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Abstract. Non-negative matrix factorization(NMF) is an important tool in
high-performance large scale data analytics with applications ranging from
community detection, recommender system, feature detection and linear and
non-linear unmixing. While traditional NMF works well when the data set is
relatively dense, however, it may not extract sufficient structure when the data
is extremely sparse. Specifically, traditional NMF fails to exploit the structured
sparsity of the large and sparse data sets resulting in dense factors. We propose
a new algorithm for performing NMF on sparse data that we call multi-
frontal NMF (MF-NMF) since it borrows several ideas from the multi-frontal
method for unconstrained factorization (e.g. LU and QR). We also present
an efficient shared memory parallel implementation of MF-NMF and discuss
its performance and scalability. We conduct several experiments on synthetic
and realworld datasets and demonstrate the usefulness of the algorithm by
comparing it against standard baselines. We obtain a speedup of 1.2x to 19.5x
on 24 cores with an average speed up of 10.3x across all the real world datasets.

Keywords: sparse matrix computations, distributed-memory parallelism, communication-
avoiding algorithms

1 Introduction

Non-negative Matrix Factorization(NMF) is the problem of determining two non-
negative matrices WERT” and H ERT” such that A~W H for the given matrix
AeR™*™ with m samples and n features. Formally,

argminW >0,H >0||A-W H||%. (1)
where | X|[5=3,5" 2%
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With the advent of large scale internet data and interest in Big Data, researchers
have started studying scalability of many foundational Data Mining and Machine
Learning(DM/ML) algorithms. In the typical case of sparse matrices from internet
data sets such as webgraph, bag of words matrices, k< min(m,n); for problems today,
m and n can be on the order of millions or more, and & is on the order of few tens
to thousands.

NMF is widely used in DM /ML as a dimension reduction method and for many real
world problems as the non-negativity is inherent in many representations of real-world
data and the resulting low rank factors are expected to have a natural interpretation.
The applications of NMF range from text mining, computer vision and bioinformatics
to blind source separation, unsupervised clustering and many other areas.

There is a vast literature on algorithms for NMF and their convergence properties
[12]. The commonly adopted NMF algorithms are — (i) Multiplicative Update (Mu)
[17] (ii) Hierarchical Alternating Least Squares (HALS) [1,10] (iii) NMF based on
Alternating Nonnegative Least Squares and Block Principal Pivoting (ABPP) [13],
and (iv) Stochastic Gradient Descent (SGD) Updates [5]. As in Algorithm 1, most of
the algorithms in NMF literature are based on alternately optimizing each of the low
rank factors W and H while keeping the other fixed, in which case each subproblem
is a constrained convex optimization problem. In this paper, we are considering HALS
for explaining our proposed algorithm and experiments. But without loss of generality,
it can be easily extended for other NMF algorithms as well.

It is trivial to understand that to approximate the sparse input matrix A, we
need sparse W and H. To promote sparsity in the factors W and H [14], the above
Equation (1), is extended with sparse {1 constraints as

argminW >0,H >0 A=W H ||+ W /|l +| H]x (2)

where [|X|1=3_,>;abs(zij).

Even though the factors from Equation (2) yields sparser factors over Equation
(1), still the approximation error will be high, i.e in the order of 0.8 and 0.9. This
is because, the low rank approximation W H will have non-zero entries in the place
of zeros on the input matrix A, resulting in huge error. That is nnz(W H) >>nnz(A).
As a side effect, sparse NMF algorithm takes longer to converge.

To overcome this problem, we are proposing a Multifrontal Non-negative Matrix
Factorization(MF-NMF) algorithm. Specifically, traditional NMF fails to exploit the
structured sparsity of the large and sparse data sets. We propose a new algorithm
for performing NMF on sparse data that we call multi-frontal NMF (MF-NMF) since
it borrows several ideas from the multi-frontal method for unconstrained factoriza-
tion (e.g. LU and QR). We show from Figs. 5 and 6 that the MF-NMF algorithm
achieves 1.2x to 19.5x speed up with an average speedup of 10.3x on 24 cores without
compromise in accuracy.



2 Background

In this section, we introduce the baseline NMF algorithm based on Hierarchical
Alternative Least Squares(HALS) and explain the problems of the NMF algorithm
on sparse data.

2.1 Non-negative Matrix Factorization(NMF)

The NMF [11] algorithms alternate between updating one of W and H using the
given input matrix A and other ’fixed’ factor - H for updating W or W for updating
H. We show the structure of any NMF algorithm in Algorithm 1.

Algorithm 1 [W H]=NMF(A4,k)

Require: A is an m xXn matrix, low rank k
1: Initialize H with a non-negative matrix in

RnXk.
i
2: while stopping criteria not satisfied do
3:  Update W as argminW>OHA—WHH F Fig.1: HALS Algorithms that
4:  Update H as argming-, H A-WH H determines 2k vectors of W and H
~ F

The NMF algorithms vary in the realization of the steps 3 and 4 of Algorithm 1.
In this paper, we are using a specific NMF algorithm called Hierarchical Alternating
Least Squares (HALS) [1] that has the following update rule for solving Eq. (2)

H — [H +WT A —(WTW +261), H] ¢ ;
Wi [(HH" +281,)uWi+(AH" )i =W (HH" +2613),]+ @
where 1;, is a matrix of kx k with all one’s, H? is row vector, W; is column vector
and «,/3 are some positive scalars.

The convergence properties of different NMF algorithms are discussed in detail by
Kim, He and Park [12]. While we focus only on the HALS algorithm in this paper, we
highlight that our algorithm is not restricted to this, and is seamlessly extensible to
other NMF algorithms as well, including HALS, ABPP, Alternating Direction Method
of Multipliers (ADMM) [18], and Nesterov-based methods [§].

It can be shown that the Eq. (3) results in a relatively dense W and H for low
rank k. Also, we can observe from Eq. (3), that there is no inherent parallelism on
HaLs algorithm other than the BLAS level parallelism available for sparse-dense
matrix multiplication.



2.2 NMF on Sparse Datasets

In the baseline NMF algorithm Algorithm 1, the factor matrix W and H are dense
even when A matrix is sparse. Thus, the approximant matrix A=W H is dense. This
is undesirable in the case of structured sparse matrix since dense approximant A will
not preserve the patterned sparsity of the matrix A such as the topic-modeling on
bag of words representation and sparse adjacency matrix representation of large scale
social network graphs.
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Fig. 2: Dense Factors Problem on Illustrative Block Diagonal Sparse NMF

Consider the NMF of 2 x 2 sparse block diagonal matrix as shown in Fig. 2a.
This block-diagonal structure of the matrix suggests that the data is separable into
two disjoint sets described by matrices Agg and Aj;. When we perform NMF of

this matrix, we obtain two dense factors W = [S//O] and H = [Hy H:| (Fig. 2b).
1

Hence the non-negative approximation of the matrix A is dense (Fig. 2c). Thus this
approximation loses the separability property of the input matrix.

Furthermore, the error of non-negative approximation for the 2x 2 sparse block
diagonal matrix is given by

A=W H |3~ || Ago— WoHo|[ 3+ | Ary — Wi Hu [+ | W1 Ho |3+ | Wo Hy | .

Note that the first two terms ||A00—W0H0||§, and ||A11—W1H1||2F are more than
the approximation error when we perform NMF on blocks Agy and Aj, respectively.
Additionally, |17, H0||§ |[WoH, ||§ are spurious and non-zero and they further worsen
the approximation error.

We summarize the drawbacks of performing Algorithm 1 to compute NMF of a
sparse matrix as (a) W and H factors are dense (b) NMF approximation does not
preserve the structural properties of the data and (c) the error of approximation (
and thus the approximation quality) is not optimal.

Informal Problem Statement: To overcome the limitations of Algorithm 1,
we seek an NMF algorithm that preserve the structural sparsity of the input data in
the approximation A=W H. Since the factor matrices are non-negative, no numerical
cancellation can occur. Hence if the approximation Ais sparse then W and H will
also be sparse.
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(a) Reorder (b) Gather (c) NMF (d) Scatter (€) Frontal Tree Reordered Matrix Two-level frontal tree
(a) MPF-NMF on 2Xx3 block sparse matrix (b) Mr-NMF factors with two
level ND

Fig. 3: On Fig. 3a, we show the four steps of MF-NMF and the frontal tree for one level-ND.
Figure 3a shows reordered matrix, W and H factors and frontal tree for two level-ND.

First, we describe the working of MF-NMF on a 2 x 3 block-sparse matrix shown

in Fig. 3a-a. In MF-NMF, we reorder the input matrix A to expose the sparse
block structure as shown inFig. 3a-a and instead of performing rank-k NMF on the
whole matrix A, we divide it into two smaller sub-problems Ay = [AOO Aog] and
A= [Alo Alg], and perform a k/2 rank NMF on Ag~4 WoHy and Ay =, W1 H;.
Finally, Wy and Wy, and Hy and Hj, are scattered to form the final W and H factors.
We perform this process in the following four steps (Fig. 3a).

1.

@

Reorder: we compute a column permutation P, and reorder the matrix to obtain
a block sparse matrix structure as shown in Fig. 3a.

Gather: We gather the sparse blocks into multiple smaller subproblems A;.
NMF: We perform independent NMF on each A;~, W;H; using Algorithm 1.
Scatter: We scatter all W; and H; to construct the final factor matrices W and H.

Algorithm 2 [W,H]=Mr-NMmF(A4,k,h)

Require: A is an m Xxn matrix, low rank k, height h of frontal tree

: F,P< Reorder (A,h) % F is frontal tree and P is permutation(Section 3.1)
i L4 #leaf(F)

Ao,Aq,++,Ag < Gather (A,F,P)
for i=1 to ¢ do
[Wi,Hi] +— NMF (AZ,%)

: W,H « Scatter ([W1,H1|,[Wa,Hs|,[We,He])

The only non-trivial step in MF-NMF is reordering. In this paper, we use the so

nested-dissection (ND) based graph-partition to obtain desired ordering.



3.1 Nested-Dissection(ND) Based Matrix Reordering
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(a) Symmetric ND (b) Row ND (c) Column ND (d) Hybrid ND

Fig. 4: Different ND reorderings. In the first order shows a symmetric reordering, and the
second and third case show row and column ND respectively. In the last case, we do a
column-ND at the top level; and perform a row-ND for Agp and Aj;.

Without loss of generality, we assume that the input sparse matrix A is a tall
rectangular matrix. Typical ND is performed on a symmetric sparse matrix. So we
first describe ND for the symmetric case and then we show how do we use symmetric
ND for ordering rectangular sparse matrices.

Symmetric ND For a symmetric sparse matrix A €R™*™, there is a correspond-
ing undirected graph G=(V,E) with |V|=n vertices corresponding to each column in
A; and |E|=nnz(A) edges, where any edge e;; corresponds to a non-zero entry A;;.

In ND of the matrix A, we find a vertex separator S C V, that partitions the
V' =C1USUC5, such that there are no edges between any vertex in C; to any vertex
in Cy. Using this partition, we reorder the matrix so that a) vertices in each set
(4, C5 and S numbered consecutively; and b) vertices in S are numbered at the
end. In the symmetric case, the matrix is reordered symmetrically, i.e., if P is the
permutation matrix, then reordered matrix A:PTAP, so A is also symmetric.

We can obtain such a permutation using graph partitioning tools such as Metis
and Scotch. The re-ordered matrix has an arrow-head structure as shown in Fig. 4-a.
In Fig. 4-a, Agg, A11 and Agy correspond to Cp, Cy and S, respectively.

Unsymmetric ND: When A is a rectangular matrix, we can perform ND on
B.=AT A or B,=AAT. First consider B.=AT A. Let P, be the permutation matrix
obtained by performing ND on B.=AT A. Using P., we permute the columns of the
matrix A to obtain AC:APC. We call this reordering scheme as column-ND. AC has a
rotated-staircase structure as shown in Fig. 4-c. Similarly, we can perform ND on B,
to obtain a permutation matrix P, and permute the matrix A to obtain A, =P.A,
which has a reverse-staircase structure as shown in Fig. 4-b. We call this reordering

scheme as row-ND.

|[A-WH||r
[[Allr

with the choice of reordering scheme, and it depends on the nature of data itself.

Informally, the reordering scheme that best captures the natural structure of the
data, will result in best approximation quality. One may use more complex reordering
scheme such as alternating between column-ND and row-ND. For example, in Fig. 4-d

In general, the approximation quality of factors can vary significantly



we use column-ND in the first step and us row-ND for partitioning Agg and A1;. In
this paper, we keep our discussion limited to column-ND.

3.2 Gather substep

In the Gather step, we gather smaller block sparse matrices to form disjoint submatri-
ces A; that we call frontal matrix. To do so, we need to know the number of frontal
matrices A;, and its row and column set. The number of submatrices depends on
the depth of ND performed in the reordered step. If we perform ND only once as
in the case of Fig. 3a, we get two submatrices and for ND of depth two in Fig. 3b
we get four submatrices.

Frontal Tree: The column structure of frontal can be expressed conveniently
using a tree, that we call frontal-tree, which is analogous to the so called-elimination
tree of the sparse Cholesky factorization. The frontal tree for ND of depth one and
two are shown in Fig. 3a and Fig. 3b, respectively. Each node 7 in the frontal tree
corresponds to a subset of column C;. The number of frontal matrices is the number
of leaf nodes in the frontal tree.

The row set RI" of a frontal matrix A; corresponding to a leaf node i is the set
of non-zero rows in A. ¢, where C;j is the set of columns corresponding to i-th node
in the frontal tree. The column set C/" of a frontal matrix A; is the union of columns
in all the ancestors of the leaf node i in the frontal tree and itself. For example, in
Fig. 3b, the leaf node 3 has ancestors 1 and 0 so the frontal matrix corresponding
to will have the C1' =C3UC; UCy as the column set. Using RY and CF, the i-th
frontal matrix can be obtained as A;=Agr or.

After the Gather step, we perform indlepelndent NMF on all the frontal matrix
and, if required, in Scatter the factors to form the final W and H matrices.

The complete algorithm appears in Algorithm 2. We use the desired height of the
frontal tree, h as a user input, which controls the number of frontal matrices. Note
that the number of frontal matrices can be at most k, where k is the rank of the
final non-negative factors.

4 Experiments and Evaluation

In this section, we present results from a series of numerical experiment to understand
the scalability of 3D sparse triangular solver algorithm.

4.1 Experimental Set-up

The entire experiment was conducted on a node in Rhea commodity-type Linux
cluster at Oak Leadership Computing Facility. Every node has two Intel® Xeon®
E5-2650 at 2.0 GHz with each having 8 physical cores and 16 Hyperthreads with a
total of 16 cores and 32 hyperthreads per node. We compile the code with gcc 6.2.0
compiler with “-fopenmp” flag for openmp threads.



4.2 Datasets

For the synthetic experiments, we generated standard normal random matrices and
the details of the real world datasets are presented in Table 1.

We use a mix of matrices from real world and scientific applications. The matrices
pssel and pssel are related to powergrid and the rest of the matrices belong belong
to scientific applications such as combinatorial, linear programming and quantum
chemistry.

Both the real world and the synthetic matrices are shifted with the minimum
value such that there is no negative elements in the input matrix.

Table 1: Test sparse matrices used in experiments

nnz
max(m,n)

nnz

Name Source m n —E
max(m,n)

Name Sourcem n

Franzll Comb 4.7e4 3.0e4 7|Franz5  Comb 7.3e3 2.8e3 5.9
Franz7  Comb 1.0e4 1.7e3 4.1|Catears24 Comb 1.0e3 2.6e3 2.9
kneser831 Comb 1.5e4 1.5e4 2.9/mk10-b2 Comb 3.1e3 6.3e2 3
rosen2  Linear 1.0e3 3.0e3 15.4|SiNa Quantum 5.7e3 5.7e3 34.61
Prog Chemistry
psse0 Power 2.6e4 1.1e4 3.83|pssel Power 1.4e4 1.1e4 4.0
4.3 Metrics

We are reporting relative error as a quality metric and per iteration time as perfor-
mance metric.

Relative Error: Relative error defines the approximation of the obtained factor matrices
W and H against the input matrix as defined below.

IA-WH|f

Relative Error= 1A 4)

Average Per Iteration Time in Seconds: NMF algorithms are iterative in nature. There
are many stopping criterion and the most common among them are (a) difference of
relative error between two successive iterations (b) tolerance on the relative error and
(c) number of iterations. In this paper, we are specifically using HALs NMF algorithm
and stopping after 20 iterations. All the baselines and the proposed algorithm were
run for 20 iterations. For most of the datasets, it is common in the community to
run for 20-30 iterations, some datasets might need longer. Hence, we are reporting
the average per iteration time in seconds as the performance metric.

For both the time and the error, we also report the relative performance by
normalizing with the minimum value on every dataset. That is., the in both Fig. 6
and Fig. 5 for franz11, we normalized every accuracy and the time with the minimum
from that experiment.



4.4 Real World Data

Parallel Performance As in Fig. 5, we obtained a speedup of 1.2x to 19.5x on
mk10b2 with an average speed up of 10.3x across all the real world datasets. The
level of parallelism and the speedup is directly proportional to the height of the tree
that is dependent on the sparsity pattern. For realworld data with good sparsity
pattern like psse0 and Franz, we are able to obtain trees with height upto level 7.
Where as, cat-ears and rosen2, cannot obtain more than two levels. In the case of
Franz7, Franz11, at height 7, the speedup is 16x and 10x for psse. Sometimes it is
difficult to obtain balanced partition for a given level — that is., equal number of
nnz’s across partition; hurting the speedup. For example, in mk10b2, at level 1, with
two leaf nodes, we obtain a speedup of only 1.2x which is alleviated in higher levels
achieving a peak speedup of 19.5x. Overall, the proposed Algorithm 2, gave good
speedup for sufficiently sparse matrices with good sparsity pattern.
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Fig. 5: Parallel Performance of MF-NMF on real world datasets by varying the height
of frontal tree. Every bar shows the relative speedup with respect to the baseline

Algorithm 1

Accuracy We are reporting the relative accuracy with the global matrix. That is.,
we compute the relative error of the proposed algorithm Algorithm 2 and normalize
with the relative error of global matrix. Every red bar in Fig. 6 is for the global matrix
with relative accuracy always 1.0 and all the rest are normalized with this absolute
value of the relative error. The relative accuracy of Algorithm 2 is in between 1.0 to
1.04 — that is., in a worst case there was only 4% deviation from the global relative
error. The absolute relative error for global matrices for Franzl1,Franz5,Franz7, cat-
ears, knesser, mk10b2, pssel, pssel, rosen2 and sina are 0.998246, 0.971278, 0.97998,
0.97805, 0.996353, 0.988146, 0.934138, 0.893648, 0.904814 and 0.998638 respectively.

5 Related Work

Our proposed MF-NMF borrows heavily from direct methods for sparse linear system
of equations which goes back to seminal work George [6]. Comprehensive discussion of
sparse LU and Cholesky factorization, including matrix reordering and the elimination
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Fig. 6: Relative accuracy of Mr-NMF with respect to the baseline Algorithm 1 by
varying the height of the frontal tree

tree can be found in [3,9]. Matrix reordering used for MF-NMF is more closely related
to sparse QR factorization [2] and unsymmetric LU factorization|7].

The popular algorithm for NMF is Multiplicative Update(MU) and there are
literature that focuses on distributed implementation of MU on Hadoop[15,19,16]
and Spark. These explored Matrix multiplication, element-wise multiplication, and
element-wise division are the building blocks of the MU algorithm.

While we do not discuss parallelism aspect of MF-NMF, design of MF-NMF is also
motivated by improving the parallelism in NMF. Sparse NMF algorithms on shared
memory environment are heavily reliant on parallelism available on BLAS/LAPACK
libraries for Sparse-Dense matrix operations [4]. For the first time in the literature,
the proposed MF-NMF exposes more parallelism in shared memory environment by
exploiting the sparsity of the data set.

6 Conclusion

The traditional NMF fails to exploit the structured sparsity of the large and sparse
data sets. In this paper we proposed a MF-NMF algorithm that uses concepts from
sparse direct methods and graph partitioning to exploit the structured sparsity. Our
initial assessment suggests MF-NMF can be much faster than traditional NMF while
incurring negligible penalty in terms of accuracy. Our reordering scheme based on
ND, is only a first step towards exploiting sparsity for NMF and we believe exploring
more sophisticated reordering schemes based on domain knowledge is warrented. In
the future, we would like to extend the work with (a) the distributed communication
avoiding variant and (b) quantify the usefulness of the factors obtained from the
proposed algorithm on internet scale data.
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