool for
Python users to develop and study graphs. NetworkX has
a considerable collection of graph algorithms. However,
NetworkX does not provide parallel implementations of the
algorithms [8], [9]. Another popular graph analysis library
is the Stanford Network Analysis Platform (SNAP). This
is written in C++ and readily scales to large networks with



Fig. 1. Graph Analytics Landscape.

hundreds of millions of nodes and billions of edges [1].
Although SNAP is a useful tool, SNAP also does not provide
parallel implementations of its graph algorithms. Pajek is
another useful tool for the study and visualization of networks
possessing thousands or millions of vertices [9], [10]. The
Public Implementation of a Graph Algorithm Library and
Editor (PIGALE) permits a C++ library to study planar
graphs [11]. PEGASUS is a petascale distributed graph mining
system that runs on clouds. PEGASUS offers large-scale
algorithms for significant mining tasks [9], [12]. PEGASUS
also permits the parallel implementation of certain graph
algorithms. Combinatorial BLAS (CombBLAS) is a HPC
graph analytics implementation, which permits the powerful
composition of linear algebra primitives and is targeted
mainly towards graph and data mining uses [12]. CombBLAS
takes a somewhat novel approach compared to other graph
libraries, in that it is designed specifically for use with
distributed computing in HPC environments. This is partly
accomplished via the re-use of ideas taken from the domain of
parallel numerical computing [13], [14]. Phoenix, a product
of the Oak Ridge National Laboratory, is a high-performance
distributed streaming graph analytics framework implemented
in C++. Phoenix focuses on enabling the concurrent utilization
of online and offline graph analysis. In the case of the
online analysis, fundamental graph pattern queries on vertices,
properties, and edges such as the relation between two vertices,
the path between two vertices, etc., can be performed. The
offline analysis involves complex graph pattern exploration

such as graph clustering, community detection, triangle
counting, etc. on the entire graph. Spatio-Temporal Interaction
Networks and Graphs Extensible Representation (STINGER)
is a high-performance and extensible data structure developed
for dynamic graph analysis. STINGER is a product of the
Georgia Institute of Technology [15]. GunRock is a CUDA-
based graph library designed for GPUs [16]. SparkR is
Apache Spark’s R frontend, which uses Spark’s distributed
computation engine for large scale data analysis. SparkR
supports selection, filtering, aggregation operations on large
dataset through distributed data frame implementation. More-
over, SparkR supports distributed machine learning algorithms.
SparkR does not support parallel implementations of graph
algorithms [17].

The above examples demonstrate that the rapidly growing
graph analytics tools present the user with a variety of options.
Efficient knowledge discovery from available data depends
on an intelligent combination of these analytics tools and
software/hardware frameworks. We present a state-of-the-art
graph analytics landscape in Fig. 1 (see [18] for detail). The
figure is divided into graph data and software parts. In this
paper, we focus on generated synthetic graph data and the R
programming language. We studied large graph datasets that
cannot be analyzed on a single machine and utilized pbdR
as the distributed environment. We present our framework in
detail in the next section.



Fig. 2. pBGR framework.

III. PROPOSED FRAMEWORK

We propose to enhance the capabilities of pbdR by creating
a distributed graph analytics framework named pBGR. Fig. 2
presents a high level overview of the framework. pbdR
and HPC-based graph implementation are the two main
components of the framework, where R with pbdR packages
communicates with HPC-based graph implementation. We
discuss both of these components below.

A. pbdR

As mentioned in Section I, pbdR provides a set of highly
scalable R packages for distributed computing and profiling
in data science. pbdR provides packages for computation,
communication, I/O, profiling, developers, and applications.
pbdMPI is a computation package that provides a high-
level interface to MPI for R. The pbdZMQ package provides
bindings for the ZeroMQ communication library. pbdNCDF4
is an I/O package that supports parallel read-and-write
capabilities. pbdPAPI is an example of a profiling package,
which supports measuring performance counter data (i.e.,
number of floating point operations). pbdSLAP is a developer
package that supports scalable linear algebra operations.
pbdML is an application package that supports machine
learning algorithms [19].

B. HPC-Based Graph Implementation

In this study, we use only one HPC-based implementation,
namely CombBLAS. We modify pbdR to employ CombBLAS
data structures for computation. We utilize R’s object oriented
facilities to dispatch to the right internals. We take advantage
of CombBLAS’s underlying infrastructure, such as the graph
generators and sparse matrix methods. Additionally, pBGR
package exports graph kernels (e.g., PageRank, BFS) which
are built on top of CombBLAS primitives. We used R’s .Call
interface to call the CombBLAS code from pBGR. One of

the important benefits of the .Call interface is that vectors or
matrices can be passed directly between R and C++ without
explicitly passing the dimension arguments [20]. In order
to consume the CombBLAS libraries in pbdR, we made
modifications for performance optimization. We eliminated
CombBLAS’s unnecessary memory creation and expensive
state checks. We provide detail discussion in the following.

1) Memory Optimization: CombBLAS sparse matrix/dense
vector multiplication (SpMV) routine allocates its own return.
But this routine will typically be called many times, perhaps
hundreds or thousands, in graph kernels such as PageRank and
Breadth-first search (BFS). So we simply add an additional,
modified routine which requires the developer to allocate
the return, which is then modified in place. This may seem
like a small advantage, but CombBLAS objects are fairly
complicated and surprisingly expensive to initialize.

2) Expensive State Checks: CombBLAS asserts the dis-
tributed matrix/vector dimension checks before executing
sparse matrix operations such as SpMV. These checks require
collective calls which are very expensive at a large scale, and
they only ever really need to be called once for the kinds
of iterative algorithms of concern to us. We have modified
CombBLAS to eliminate these expensive checks.

CombBLAS provides graph kernels written in C++. This
limits its accessiblity to many domain experts who may not
have any familiarity with C++ or know how to use linear
algebra to implement a particular graph algorithm. To that
end, the Knowledge Discovery Toolbox (KDT) is a high-
level python interface developed on top of CombBLAS by
the CombBLAS authors and is intended to provide large scale
graph analytics capabilities to domain experts [21], [22]. This
approach is conceptually very similar to our approach, albeit
with python instead of R. There are several key differences
in our two approaches which are worth noting. First, KDT
stores results in python native objects. This requires data to be



Fig. 3. Comparative Cases (CombBLAS, KDT, and pBGR).

copied when it is modified and passed between CombBLAS’s
C++ data structures and python’s data structures, inflating
the memory requirements of this approach. By contrast, in
pBGR, we store only a so-called “external pointer” and some
metadata. In this way, we get modify-without-copy semantics
for free, and we avoid the CombBLAS object data movement
entirely. Each of these approaches has a similar high-level
API from the point of view of the user. The advantage of the
KDT approach is that other python frameworks like numpy
can be used both by the KDT authors as well as KDT users.
On the other hand, with our approach, only functions which
were specifically designed to work with CombBLAS data can
be used on the objects we return to the user. To address this
specific limitation in our approach, we have some utilities for
turning CombBLAS data managed by R into native R objects,
and vice versa. This raises the complexity somewhat for the
user, but with the benefit of much better runtime performance
and lower memory usage.

IV. EXPERIMENTAL EVALUATIONS

A. Graph Kernel

We implemented the PageRank graph kernel for pBGR. In
Listing 1, we present an example of a pBGR PageRank script
(first, we load the pBGR library in R, and then we generate
a Kronecker graph, and finally, we apply the PageRank

kernel on the generated graph). We show the PageRank script
execution example in Listing 2.

1 library(pbgr)
2 x = kron_gen(scale=12)
3 pagerank(x)

Listing 1. pBGR PageRank script example.

1 mpirun -np 4 Rscript pagerank.R
Listing 2. pBGR PageRank script execution example.

B. Comparative Cases

We compare performance of our implementation with KDT
and CombBLAS’s PageRank implementation. We consider
the following three cases (also available in Fig. 3).
• Case 1: The first case used as our baseline is Comb-

BLAS. We denote CombBLAS by box A in Fig. 3.
• Case 2: The second case is KDT built on top on

CombBLAS. We show this second case by boxes A,
B, and C in Fig. 3.

• Case 3: Finally, our proposed framework pBGR is
indicated by boxes A, D, and E in in Fig. 3.

As mentioned in Section III, we optimized CombBLAS
for executing graph kernels in pbdR. We use optimized



TABLE I
THIS TABLE SHOWS THE STRONG SCALING RUNTIME INFORMATION FOR KDT, COMBBLAS, AND PBGR PACKAGES FOR SCALE (OR GRAPH SIZE) 2ˆ21.

MPI Ranks Graph Size (or Scale) Package Runtime (seconds) Package Runtime (seconds) Package Runtime (seconds)
144 2ˆ21 KDT 9.10 CombBLAS 0.30 pBGR 0.39
256 2ˆ21 KDT 5.26 CombBLAS 0.21 pBGR 0.19
576 2ˆ21 KDT 2.61 CombBLAS 0.15 pBGR 0.20
1024 2ˆ21 KDT 1.79 CombBLAS 0.15 pBGR 0.25
2304 2ˆ21 KDT 1.09 CombBLAS 0.11 pBGR 0.17
4096 2ˆ21 KDT 0.91 CombBLAS 0.11 pBGR 0.17

TABLE II
THIS TABLE SHOWS THE STRONG SCALING RUNTIME INFORMATION FOR KDT, COMBBLAS, AND PBGR PACKAGES FOR SCALE (OR GRAPH SIZE) 2ˆ23.

MPI Ranks Graph Size (or Scale) Package Runtime (seconds) Package Runtime (seconds) Package Runtime (seconds)
144 2ˆ23 KDT 42.97 CombBLAS 1.37 pBGR 1.70
256 2ˆ23 KDT 22.93 CombBLAS 1.10 pBGR 0.85
576 2ˆ23 KDT 10.88 CombBLAS 0.56 pBGR 0.76
1024 2ˆ23 KDT 6.56 CombBLAS 0.42 pBGR 0.64
2304 2ˆ23 KDT 3.88 CombBLAS 0.30 pBGR 0.49
4096 2ˆ23 KDT 2.76 CombBLAS 0.39 pBGR 0.51

TABLE III
THIS TABLE SHOWS THE STRONG SCALING RUNTIME INFORMATION FOR KDT, COMBBLAS, AND PBGR PACKAGES FOR SCALE (OR GRAPH SIZE) 2ˆ25.

MPI Ranks Graph Size (or Scale) Package Runtime (seconds) Package Runtime (seconds) Package Runtime (seconds)
144 2ˆ25 KDT 244.77 CombBLAS 7.29 pBGR 8.48
256 2ˆ25 KDT 127.38 CombBLAS 4.49 pBGR 3.93
576 2ˆ25 KDT 52.76 CombBLAS 2.58 pBGR 3.38
1024 2ˆ25 KDT 29.85 CombBLAS 1.81 pBGR 2.63
2304 2ˆ25 KDT 15.67 CombBLAS 1.18 pBGR 1.80
4096 2ˆ25 KDT 10.20 CombBLAS 1.50 pBGR 1.60

TABLE IV
IN THIS TABLE, WE PRESENT WEAK SCALING EXPERIMENTATION RESULTS.

MPI Ranks Graph Size (or Scale) Package Runtime (seconds) Package Runtime (seconds) Package Runtime (seconds)
144 2ˆ20 KDT 3.86 CombBLAS 0.14 pBGR 0.19
256 2ˆ21 KDT 5.30 CombBLAS 0.20 pBGR 0.19
576 2ˆ22 KDT 4.88 CombBLAS 0.34 pBGR 0.38
1024 2ˆ23 KDT 6.39 CombBLAS 0.49 pBGR 0.64
2304 2ˆ24 KDT 7.48 CombBLAS 0.76 pBGR 0.87
4096 2ˆ25 KDT 10.75 CombBLAS 1.79 pBGR 1.63

CombBLAS for Cases 1 and 3. We use regular CombBLAS
for Case 2. The optimized CombBLAS allows us to compare
not only the KDT and R approaches, but also the overhead
we pay for a high level R interface compared to a standalone
C++ binary.

C. Machine Configuration

Throughout, we used the Oak Ridge Leadership Computing
Facility’s (OLCF) Titan supercomputer. Titan is a hybrid-
architecture Cray R© XKTM system with a theoretical peak
performance exceeding 27,000 trillion calculations per second
(27 petaflops). It contains both advanced 16-core AMD
OpteronTM central processing units (CPUs) and NVIDIA R©

Kepler graphics processing units (GPUs) totalling 299,008
CPU cores and 710TB of memory on 18,688 compute nodes
[23].

The TOP500 organization that ranks the world‘s super-
computers by LINPACK performance, ranked Titan as the
number one supercomputer in the world on November
2012 [24], [25]. Titan was decommissioned on August 2,

2019.

D. Experimental Setup

1) Parallel Scalability: We consider two classes of bench-
marks: strong and weak scaling. For the strong scaling
case, we fix a global problem size and increase the number
of resources (processors or cores). This explains if the
problem of same size can be solved faster with additional
processors. Assume an algorithm is solving a problem of
size n on p processors in t seconds. A linear strong scaling
implementation will solve the same problem of size n in t

x
seconds on xp processors. On the other hand, for the weak
scaling benchmarks, we fix a local problem size, so that
the global problem size grows as the number of resources
(processors or cores) is increased. A linear weak scaling
algorithm will solve a problem of size xn on xp processors in
t seconds. That is., weak scaling addresses the question, when
the data grows does the implementation solve the problem in
reasonable time with additional processors? For weak scaling,
the hope is that the runtime will be flat across core counts.



Fig. 4. In this figure, we present the strong scaling results. The figure shows that the CombBLAS and pBGR’s PageRank implementations are faster than
the KDT.

2) Graph Data and MPI Ranks: For our data, we use
randomly generated Kronecker graphs using the Graph 500
generator [26]. For each, we provide a “scale”, which is the
log2 number of vertices in the graph. Said another way, 2
raised to the power of the provided scale is the total number
of vertices. For the strong scaling benchmark, we generated
three graphs with scales 21, 23, and 25. For the weak scaling
benchmark, we generated six graphs with scales 20, 21, 22,
23, 24, and 25. Core counts are a little more complicated.
CombBLAS requires a square grid of processes, which does
not allow us to simply start at one core count and successively
double it (since 2 times a square is not a square). So we
chose core counts which are squares and “close” to typical
power of 2 choices. As such, we used 144, 256, 576, 1024,
2304, and 4096 cores for our experiments. We also do not
consider threading; that is, each core corresponds exactly to
one MPI rank.

E. Results

Our experimentation results are available in Figs. 4, 6, 5,
and 7 (also in Tables I, II, III, and IV). We present
strong scaling results in Fig. 4. We conducted strong scaling
experimentation for CombBLAS, KDT, and pBGR with three
graph sizes (scale values 21, 23, and 25). Fig. 4 reports

that CombBLAS and pBGR’s PageRank implementations are
faster than the one in KDT for all the three graph sizes.
Moreover, Fig. 4 shows that KDT is computationally expen-
sive for larger graphs because KDT’s runtime increases with
respect to the graph sizes. Furthermore, KDT demonstrates
increased execution time for large graphs with small MPI
ranks compared to CombBLAS and pBGR. For example,
PageRank implementation for the third graph (scale 25)
with MPI rank 144 took 244.77 seconds on KDT, 7.29
seconds on CombBLAS, and 8.48 seconds on pBGR. Note
also that pBGR’s runtime is very close to the standalone
binary CombBLAS application, as seen in Fig. 4. In fact,
several of the pBGR runtimes are actually lower than the
CombBLAS runtimes. This suggests that the differences we
see are within the variation of the machine. To clearly show
the difference between CombBLAS’s and pBGR’s runtimes,
we present another strong scaling plot without KDT that
shows the R overhead (see Fig. 5). Here, “overhead” means
the extra running time pBGR needs for computation compared
to CombBLAS. Fig. 5 depicts that CombBLAS’s and pBGR’s
runtimes are similar. However, gaps between CombBLAS’s
and pBGR’s runtimes increase in the second graph (scale 23)
and third graph (scale 25) specifically for MPI ranks 1024
and 2304.



Fig. 5. To present the difference between CombBLAS’s and pBGR’s runtimes, we provide strong scaling plot without KDT that shows the R overhead.
This figure demonstrates that CombBLAS’s and pBGR’s runtimes are similar.

We present weak scaling results in Fig. 6. We used three
software frameworks as discussed previously (CombBLAS,
KDT, and pBGR) and six graphs (scale values 20, 21, 22, 23,
24, and 25) for the weak scaling experimentation. Fig. 6 shows
that pBGR and CombBLAS are significantly faster than KDT.
Unlike strong scaling, weak scaling demonstrates that KDT’s
runtime increases for large graphs with high MPI ranks. For
example, PageRank implementation for the sixth graph (scale
25) with MPI rank 4096 took 10.75 seconds on KDT, 1.79
seconds on CombBLAS, and 1.63 seconds on pBGR. Like
strong scaling, weak scaling results also demonstrate that
pBGR’s runtimes are close to that of CombBLAS. Moreover,
for some cases, pBGR provides faster performance than
CombBLAS. We present weak scaling R overhead in Fig. 7,
which shows the runtime difference between CombBLAS
and pBGR. Although Fig. 7 shows that CombBLAS’s and
pBGR’s runtimes are similar, their differences are large in
the fourth graph (scale 23), fifth graph (scale 24), and sixth
graph (scale 25).

The experimental results show that for both strong and
weak scalings pBGR’s PageRank implementation is faster than
the one in KDT, owed perhaps in large part to the CombBLAS
modifications discussed in Section III. Our overhead plots
(Figs. 5 and 7) clearly show that pBGR’s and CombBLAS’s

performances are similar because we used R’s .Call interface
for implementation. In the .Call interface, the C++ code
becomes more involved than R. Moreover, the .Call interface
allows the passing of vectors or matrices directly between R
and C++ without explicitly passing the dimension arguments,
which we believe has an impact on acquiring better runtimes
for pBGR [20].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described the design and implementation
of a large-scale graph analytics framework for pbdR. We
discuss pbdR and various graph libraries at the beginning.
Next, we introduce our proposed pBGR framework. Finally,
we present our experimental evaluation. We use the Comb-
BLAS graph library as the backend of our framework and
optimized CombBLAS by removing unnecessary memory
allocations and expensive state checks. We performed a strong
scaling experimentation with three graphs and a weak scaling
experimentation with six graphs on Titan Supercomputer
at Oak Ridge Leadership Computing Facility. Our early
experimental results show that the proposed pBGR framework
can efficiently perform scalable graph analytics on a state-of-
the-art supercomputer. The experimental results demonstrate
that the runtime of pBGR is less than that of KDT and



Fig. 6. This figure presents the weak scaling results and shows that the KDT is computationally expensive.

identical to that of CombBLAS. We observe that the overhead
of performing distributed graph analytics on pbdR comes with
very little or no overheads in all our experimentation.

In the future, we will develop other popular graph kernels
with a CombBLAS backend such as Breadth First Search,
All Pairs Shortest Path, and Triangle Counting for pBGR. We
are also interested in extending the high-level graph API in
pBGR to backends other than CombBLAS such as Phoenix,
GunRock, PowerGraph, PEGASUS, and STINGER graph
libraries including GPU-based HPC systems with our graph
kernels.

ACKNOWLEDGEMENTS

Support for this work was provided by the United States De-
partment of Defense. We used resources of the Computational
Research and Development Programs and the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

This manuscript has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US De-
partment of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclu-

sive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow
others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES

[1] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[2] M. E. Newman, “The structure and function of complex networks,”
SIAM review, vol. 45, no. 2, pp. 167–256, 2003.

[3] S. Arifuzzaman, “Parallel mining and analysis of triangles and
communities in big networks,” Ph.D. dissertation, Virginia Tech, 2016.

[4] C. Hernández and G. Navarro, “Compressed representations for web
and social graphs,” Knowledge and information systems, vol. 40, no. 2,
pp. 279–313, 2014.

[5] S. Goel, D. J. Watts, and D. G. Goldstein, “The structure of online
diffusion networks,” in Proceedings of the 13th ACM conference on
electronic commerce. ACM, 2012, pp. 623–638.

[6] H. Bhuiyan, M. Khan, and M. Marathe, “Efficient algorithms for
assortative edge switch in large labeled networks,” in Proceedings
of the 25th High Performance Computing Symposium. Society for
Computer Simulation International, 2017, p. 2.

[7] G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. (2012)
Programming with big data in r. [Online]. Available: http://r-pbd.org/

[8] A. Hagberg, D. Schult, and P. Swart, “Networkx: Python software for
the analysis of networks,” Mathematical Modeling and Analysis, Los
Alamos National Laboratory, 2005.

http://r-pbd.org/


Fig. 7. This figure presents the weak scaling plot without the KDT to show the R overhead. The figure illustrates that CombBLAS’s and pBGR’s runtimes
are similar.

[9] S. E. Abdelhamid, R. Alo, S. M. Arifuzzaman, P. Beckman, M. H.
Bhuiyan, K. Bisset, E. A. Fox, G. C. Fox, K. Hall, S. M. S. Hasan,
A. Joshi, M. Khan, C. J. Kuhlman, S. Lee, J. P. Leidig, H. Makkapati,
M. V. Marathe, H. S. Mortveit, J. Qiu, S. S. Ravi, Z. Shams,
O. Sirisaengtaksin, R. Subbiah, S. Swarup, N. Trebon, A. Vullikanti,
and Z. Zhao, “Cinet: A cyberinfrastructure for network science,” in
2012 IEEE 8th International Conference on E-Science, Oct 2012, pp.
1–8.

[10] V. Batagelj and A. Mrvar, “Pajek—analysis and visualization of large
networks,” in Graph drawing software. Springer, 2004, pp. 77–103.

[11] H. de Fraysseix and P. O. de Mendez, “Pigale-public implementation
of a graph algorithm library and editor,” SourceForge project page
http://sourceforge. net/projects/pigale, 2002.

[12] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale
graph mining system implementation and observations,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining.
Washington, DC, USA, 2009, pp. 229–238.

[13] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, im-
plementation, and applications,” The International Journal of High
Performance Computing Applications, vol. 25, no. 4, pp. 496–509,
2011.

[14] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing. IEEE, 2008, pp. 1–11.

[15] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in 2012 IEEE
Conference on High Performance Extreme Computing. IEEE, 2012,
pp. 1–5.

[16] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel et al., “Gunrock: Gpu graph analytics,”
ACM Transactions on Parallel Computing (TOPC), vol. 4, no. 1, p. 3,
2017.

[17] S. Venkataraman, Z. Yang, D. Liu, E. Liang, H. Falaki, X. Meng,
R. Xin, A. Ghodsi, M. Franklin, I. Stoica et al., “Sparkr: Scaling
r programs with spark,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1099–1104.

[18] “Awesome Network Analysis,” URL: https://github.com/briatte/
awesome-network-analysis, 2019, [Online; accessed 2019-03-04].

[19] G. Ostrouchov, D. Schmidt, W.-C. Chen, and P. Patel, “Combining
r with scalable libraries to get the best of both for big data,” in
International Association for Statistical Computing Satellite Conference
for the 59th ISI World Statistics Congress, 2013, pp. 85–90.

[20] D. Eddelbuettel, “Introduction to high-performance computing with
r,” http://dirk.eddelbuettel.com/papers/useR2009hpcTutorialHandout.
pdf, 2009.

[21] A. Lugowski, A. Buluç, J. R. Gilbert, and S. Reinhardt, “Scalable
complex graph analysis with the knowledge discovery toolbox,” in
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on. IEEE, 2012, pp. 5345–5348.

[22] A. Lugowski, D. Alber, A. Buluç, J. R. Gilbert, S. Reinhardt, Y. Teng,
and A. Waranis, “A flexible open-source toolbox for scalable complex
graph analysis,” in Proceedings of the 2012 SIAM International
Conference on Data Mining. SIAM, 2012, pp. 930–941.

[23] “Titan, Cray XK7,” URL: https://www.olcf.ornl.gov/olcf-resources/
compute-systems/titan/, 2019, [Online; accessed 2019-03-04].

[24] “TOP500 List),” URL: https://www.top500.org/lists/2018/11/, 2019,
[Online; accessed 2019-03-27].

[25] “Titan (supercomputer),” URL: https://en.wikipedia.org/wiki/Titan
(supercomputer), 2019, [Online; accessed 2019-03-27].

[26] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray User’s Group (CUG), vol. 19, pp. 45–74, 2010.

https://github.com/briatte/awesome-network-analysis
https://github.com/briatte/awesome-network-analysis
http://dirk.eddelbuettel.com/papers/useR2009hpcTutorialHandout.pdf
http://dirk.eddelbuettel.com/papers/useR2009hpcTutorialHandout.pdf
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.top500.org/lists/2018/11/
https://en.wikipedia.org/wiki/Titan_(supercomputer)
https://en.wikipedia.org/wiki/Titan_(supercomputer)

	Introduction
	Background
	Proposed Framework
	pbdR
	HPC-Based Graph Implementation
	Memory Optimization
	Expensive State Checks


	Experimental Evaluations
	Graph Kernel
	Comparative Cases
	Machine Configuration
	Experimental Setup
	Parallel Scalability
	Graph Data and MPI Ranks

	Results

	Conclusions and Future Work
	References

