
Inferring Convolutional Neural Networks’
accuracies from their architectural characterizations

1st Duc Hoang
Department of Physics

Rhodes College
Memphis, Tennessee 38112 USA

hoadm-21@rhodes.edu

2nd Jesse Hamer
Department of Mathematics

The University of Iowa
Iowa City, Iowa, 52242, USA

jhamer90811@gmail.com

3rd Gabriel N. Perdue
Quantum Science

Fermi National Accelerator Laboratory (FNAL)
Batavia, Illinois, 60510, USA

perdue@fnal.gov

4th Steven R. Young
Oak Ridge National Laboratory

Oak Ridge, Tennessee, 37830, USA
youngsr@ornl.gov

5th Jonathan Miller
Universidad Técnica Federico Santa Marı́a

Valparaı́so, Chile
jonathan.miller@usm.cl

6th Anushree Ghosh
Universidad Técnica Federico Santa Marı́a

Valparaı́so, Chile
anushree.ghosh@usm.cl

Abstract—The challenge of choosing an appropriate convolu-
tional neural network (CNN) architecture for specific applications
and different data sets is still poorly understood in the literature.
This is problematic, since CNNs have shown strong promise for
analyzing scientific data from many domains including particle
imaging detectors. In this paper, we proposed a systematic
language that is useful for comparison between different CNN’s
architectures before training time. This helps us predict whether
a network can perform better than a certain threshold accuracy
before training up to 70% accuracy using simple machine learn-
ing models. Additionally, we found a coefficient of determination
of 0.966 for an Ordinary Least Squares model in a regression
task to predict accuracy of a large population of networks.

Index Terms—Convolutional neural networks, network archi-
tecture, transfer domains, computer vision, high energy physics.

I. INTRODUCTION

Deep Convolutional Neural Networks (CNNs) are a state-
of-the-art technique in the fields of computer vision, natural
language processing, and other scientific research domains
such as High Energy Physics [1], [2]. That said, due to CNNs’
inability to generalize for all datasets, a necessary step before
applying CNNs to new data is selecting an appropriate set
of architecture hyper-parameters. Generally, while there have
been many studies of automated architecture search [3], very
little has been done to develop a standardized language for
describing neural network architectures in such a way as to
be useful for comparison of multiple networks, or prediction
of network performance metrics on the basis of architectural
parameters. In this study, we will thus propose a system-
atic language to characterize CNN architecture for simple,
modular networks (Section II), and focus on demonstrating
that different characterizations of the network architecture
can be predictive of its performance in two computer vision
problems in a particle physics context–vertex finding [2],
[4], [5] and hadron multiplicity in MINERvA (Section III).
MINERvA [6] is a neutrino-nucleus scattering experiment
at Fermi National Accelerator Laboratory with fine-grained,

stereoscopic imaging capabilities and few-nanosecond timing
resolution. We conclude that our architectural attributes set can
be used to give us partial insights into a network’s performance
prior to training. We will also present specific architectural
attributes that are highly relevant to CNNs’ performance for
those problems for further study and development of the
models (Section IV & V).

The networks analyzed here are convolutional networks
trained by an evolutionary algorithm called MENNDL (Multi-
node Evolutionary Neural Networks for Deep Learning) [7].
The networks were trained for the task of vertex finding [2]
and hadron multiplicity counting in images collected from
Fermilab’s MINERvA detector1. In the vertex finding task,
for each input image, the location of the point of interaction
between incoming neutrino and the target, in terms of which
plane in the detector, is the desired output. For the hadron
multiplicity problem, we count the number of out-coming
charged hadron tracks with sufficient energy to traverse about
two planes of the detector from the interaction. The net-
works were trained using data simulated by state-of-the-art
physical models. In order that the networks are insensitive to
differences between simulated and real images, some of the
network populations were trained with a domain adversarial
component (DANN) [5], [8]. For this work, we studied two
separate output populations of vertex-finding networks and one
population of hadron-multiplicity networks, each of which is
based on 4,999 repetitions of the evolutionary algorithm. In
its running process, only the architecture was varied. The data
set of networks analyzed was thus built on a total of 299,050
unique network architectures. We use all networks from the
evolutionary process and not only the final networks.

All studies in this paper are reproducible using our analysis,
extraction codes, and attributes data set, which are publicly
available2.

1minerva.fnal.gov
2https://github.com/Duchstf/CNN-Architectural-Analysis



II. EXTRACTED ATTRIBUTES SUMMARY

Here we describe various network attributes which may be
extracted and represented in a uniform way using a minimal
amount of computation. Several such attributes are the result of
averaging over some groups of attributes. This is because the
size of groups of attributes may depend on the specific network
architecture, and may not always serve the same functionality
or be at the same scale in different networks and thus may pro-
duce ambiguity in interpretation. For example, it is tempting
to use network depth as an attribute, but different networks
might have several input layers or several output layers. To
remedy this issue, we can ask for the average depth. Below is
a list of all attributes extracted here. The abbreviations used
in the analysis are given in [square brackets].

1) Average depth [net_depth_avg]
2) Number of convolutional layers [num_conv_layers]
3) Number of pooling layers [num_pooling_layers]
4) Average number of number of elements in outputs of

fully-connected layers [avg_IP_neurons]
5) Average number of connection parameters of fully-

connected layers to previous layer [avg_IP_weights]
6) Average number of output feature maps in convolutional

layers [num_conv_features]
7) Proportion of convolutional layers followed by a pooling

layer [prop_conv_into_pool]
8) Proportion of pooling layers followed by a pooling layer

[prop_pool_into_pool]
9) Proportion of convolutional layers with 1 × 1 kernels

[prop_1x1_kernels]
10) Proportion of convolutional layers with square kernel-

shapes [prop_square_kernels]
11) Proportion of convolutional layers with horizontally-

oriented kernels [prop_horiz_kernels]
12) Proportion of convolutional layers with vertically-

oriented kernels [prop_vert_kernels]
13) Number of rectified linear unit (ReLU) activated convo-

lutional layers [num_relu]
14) Number of sigmoid-activated convolutional layers

[num_sigmoid]
15) Average percent reduction in activation grid area/ height/

width between consecutive convolutional layers
[avg_grid_reduction_area/height/width
_consecutive]

16) Average percent reduction in activation grid area/ height/
width between input layers and final convolutional layers
[avg_grid_reduction_area/height/
width_total]

17) Proportion of convolutional layers using non-overlapping
stride [prop_nonoverlapping]

18) Average convolutional stride height/width
[avg_stride_h/w]

19) Average ratio of convolutional layer’s output feature maps
to its depth [avg_ratio_features_to_depth]

20) Average ratio of layer’s output feature maps to kernel
area/height/width of convolutional layers

[avg_ratio_features_to_kerArea/Height
/Width]

21) Average ratio of kernel area/height/width to depth of
convolutional layers
[avg_ratio_kerArea/Height/Width_to_depth]

III. PREDICT CNNS’ PERFORMANCE BEFORE TRAINING
TIME.

A. Predictions for Vertex-Finding networks

1) Data summary: We analyzed two populations of output
networks designed for Vertex Finding in MINERvA using
MENNDL. For convenience, we refer to them as the First and
Second Populations. In terms of accuracy, the networks have
either 173 or 174 output classes corresponding to planes and
targets in the detector. Therefore, the benchmark for random
guessing is around 0.6%. In Fig. 1, both populations’ accuracy
distributions are heavily left skewed with many networks’
accuracy clustering around a very low value. Thus, for each
population, we split the data into broken and healthy networks
using threshold of 10.05%, which is much higher than random
guessing. The threshold was set so that the high peaks of very
low performance network in the distributions are included in
the broken class, and the two classes are balanced. The overall
percentage of each category in each population is summarized
in Table I.

In this task, we choose to not combine the two populations
together for fear that the mentioned inherent difference in the
networks’ attributes can interfere with our classification task
and cause difficulties in interpreting the results. For regression,
we chose to combine the two populations together on the basis
that we are only looking at the correlations of the network’s
attributes to predict the accuracy.

(a) (b)

Fig. 1. Classification accuracy distributions for each population for vertex
finding. Left: accuracy distribution of the first population. Right: accuracy
distribution of the second population. The dotted lines represents where each
dataset was divided into “broken” or “healthy” for our classification task.

TABLE I
FRACTION OF BROKEN AND HEALTHY NETWORKS IN EACH POPULATION.

Population Broken Healthy Total number of networks
First 50.0% 50.0% 83966

Second 50.0% 50.0% 31542



2) Classification results: Each population dataset was ran-
domly split into training and testing sets with a 80/20 ratio,
respectively. Here we used Random Forest (RF) [9] and Ex-
tremely Randomized Tree (ERT) [10] to perform classification.
For this task, we propose a base accuracy of 50%, since
there is no class imbalance in both populations we used
for classification. The primary purpose of building machine
learning models was to demonstrate the predictive nature of
the architectural attributes, but not to perform further analysis
based on the outputs of the models. As can be seen in Table
II, the scores are significantly better than random guessing
(50%), which underlines that the models were able to detect
architectural separation between the attribute sets for broken
and healthy networks. Furthermore, the cross-validation scores
and the accuracy on test set are very close together, so we
would expect the models to have the same accuracy on unseen
data set.

3) Regression results: After performing healthy/broken
classification, we performed regression on just the healthy
networks. Since the broken networks’ accuracy distribution is
heavily left-skewed, we couldn’t perform regression on them.
Before fitting, interaction terms between the original attribute
set are also added. Using a non-linear Ordinary Least Square
(OLS) model with linear parameters, we performed regression
separately on each population and then combine them together.

The results from the fit are summarized in Table III. A
general trend is that as the number of networks increase,
the R2 value gets better. This suggests that while we don’t
have enough events in the sub-populations to get a good fit,
they overlap enough in the right regions of phase space to
allow a good fit altogether. However, it is worth noting that,
as depicted in Fig. 2, while the majority of residuals are
distributed around 0, there seems to be a linear relationship
between the residual and the fitted values, which means that
more regressors are needed to account for this behaviour.
Furthermore, the Quantile-Quantile (Q-Q) plot in Fig. 2 with
a high right tail indicates that there is a gap in the distribution
of the residuals. This is due to the fact that the accuracy’s
distribution is heavily left skewed with very few networks
with high accuracy. Note that we also tried several regression
algorithms that can account for a high level of non-linearity
in the data. Almost all of them fail to generalize to validation
data set and do not provide a significantly better R2 than a
simple OLS model.

TABLE II
ACCURACY OF RF AND ERT ON TRAIN SET AND VALIDATION SET IN

FIRST & SECOND POPULATION OF VERTEX-FINDING NETWORKS.

Models Population Average accuracy scores
Cross-validation On test set

RF First 67.3 ± 0.004% 66.8%
Second 69.6 ± 0.006% 70.7%

ERT First 66.7 ± 0.006% 66.0%
Second 69.6 ± 0.007% 70.3%

TABLE III
R2 VALUE OF NON-LINEAR OLS MODEL ON INDIVIDUAL POPULATIONS

AND COMBINED.

Population R2 Adjusted R2 Number of healthy networks
First 0.445 0.439 41984

Second 0.298 0.275 15771
Combined 0.966 0.966 57755

Fig. 2. Residuals analysis of OLS model on the combined data set of healthy
networks. Left: Scatter plot between residuals and the fitted value, indicating
a linear relatioship between residuals and fitted. Right: Quantile-quantile plot
depicting the distribution of standardized residuals – the high tail indicates a
gap in the residuals distribution.

B. Prediction for Hadron-Multiplicity networks

Similar to previous section’s analysis for vertex-finding net-
works. To prevent class imbalances in the training data, we set
the threshold to be 0.38 and broken networks were randomly
sampled so that we have a 50/50 distribution between the
two classes of 34614 networks in total. For this task, we
again used RF and ERT models to classify between broken
and healthy networks. The classification results are reported
in Table IV. Both models consistently achieve accuracy of
more than 70% in both cross-validation on training set and
testing set, which is 20% better than random guessing (50%),
since there is no class imbalance. Here we do not present
regression’s results for hadron multiplicity networks, since we
have such a small amount of networks that the regression
results are not significant to be presented.

IV. ATTRIBUTE ANALYSIS

Here we give some examples of how the attributes set can
potentially be used to analyze the behaviour of the network’s
architecture. After fitting the OLS model, we found many
attributes that are more significant and have much larger
coefficients than other attributes. They are reported in Table
V.

As can be seen, net_depth_avg, avg_IP_neurons
and their interactions are strongly correlated with the perfor-

TABLE IV
ACCURACY OF RF AND ERT ON TRAIN SET AND VALIDATION SET.

Model Average cross-validation score Accuracy on test set
RF 70.3 ± 0.006% 70.6%

ERT 70.2 ± 0.003% 70.5%



TABLE V
ATTRIBUTES THAT HAVE SIGNIFICANTLY LARGER COEFFICIENTS THAN

THOSE OF OTHER ATTRIBUTES IN OLS MODEL.

Variable Coefficient
net depth avg 3.5± 0.03

avg IP neurons 2.8± 0.02
avg IP neurons*net depth avg 1.6± 0.01

avg grid reduction height total*avg stride h -0.5 ± 0.02
avg IP neurons*num conv layers -0.9 ± 0.01

avg IP neurons*num pooling layers -1.1 ± 0.01
num conv layers -2.0 ± 0.02

num pooling layers -2.5 ± 0.02

mance. This suggests that increasing the capacity (number
of parameters) of fully connected layers in the CNN can
improve the overall performance of the CNN model. Addition-
ally, num_pooling_layers and num_conv_layers are
negatively correlated with the performance. This implies that,
as we add more convolutional layers and pooling layers into
the model, its performance will generally decrease. While the
rest of the interactions are harder to interpret, the interaction
term between avg_grid_reduction_height_total
and avg_stride_h seems to point out an interesting prop-
erty. Typically in computer vision problems only square
kernels are ever considered. MINERvA physicists studied
asymmetric kernel shapes for the vertex finding problem as
a way of keeping the convolutions from reducing the image
size along the neutrino direction axis [4], [5].

Thus, analyzing the important features of the machine
learning models can give us insights into how to potentially
improve a CNN model’s performance.

V. SUMMARY AND OUTLOOK

In this paper, we proposed a systematic method that can
be useful for uniform comparison of different architectural
attributes of CNNs. We demonstrated the predictive nature of
those attributes in two specific problems—vertex finding and
hadron multiplicity counting in MINERvA—through building
machine learning models that predict the CNN’s performance
before its training time.

For future work, we plan to extend the architectural at-
tributes set and take into account other hyper-parameters
related to input domains and training process, which might
provide us with a more comprehensive study of network per-
formance. Furthermore, it can be interesting for us to perform
the same analysis on state-of-the-art network architectures
and see to what extent does our current set of architectural
attributes correctly characterize the network’s performance.
It is also promising to incorporate machine learning models
such as the ones we built in this paper into model selection
algorithms to evaluate a network’s accuracy before training
time, thereby boosting the efficiency of the algorithms.

ACKNOWLEDGMENT

We would like to thank the MINERvA collaboration for
access to their simulated data sets for this analysis. MIN-
ERvA uses the resources of the Fermi National Accelerator

Laboratory (Fermilab), a U.S. Department of Energy, Office
of Science, HEP User Facility. Fermilab is managed by
Fermi Research Alliance, LLC (FRA), acting under Contract
No. DE-AC02-07CH11359, which included the MINERvA
construction project. This material is based upon work sup-
ported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Robinson
Pino, program manager, under contract number DE-AC05-
00OR22725. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US govern-
ment retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government
purposes. The DOE will provide public access to these
results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436 EP –, 05 2015. [Online]. Available: https:
//doi.org/10.1038/nature14539

[2] L. Song, F. Chen, S. R. Young, C. D. Schuman, G. N. Perdue,
and T. E. Potok, “Deep learning for vertex reconstruction of
neutrino-nucleus interaction events with combined energy and time
data,” CoRR, vol. abs/1902.00743, 2019. [Online]. Available: http:
//arxiv.org/abs/1902.00743

[3] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural
architecture search,” CoRR, vol. abs/1905.01392, 2019. [Online].
Available: http://arxiv.org/abs/1905.01392

[4] A. M. Terwilliger, G. N. Perdue, D. Isele, R. M. Patton, and S. R. Young,
“Vertex reconstruction of neutrino interactions using deep learning,” in
2017 International Joint Conference on Neural Networks (IJCNN), May
2017, pp. 2275–2281.

[5] G. Perdue et al., “Reducing model bias in a deep learning classifier using
domain adversarial neural networks in the MINERvA experiment,”
Journal of Instrumentation, vol. 13, no. 11, pp. P11 020–P11 020,
nov 2018. [Online]. Available: https://doi.org/10.1088%2F1748-0221%
2F13%2F11%2Fp11020

[6] L. Aliaga et al., “Design, calibration, and performance of the MINERvA
detector,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 743, pp. 130 – 159, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900214000035

[7] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing deep learning hyper-parameters through an evolutionary
algorithm,” in Proceedings of the Workshop on Machine Learning
in High-Performance Computing Environments, ser. MLHPC ’15.
New York, NY, USA: ACM, 2015, pp. 4:1–4:5. [Online]. Available:
http://doi.acm.org/10.1145/2834892.2834896

[8] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. March, and V. Lempitsky, “Domain-adversarial
training of neural networks,” Journal of Machine Learning Research,
vol. 17, no. 59, pp. 1–35, 2016. [Online]. Available: http://jmlr.org/
papers/v17/15-239.html

[9] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, Oct. 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[10] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, Apr 2006. [Online].
Available: https://doi.org/10.1007/s10994-006-6226-1

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1902.00743
http://arxiv.org/abs/1902.00743
http://arxiv.org/abs/1905.01392
https://doi.org/10.1088%2F1748-0221%2F13%2F11%2Fp11020
https://doi.org/10.1088%2F1748-0221%2F13%2F11%2Fp11020
http://www.sciencedirect.com/science/article/pii/S0168900214000035
http://doi.acm.org/10.1145/2834892.2834896
http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1

	Introduction
	Extracted Attributes Summary
	Predict CNNs' performance before training time.
	Predictions for Vertex-Finding networks
	Data summary
	Classification results
	Regression results

	Prediction for Hadron-Multiplicity networks

	Attribute analysis
	Summary and Outlook
	References

