
Evaluating the Influence of Hemorheological Parameters on
Circulating Tumor Cell Trajectory and Simulation Time
Sayan Roychowdhury

sayan.roychowdhury@duke.edu
Duke University
Durham, NC, USA

John Gounley
gounleyjp@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, TN, USA

Amanda Randles
amanda.randles@duke.edu

Duke University
Durham, NC, USA

ABSTRACT
Extravasation of circulating tumor cells (CTCs) occurs primarily
in the microvasculature, where flow and cell interactions signifi-
cantly affect the blood rheology. Capturing cell trajectory at this
scale requires the coupling of several interaction models, leading to
increased computational cost that scales as more cells are added or
the domain size is increased. In this work, we focus on micro-scale
vessels and study the influence of certain hemorheological factors,
including the presence of red blood cell aggregation, hematocrit
level, microvessel size, and shear rate, on the trajectory of a cir-
culating tumor cell. We determine which of the aforementioned
factors significantly affect CTC motion and identify those which
can potentially be disregarded, thus reducing simulation time. We
measure the effect of these elements by studying the radial CTC
movement and runtime at various combinations of these hemorheo-
logical parameters. To accurately capture blood flow dynamics and
single cell movement, we perform high-fidelity hemodynamic simu-
lations at a sub-micron resolution using our in-house fluid dynamics
solver, HARVEY. We find that increasing hematocrit increases the
likelihood of tumor cell margination, which is exacerbated by the
presence of red blood cell aggregation. As microvessel diameter
increases, there is no major CTC movement towards the wall; how-
ever, including aggregation causes the CTC to marginate quicker
as the vessel size increases. Finally, as the shear rate is increased,
the presence of aggregation has a diminished effect on tumor cell
margination.
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1 INTRODUCTION
Metastatic cancer is the primary cause of cancer mortality, which
is the second-leading cause of death globally [1]. Metastasis is
driven by the escape and transport of circulating tumor cells (CTCs)
through the bloodstream to form secondary tumors in distant parts
of the body. CTCs have been shown to be useful for many appli-
cations, such as the detection of non-hematological cancers [2],
the ability to provide a biological understanding of malignant cells,
and potentially guide towards targeted therapies [3]. Studies have
shown that the knowledge of local hemodynamics can explain
many metastatic sites [4] and that CTCs tend to arrest in the mi-
crovasculature [5], where likelihood of adhesion to the vessel wall
and subsequent escape is heavily affected by CTC margination. Be-
cause more time near a vessel wall increases the probability of CTC
extravasation, it is important to understand how certain hemorheo-
logical parameters can affect CTC movement. Simulations provide
the unique opportunity to track a CTC’s trajectory through the
vascular system, which is not possible today in vivo, but to also
tune one parameter at a time to determine its effect on the process.

At the micro-scale, studies have shown that the non-Newtonian
behavior of blood plays an important role on its viscosity and move-
ment of red blood cells (RBCs) [6]. Thus, in order to capture the full
dynamics of CTC trajectory in the microvasculature, we expect that
explicitly modeling the CTC and neighboring RBC interactions is
important to capture the full dynamics of CTC movement, whereas
using bulk flow parameters would not effectively reproduce micron-
scale interactions. However, including cells increases simulation
time by introducing both fluid-cell and cell-cell interactions, and
this computational burden grows geometrically as the vessel size
and number of cells increase. Additionally, accounting for the ran-
domness of CTC and RBC distributions and the potential variance
in CTC trajectory requires many simulations with the same set of
parameters.

One of the cell-cell interactions that must be included when
simulating cellular flow in microvessels is aggregation, which has
been found to influence the distribution of RBCs [7]. In blood flow,
RBCs can reversibly attach to other RBCs at low shear rates or
static flow. As the shear rate is increased, stacks of RBCs break
apart, demonstrating that the aggregation forces are relatively weak
compared to the fluid forces. At the microvessel scale, it has been
shown that aggregation tends to blunt velocity profiles and increase
apparent viscosity [8].

Many previous studies have included aggregation formicrovessel-
scale simulations. Differences in blood viscosity in microvessels
has been predicted at varying shear rates and hematocrit due to
the presence of aggregation [9, 10]. Numerical studies of the mo-
tion and deformation of RBCs conducted in stenoses [11, 12] show
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significant differences in downstream RBC motion at increasing ag-
gregation strength. The effects of varying levels of RBC aggregation
on viscosity and size of the cell-free layer were also explored in 2D
[13–15]. These works show that RBC aggregation has a significant
effect on the bulk flow at low shear rates in the microvasculature
and therefore these interactions must be considered when simulat-
ing CTC motion in this regime.

Recently, computational studies tracking tumor cell margina-
tion in microvessels have been performed based on varying cell
and vessel parameters [16, 17]. Additionally, the impact of varying
hematocrit and microvessel size on likelihood of CTC bonding to
the wall has been simulated in [18]; however, in this work, aggre-
gation is only considered at a single vessel size and hematocrit
level.

Similarly, margination of other microparticles, such as leuko-
cytes, has been studied computationally. Leukocyte margination
was shown to be negligible at high arteriole shear rates [19], but
increased at low shear rates [20] and at raised hematocrit [21, 22].
Elevating the presence of RBC aggregates by raising interaction
strength has also been shown to increase the likelihood of leukocyte
margination [23]. We are interested in seeing if similar behavior
upholds with respect to CTCs.

Thesemicroparticlemovement studies provide the set of hemorhe-
ological parameters that we wish to explore: RBC aggregation,
hematocrit, microvessel size, and shear rate. However, only a hand-
ful of the aforementioned works discuss the computational cost of
such simulations. Code efficiency and parallelization are mentioned,
but are not the main focus of these studies.

In addition to computational cost, we want to account for po-
tential stochasticity in cell movement. Although hemodynamic
variables are used to describe the bulk flow, a single discrete ini-
tialization of cells is unable to capture the wide variance in cell
motion at a specific set of parameters. It is important to run many
simulations with varied cell positions in order to confirm a statisti-
cal average rather than report a potential outlier. In this work, we
look to replicate the randomness in cell positions by holding the
initial CTC radial distance from vessel center to wall constant and
varying the initial angle for a single parameter set. This exposes
the CTC to different sets of neighboring RBCs, which could play a
role in its margination. When scaling the number of simulations
up for applications such as these stochastic tests, minimizing time-
to-solution is critical in order to retrieve and analyze results in a
relevant timeframe.

For high-resolution CTC tracking simulations, one way to re-
duce computational time is to identify potential shortcuts, such as:
including fewer cells, extrapolating CTC movement from smaller
vessels or different flow velocities, and identifying whether the
inclusion of certain interactions result in the same CTC trajectory.
Adding more cells, increasing the computational domain, and con-
sidering aggregation each adds a new layer of computational cost
and complexity. Thus, it is important to identify scenarios which
can be simulated more efficiently by determining the critical com-
ponents of the model and only including those that influence CTC
trajectory while achieving the same result. For example, if the CTC
motion remains the same at 10% and 30% hematocrit, this result
would indicate that fewer RBCs are required to model the same out-
come, thus saving computational expense. Similarly, if aggregation

interactions do not play a major role in CTC movement at a certain
hematocrit or microvessel size, the aggregation computations can
be ignored, further decreasing simulation time.

To our knowledge, no study has quantitatively explored combi-
nations of varying hematocrit, vessel size, and shear rate with and
without RBC aggregation on CTC trajectory, along with multiple
instantiations of the same conditions to produce a statistical analy-
sis. In this work, we study idealized microvessels and quantify the
effects of RBC aggregation in the context of varying hematocrit,
microvessel sizes, and shear rates on CTC movement. Each set of
parameters is run multiple times with varied initial cell positions
to capture heterogeneity in movement. These simulations are used
to identify scenarios where certain parameters can be chosen to
reduce computational cost yet keep similar CTC trajectory results.

2 MODEL AND METHODS
All simulations are performed using HARVEY, a massively parallel
computational fluid dynamics solver [24, 25]. Blood is modeled as a
suspension of RBCs in plasma, which is treated as a Newtonian fluid.
The lattice Boltzmann method (LBM) is used as the fluid dynamics
solver while a finite element model (FEM) is used for the cells. These
are coupled via the immersed boundary method (IBM). Finally, a
Morse potential is considered for red blood cell aggregation.

2.1 Lattice Boltzmann Method
The lattice Boltzmann method is a mesoscopic approach for nu-
merically solving the Navier-Stokes equations [26]; the fluid is
represented as set of particles that move between lattice nodes in
discrete timesteps. The particle distribution function fi (x, t) indi-
cates the probability of particles residing at lattice point x and time
t with a discrete velocity ci . The lattice Boltzmann equation which
governs the evolution of these particles for a fluid with an external
force field is

fi (x + ci , t + 1) = (1 −
1
τ
)fi (x, t) +

1
τ
f
eq
i (x, t) + Fi (x, t) (1)

for an external force distribution Fi , equilibrium distribution
f
eq
i , and relaxation time τ , assuming the LBM spatial and temporal
steps to be unity. In HARVEY, the the D3Q19 velocity discretization
model is implemented, while the BGK collision operator Ω = 1

τ
is considered, resulting in a lattice speed of sound cs = 1√

3
. Guo’s

forcing scheme [27] is employed for the discretization of the exter-
nal field into a distribution. No-slip conditions are enforced using
the halfway bounce-back boundary conditions at the vessel walls.
The 0th and 1st moments of the distribution function, the density ρ
and momentum ρv, are computed as

ρ =
19∑
i=1

fi (2)

and

ρv =
19∑
i=1

ci fi +
1
2
g (3)

The density ρ and velocity v are used to calculate the equilibrium
Maxwell-Boltzmann distribution. The fluid and cell dynamics are
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coupled through the external force g, which is is converted into the
force distribution Fi by

Fi =

(
1 −

1
2τ

)
ωi

[
ci − v
c2
s
+
ci · v
c4
s

ci

]
· g (4)

where ωi are the standard D3Q19 lattice weights.

2.2 Cell Finite Element Model
Cells are represented as fluid-filled capsules with zero-thickness
triangulated membranes, derived from successive subdivisions of
an icosahedron [28]. The RBC and CTCmeshes are shown in Figure
1. The membrane model includes elasticity and bending stiffness
[29]. The shear and dilational elastic responses of the membrane are
governed by the Skalak constitutive law, where the elastic energy
W is computed by

W =
G

4

(
I2
1 + 2I1 − 2I2 +CI2

2

)
(5)

for strain invariants I1, I2, shear elastic modulus G, and the
ratio of dilational to shear modulus C [30]. A C0 finite element
model is used to compute the membrane forces from the strain
energy function [31] while the Helfrich formulation is used to
model membrane’s bending resistance [32].

Figure 1: Triangulated RBC and CTC meshes. The RBC is
generated as an 8 µm diameter biconcave disk, while theCTC
is modeled as a 10 µm diameter spherical capsule. Both con-
tain 642 vertices and 1280 triangular elements.

2.3 Immersed Boundary Method
The immersed boundary method is used to couple the Langrangian
cell response with the Eulerian fluid flow by using spreading and
interpolation operations to transfer data between the two systems.

First, the velocity of a cell vertex V is interpolated from the
velocities v of surrounding fluid points x using

V(X, t) =
∑
x

v(x, t)δ (x − X(t)) (6)

Next, the position of the cell vertex is updated using the no-slip
condition,

X(t + 1) = X(t) + V(t) (7)
once again assuming unity timestep. Finally, the force G on a

cell vertex X is spread onto the surrounding fluid points x using

g(x, t) =
∑
X

G(X, t)δ (x − X(t)) (8)

to define the external force g(x, t) [33]. A four point delta support
is used in this work as described in [34].

2.4 RBC Aggregation Model
In order to capture the intercellular interactions between RBCs, the
Morse potential and resulting force proposed in [35] is used:

ϕ(r ) = De [e
2β (r0−r ) − 2eβ (r0−r )] (9)

f (r ) = −
∂ϕ(r )

∂r
= 2De β[e

2β (r0−r ) − eβ (r0−r )] (10)

where ϕ(r ) and f (r ) are the energy and force densities per unit
area respectively. Here, r represents the distance between two tri-
angular elements on two different cells, r0 is the zero force distance,
De is the interaction strength, and β is a scaling factor controlling
the decay of the interaction.

The aggregation force is initially calculated on an element-to-
element basis, and subsequently spread onto the vertices. The total
force on a single triangular element a located on cell 1 due to
another cell 2 is

Faддa =

Nt∑
b=1

f (rab )(na · k1)(nb · k2)Ab (11)

where b is an element residing on cell 2, Nt is the number of
triangular elements on cell 26, and rab is the distance between
two elements. na and nb are the outward normal unit vectors
for elements a and b respectively, and k1 and k2 are the vectors
connecting the center of the two cells. The dot product terms are
based on Derjaguin’s approximation to express the force between
two curved surfaces [36, 37]. Finally, Ab is the area of triangle b,
such that the total force on the cell is resolution-invariant. The
force acting on a single vertex is calculated by the sum of the forces
exerted on the elements that the vertex connects.

2.5 Parallelization Scheme
In HARVEY, the LBM solver is parallelized with MPI, where the
simulation is decomposed into subdomains distributed to each task.
Since the update step for a fluid lattice point only requires the
information from adjacent points, global communication is not nec-
essary. Neighboring tasks communicate overlapping halo regions of
fluid data, transferred using non-blocking MPI calls. The cell model
computations are performed in two ways: 1) the task in which the
cell center resides performs the finite element model computations,
and 2) the task containing a particular vertex handles the IBM in-
terpolation step for that vertex. MPI calls are used to communicate
velocities from tasks containing a cell vertex to the cell owner, and
to send the vertex force calculated from the finite element model
back to each task owning the vertex. A further discussion of the
LBM and cell parallelizations in HARVEY can be found in previous
works [25, 34].
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3 RESULTS AND DISCUSSION
First, a set of experiments in shear flow is considered to capture
RBC aggregation mechanics and test the interaction parameters.
Then, the effects of changing hematocrit, vessel size, and shear rate
on the trajectory of a CTC, in conjunction with RBC aggregation,
are explored. We present results showing the average CTC radial
displacement as it moves through the cylinder, as well as timing
breakdowns with and without the cellular aggregation model.

3.1 Simulation Parameters and Initialization
3.1.1 Fluid Setup. The containing fluid is treated as plasma with a
density of 1025 kg/m3 and viscosity 1.2 mPa·s. Lattice grid spacing
is held at a constant 0.5 µm throughout these simulations since
convergence testing in [38] shows that results of RBC movement
in shear flow remain similar at a grid sizing 1

8 of the diameter of an
RBC or smaller. Fluid boundary conditions are set using a constant
inlet fluid velocity, calculated using Ûγ = v̄

D where Ûγ is the shear
rate, v̄ is the average velocity of the plasma, and D is the diameter
of the vessel.

3.1.2 RBC and aggregation parameters. RBC shapes are generated
as stress-free biconcave disks [39] with an 8 µm diameter, consist-
ing of 3 icosahedron refinements, leading to 642 vertices and 1280
triangular elements. This number of refinements has been shown
to sufficiently capture RBC movement [38]. For the physical RBC
parameters, a membrane shear elastic modulus Es of 6 × 10−6 N/m
and elastic bending modulus of 2 × 10−19 N·m is considered. For
aggregation interactions, the zero force distance r0 is chosen to be
0.49 µm along with a corresponding scaling factor β of 3.84 µm, as
used by [13]. Since only nearby RBCs interact with one another,
these values restrict the attractive force to only be relevant within
a distance of 3.5 µm. Aggregation interactions are only applied
between RBCs. Plasma, RBC, and aggregation parameters are sum-
marized in Table 1.

Instead of searching through all of the RBCs to find those within
a 3.5 µm distance at each time step, a list of neighboring cells is
generated every t time steps. Due to the time step size being in-
trinsically tied to the lattice spacing, and a small grid size being
necessary to properly apply the immersed boundary method, a
cell’s neighbors do not change very frequently, especially in the
low shear rate regime where aggregation forces are apparent. Test
runs at Ûγ = 20 s−1 conducted to determine frequency of neighbor
list updates found that the minimum time between updates was
above 100 timesteps, and thus t = 100 was chosen as a conservative
value for these simulations.

3.1.3 Microvessel simulations. Microvessels are modeled as 100 µm
length cylinders with varying hematocrit and diameter. The combi-
nations of biophysical parameters tested are outlined in Figure 2. It
should be noted in the smallest vessel, a maximum hematocrit of
only 24% is achieved when including the CTC, and therefore the
combination of 20-micron and 30% hematocrit simulations are not
conducted. The first half (50 µm) is filled with RBCs based on initial
hematocrit and the CTC, and the cells are allowed to flow to the
end of the channel. To avoid startup costs of packing many RBCs,
an arrangement of RBC ’tiles’ generated by an external library [43]
is used to achieve a dense packing and ’random’ RBC placement.

Table 1: Plasma and RBC Parameters

Parameter Symbol Value

plasma density ρ 1025 kg/m3 [40]
plasma viscosity µp 1.2 mPa·s [41]

RBC membrane shear modulus Es 6 × 10−6 N/m [42]
RBC bending resistance Eb 2 × 10−19 N·m [42]

intercellular energy density De 0.2 µJ/m2 [14]
scaling factor β 3.84 µm−1 [14]

zero force distance r0 0.49 µm [14]

The CTC is represented as a 10 micron-diameter spherical cap-
sule surrounded by a zero-thickness shell, regulated by the Skalak
constitutive law; this principle has been shown shown to suffi-
ciently capture deformation of a spherical capsule [44]. The CTC is
placed radially halfway between the center and the vessel wall. To
account for variance in CTC movement due to initial cell positions,
θ is varied in cylindrical coordinates for a total of 8 different CTC
initial positions to provide a stochastic analysis, as shown in Figure
3a while an example initial case of the CTC at 30% hematocrit in a
30 micron diameter vessel in shown in Figure 3b.

The CTC center is tracked and presented as radial displacement
(radial movement divided by vessel diameter) vs lateral movement
in a variety of conditions, while the runtime is broken into time
spent running LBM, IBM-FEM, and aggregation calculations. This
entire workflow is summarized in Figure 4.

Figure 2: Biophysical parameter space explored: a combina-
tion of 3 hematocrits, 3 vessel diameters, 2 shear rates, and
2 aggregation strengths. Due to cell packing issues in the
smallest vessel, we discard the 30% hematocrit in the 20 µm
diameter vessel combinations, leading to a total of 32 param-
eter arrangements.

We expect to see approximately the same amount of time spent
in the LBM calculations at constant vessel size, with some variance
due to cluster performance. Also, it is important to note that in-
creasing vessel diameter and/or hematocrit allows more RBCs to be
placed. The amount of time spent in the IBM-FEM calculations is
expected to scale linearly with number of RBCs. Since aggregation
performs cell-to-cell calculations, the increase in aggregation run-
time is expected to scale on the order of O(n2) with the number of
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(a) Initial positions of the CTC, holding r constant and vary-
ing θ . The CTC is placed in 8 different equally-spaced angu-
lar positions to capture stochasticity.

(b) Example 30 micron diameter vessel at 30% hematocrit
with CTC positioned at x=25 µm.

Figure 3: Initial setup for microvessel simulations.

Figure 4: Visualization of the workflow: parameter assign-
ment, parallel distribution of stochastic simulations, and
CTC motion and timing analysis.

RBCs. However, both a cutoff distance and neighbor list are applied
such that this is bounded by O(n logn); however, the latter heavily
depends on initial placement and distance between cells.

3.1.4 Compute Architectures. The full set of simulations were per-
formed on an Intel-based cluster, with dual-socket compute nodes
connected with 56Gb/s Infiniband interconnect. Each node has
two Intel Xeon E5-2695V4 Broadwell processors with 40 CPU cores.

Each simulation was conducted using a distributed memory scheme
on a single node across 40 tasks. Our application is compiled with
the 2018 versions of the Intel C++ compiler and MPI library.

3.2 Testing Aggregation in Shear Flow
To verify the aggregation model in the presence of flow, we run a
set of tests with cells placed in infinite shear flow. Previous works
have tested a wide span of De ranging from 0.052 (very weak) to
10.0 (extremely strong) µJ/m2 [11, 12, 14, 45]. We proceed with the
shear flow experiments applying a moderate aggregation strength
of De = 0.2 µJ/m2.

Four cells are placed in a domain with dimensions 50 µm by
20 µmby 10 µmwhere different shear rates and aggregation strengths
are considered. Shear flow boundary conditions are implemented at
the top (x=25 µm) and bottom (x=−25 µm) of the simulation domain
by choosing equal but opposite velocities. Previous works have
shown that at shear rates under approximately 50 s−1, aggregation
forces become relevant and cause an increase in blood viscosity
[22]; thus, shear rates of 20 s−1 and 100 s−1 were chosen for shear
flow tests.

Figures 5a and 5b show the movement of the cells in 20 s−1 when
zero and moderate aggregation is considered, respectively. In the
case of zero aggregation, the cells separate easily.When aggregation
is activated, the cells initially come closer to each other until they
break into two sets of aggregates, qualitatively agreeing with the
results of [13].

At 100 s−1 with no aggregation, the movement of the cells fol-
lows the same pattern as that at 20 s−1, shown in Figure 5c. Figure
5d shows the movement of the four cells with moderate aggregation
at 100 s−1. At the high shear rate, fluid forces dominate the inter-
cellular forces and pull the cells apart before they can move closer.
The cells disperse in a similar manner to the zero aggregation case.

Figure 5: Aggregation testing at shear rates 20 s−1 and 100 s−1.
Cases of (a) zero aggregation at 20 s−1 (b) moderate aggrega-
tion at 20 s−1 (c) zero aggregation at 100 s−1 (d) moderate ag-
gregation at 100 s−1

.
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Figure 6: Breakdown of radial CTC displacement vs lateral movement at 10%, 20%, and 30% hematocrit with and without RBC
aggregation

3.3 Effect of hematocrit and aggregation on
CTC trajectory

Due to the Fahreus effect, hematocrit in the microvasculature tends
to drop below systemic levels. Using Pries equation [46], a sys-
temic hematocrit of 40-45% corresponds to a tube hematocrit of
approximately 30% for a 20 to 40 µm diameter microvessel. As previ-
ously mentioned, an increased number of RBCs introduces a higher
computational burden, leading to longer runtimes. If the trajectory
of a CTC remains statistically the same at varying hematocrits,
modeling fewer RBCs is needed to capture the same motion and
would be computationally more efficient. Thus, simulations up to a
hematocrit of 30% are conducted.

First, CTC trajectory at 10%, 20%, and 30% hematocrit (Hct) with-
out aggregation is considered, pictured in the top row of Figure 6.
Specifically in the 20 µm diameter vessel, there is significant move-
ment towards the center of the vessel, but less pronounced in the
20% compared to the 10% case. In the other cases, at all 3 hemat-
ocrits, the CTC remains within 5% radial displacement. Therefore
with no aggregation, as hematocrit is increased, there is a decrease
in inward CTC radial motion.

When aggregation is introduced, CTC movement is heavily af-
fected, as shown in the bottom row of Figure 6. At 10% Hct, the CTC
acts similarly to its no-aggregation case, except at the low shear 30
and 40 micron diameter cases, where there is an increase in out-
ward radial movement. As the hematocrit is increased to 20% and
30%, margination occurs faster in the aforementioned cases. This
phenomenon can be explained by the RBC aggregates converging
towards the center of the vessel and pushing the CTC outwards,
which is consistent with previous simulation work [18]. We specu-
late that the CTC in the 10%Hct case tends not to marginate because
the RBCs are too spaced out to form multiple aggregates and force
the CTC radially outward. Thus, when including aggregation in
the simulations, we find that CTC trajectory increases in the radial
outward direction.

Figure 7: Breakdown of time spent performing LBM, IBM-
FEM, and aggregation calculations at 10%, 20%, and 30%
hematocrit with and without aggregation considered. Both
hematocrit and aggregation strength have an effect on CTC
trajectory.

The runtime breakdowns both with and without aggregation
are presented in Figure 7. The time spent running the LBM com-
putations is approximately the same throughout, while IBM-FEM
computation time scaled linearly with cells added. At each hemat-
ocrit, including aggregation did not change the LBM and IBM-FEM
times since the initial number of fluid points and cells remains the
same. For the simulations with aggregation considered, the aggre-
gation runtime increased from under 20% of total runtime at 10%
Hct to about half of the total runtime at 30% Hct. The aggregation
function begins to dominate simulation time very quickly. Although
its current implementation is not fully optimized, the inclusion of
aggregation still adds a nonzero overhead to the simulations.
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Figure 8: Breakdown of radial CTC displacement vs lateral movement in 20 µm, 30 µm, and 40 µm diameter microvessels with
and without RBC aggregation. Both diameter and aggregation strength have an effect on CTC trajectory.

These results show that varying hematocrit and including aggre-
gation significantly affect CTC trajectory such that lowering the
RBC count or disregarding aggregation will not produce the same
set of CTC trajectories when running these simulations. There-
fore taking both hematocrit in combination with aggregation into
account is critical to determine accurate CTC paths.

3.4 Effect of microvessel diameter and
aggregation on CTC trajectory

As noted in [13], blood should be treated as a non-Newtonian
fluid in vessels with diameters under 200 µm. At this scale, the
non-Newtonian effects play a significant role in the rheology. In
simulations, including both the cell and aggregation models intro-
duces another level of computational expense. If CTC movement in
larger vessels can be estimated from its path in smaller vessels, one
method of potentially minimizing this time would be to simulate
very small vessels and extrapolate CTC trajectory in larger vessels
based on the results.

Increasing the diameter of the cylindrical vessel by a factor of n
results in an increase in volume, and number of lattice points, by a
factor of n2 if the length of the vessel is held constant. Additionally,
an increase in volume requires more cells to maintain the same level
of hematocrit, leading to more IBM-FEM and aggregation calcula-
tions. Therefore in this set of simulations, we test CTC trajectory in
a set of microvessel sizes ranging from 2.5 to 5 times the diameter
of an RBC. We expect that in vessels smaller than the RBC diameter,
the single file RBCs would play a different role in CTC movement
and therefore diameters of 20, 30, and 40 µm.

Results for CTC trajectory without aggregation are presented in
the top row of Figure 8. At a 20 µm diameter, the CTC consistently
displays a radial motion towards the center of the vessel. In the
30 µm vessel, the CTC tends to stay in a radially constant position
while in the 40 µm diameter vessel, the CTC shows a bit more
variation in motion, but still within 5% displacement towards the

center. Therefore as diameter is increased without considering
aggregation, the CTC tends to stay in a radially constant position.

When aggregation is introduced, CTC trajectory is affected in the
larger vessels, as shown in the bottom row of Figure 8. For the 20 µm
diameter vessel, there is little change in CTC motion. However, in
both of the 30 µm and 40 µm vessels, the CTC marginates towards
the vessel wall, but more quickly in the 40 µm case at the low shear
rates.

These results show that at varying microvessel size, the radial
displacement of the CTC does not scale with the size of the vessel.
Furthermore, including aggregation has a notable effect on CTC
movement. Thus vessel size and aggregation must be included to
determine CTC trajectory at these hematocrits and shear rates.

Figure 9: Breakdown of time spent performing LBM, IBM-
FEM, and aggregation calculations in 20 µm, 30 µm, and 40 µm
diameter microvessels.
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Figure 10: Breakdown of radial CTC displacement vs lateral movement at shear rates 20 s−1 and 200 s−1 with and without RBC
aggregation. Aggregation strength only has an effect on CTC trajectory at the low shear rate.

The timing breakdowns for these simulations are displayed in
Figure 9. At constant vessel size with and without aggregation,
the LBM and IBM-FEM runtimes remain similar. As the vessel size
increases, the LBM and IBM-FEM time increases linearly with the
volume as the number of grid points and the number of RBCs
increase. Aggregation calculations scale up from about 10% of total
runtime in the 20 µm diameter vessel to almost 50% of the simulation
time in the 40 µm case.

3.5 Effect of shear rate and aggregation on CTC
trajectory

RBC aggregation only plays amajor role in the viscosity at the lower
end of microvascular shear rates. However, in regions of the vessel
where the flow is slow, aggregates still might form, especially at
higher hematocrit, which could affect the movement of a particular
cell. Although aggregation might not affect bulk parameters, it
could still affect CTC margination. Therefore we choose two shear
rates, 20 s−1 and 200 s−1, to test CTC trajectory.

CTC movement at Ûγ = 20 s−1 and Ûγ = 200 s−1 is presented in
Figure 10. The top row displays the CTC trajectories run at zero
and moderate RBC aggregation, respectively. At the low shear rate,
the inclusion of the aggregation model makes a major difference
on the CTC trajectory. Without it, the CTC either remains radially
constant or moves towards the center of the vessel. However, when
aggregation is considered, there is an increase in outward radial
displacement in almost every case. At the higher shear rate, where
the aggregation forces are dominated by the fluid forces, the CTC
trajectory remains approximately the same: for both the zero and
moderate aggregation cases at Ûγ = 200 s−1, the CTC shows little
change in radial displacement.

Thus, aggregation does not need to be considered at high shear
rates, resulting in simulation speed up while retaining similar re-
sults. Figure 11 provides the timing breakdown for both shear rates.
By dismissing the aggregation interactions for the high shear rate

Figure 11: Breakdown of time spent performing LBM, IBM-
FEM, and aggregation calculations at shear rates 20 s−1 and
200 s−1 with and without aggregation considered.

simulations, the runtime of these 3 parts of the model drops from
approximately 131,000 seconds to 83,000 seconds - a 37% time sav-
ings on average - visualized on the right two bars. Note that the real
time simulation bars for the Ûγ = 200 s−1 case are smaller because
the cell traveled the lateral distance faster.

4 CONCLUSIONS
CTCs are derived from the escape of a tumor cell into the blood
stream from the original tumor. These CTCS flow through the blood
and are transported to distant organs via the vascular or lymphatic
system to form secondary tumors. During circulation, a CTC en-
dures hydrodynamic and interaction forces, and its path heavily
depends on the stresses caused by the fluid and its interactions with
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neighboring cells, especially within the microvasculature. There-
fore simulations of CTC movement in microvessels require explicit
modeling of the CTC, surrounding RBCs, and their interactions.

In microvessel simulations, including cells raises simulation time
due to the introduction of both fluid-cell and cell-cell interactions.
Adding the calculation of red blood cell aggregation further in-
creases the total runtime of the simulation, which scales geomet-
rically as more cells are introduced. This study looks for methods
to reduce computational cost by testing the effects of aggregation,
hematocrit, vessel size, and shear rate on the movement of a CTC
in microvessels. To capture the diversity in initial cell positions and
provide stochastic testing, a framework to run and analyze many
simulations with altered CTC positions is developed.

The results from this work show that at 10-30% hematocrit, CTC
movement is significantly altered in the presence of more RBCs
and with aggregation. Similarly, at varying microvessel sizes, CTC
motion cannot be extrapolated from its movement in a smaller
vessel. Although these simulations require extra computational
cost, hematocrit, vessel size, and aggregation must be accounted to
produce accurate CTC trajectories. At low shear rates, aggregation
plays a considerable role in determining the CTC path, but at high
shear rates, aggregation only has a minor effect. Therefore at high
shear rates, aggregation calculations can be disregarded, saving
about 40% runtime on average in this set of simulations.

In future work, we plan to further optimize the aggregation func-
tion and explore the effect of the number of processors on the LBM,
IBM-FEM, and aggregation runtimes. This work identifies some of
the hemorheological parameters required to properly capture CTC
motion and sets up the stochastic testing framework for future CTC
tracking simulations in various flow regimes in microvessels.
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