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Abstract—Designing dependable supercomputers begins with
an understanding of errors in real-world, large-scale systems. The
Titan supercomputer at Oak Ridge National Laboratory provides
a unique opportunity to investigate errors when an actual system
is actively used by multiple concurrent users and workloads from
diverse domains at varying scales. This study presents a thorough
analysis of 6, 908, 497 hardware errors from 18, 688 compute
nodes of Titan for 312, 215 user jobs over a 3-year time period.
Through careful joining of two system logs - the Machine Check
Architecture (MCA) log and the job scheduler log - we show
the correlated pattern of hardware errors for each job and user,
in addition to individual descriptive statistics of errors, jobs,
and users. Since the majority of hardware errors are memory
errors, this study also shows the importance of error correcting
in memory systems.

I. INTRODUCTION

The thorough understanding of errors in real-world, large-
scale systems is critical to designing dependable supercom-
puters. The general consensus is that error patterns are related
to multiple factors such as system components, applications,
system operation (e.g. job scheduling), and user behaviors [7],
[13], [21]. Thus, given hardware and software system com-
ponents, the understanding of error patterns under various
applications and users is of historical importance [11]. In this
context, high performance computing (HPC) systems like the
17.59 petaflops Titan supercomputer [1] (No. 9 in the Top500
list) hosted at Oak Ridge National Laboratory are sitting in a
unique position.

Titan provides computing resources to thousands of diverse
users from government, business, and academia. They run
diverse workloads ranging from traditional scientific simula-
tion workloads to modern machine learning applications from
more than 30 science domains [9]. Additionally, hardware
accelerators such as GPUs are becoming more common in
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the HPC world and Titan is one of the largest systems to
use GPUs. Thus, understanding errors from Titan will be a
useful guide for building dependable future computing systems
in CPU-GPU heterogeneous architecture for a wide range of
purposes.

Analyzing system errors has a rich history in the liter-
ature [7], [11], [19]–[21], including studies on large scale
distributed systems [4]. System error analysis often relies on
collected system logs such as CPU hardware error logs [7]
and GPU error logs [20]. Additionally, merging logs from
multiple log collection systems is also attempted [11], [16],
since the analysis on the merged logs uncovers the interaction
among system errors, workloads, the user behavior, and system
operations. This study is similar to other studies that present
an analysis based upon merging hardware errors from CPUs
and user job submission logs. However, this study reveals
the error pattern of Titan supercomputer after a series of
innovations presented in previous studies [12], [21], [22] to
improve system performance and system utilization, along
with a large scale replacement of failing hardware components
(e.g., GPUs).

This study collected hardware errors using the machine
check architecture (MCA) provided by AMD, the manufac-
turer of Titan’s CPUs. MCA provides detailed information
about hardware errors at various levels, including errors from
in-processor caches, DRAM memory, and the inter-core bus.
In order to understand the interplay between the hardware
errors and jobs and users, we merged this MCA log with the
job submission log, collected from the system job scheduler.
The job submission log provides information about the user
id (UID), the starting time, the end time, and the list of nodes
assigned to the job. Since the available job log does not provide
information on the exit code or associated hardware errors,
we cannot definitively conclude that any particular hardware
errors led to job failure. However, merging the job submission
logs and MCA logs does allow us to understand the interaction
among errors, nodes, users, and jobs.

This study discovers the following notable findings:
• Daily errors are mostly limited to a small set of nodes

- less than 400 out of 18, 688 compute nodes. However,



this set changes over the time. Thus, we cannot attribute
the overall error trends to specific faulty nodes.

• The distribution of error intervals from all the errors form
multivariate distribution, which are associated with the
source of errors in the error status code.

• 99.97% of errors in Titan supercomputer were correctable
ECC errors, which means that ECC-enabled DRAM can
significantly raise the system reliability. On the other
hand, an algorithm that can tolerate single bit ECC errors
such as low-precision algorithms will be able to signifi-
cantly raise the reliability without hardware support [3].

• We have found weak correlation between critical uncor-
rectable errors and other kinds of hardware errors.

• Errors in a node are more associated with user char-
acteristics than the characteristics of nodes and jobs
under the current operational practices in production high
performance computing systems.

We describe the target system that we consider, along with
relevant background and related work, in Section II. After
reviewing the background and literature, we present a brief
overview of the analysis in Section III, followed by detailed
analysis in Section IV.

II. RELATED WORK

This section describes a few important studies on the
reliable operation of high performance systems, though anal-
ysis results in this study can be relevant to other types of
computing systems. Meneses et al., [11] correlate failures from
the system error log to the job scheduler log, providing a
user’s perspective on system errors. Their analysis is based
upon logs collected in 2014. The authors profiled the system
failures in two categories: software and hardware, with a
further investigation on the correlation between job submission
frequency and the failure rate and its impact on the workloads
due to system failures.

Zimmer et al., [21] studied the job scheduling log to under-
stand the relationship between job placement and application
execution time variability. They augmented the existing job
placement system with an enhanced node-layout strategy.
Their job placement system reduced the average hop count
between nodes by up to 50%, resulting in an average runtime
improvement of 10% for the measured applications.

Gupta et al., [4] studied the reliability characteristics of
multiple large-scale HPC production systems hosted at Oak
Ridge National Lab, covering more than one billion compute
node hours across five different systems over a period of 8
years. This study analyzed the syslog data, which includes
machine check exception. Although their study discussed a
potential implication of job failures from system failures,
they did not provide an in-depth analysis on the relationship
between failures and job execution. One of the notable findings
in [4] is that hardware errors like machine check exception
errors are the major class of errors across systems over the
whole observed period. This fact motivated our study on the
understanding of the relationship between machine check error
(e.g., uncorrectable memory errors) and job execution.
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Fig. 1: The dimensions across which the logs are analyzed.

Levy et. al., [7] provide detailed analysis of correctable
and uncorrectable memory errors over the entire lifetime of
a large-scale system - Cielo - at Los Alamos National Lab.
For memory failure logs, their study used logs recorded by
the same machine check architecture (MCA) that is used
in this study. In addition to the MCA log, they used the
resource management log from the application level placement
scheduler (ALPS), the kernel panic log, and the hardware
inventory log. Key findings in this study are: 1) memory errors
do not increase over the time and; 2) correctable errors are
not precursors of uncorrectable errors in production systems.
However, their study still did not look into the relationship
between memory errors and jobs.

Tiwari et al., [20] present an in-depth analysis of GPU errors
in a large-scale system with GPUs, using console logs for
errors with timestamps and system utility (e.g. nvidia-smi).
In their study, single bit errors were predominant, similar to
our study. Simarly, Nie et al., [14] studied GPU errors, using
machine learning models with a focus on predicting single bit
errors. However, both of those studies only analyzed error logs
for a single type of hardware components - the GPU - without
joining the error logs with job logs. Thus, neither study clearly
addressed the impact of errors on actual user applications and
workloads.

Park et. al., [16] presented case studies from multiple joined
logs such as machine check exception errors; job scheduler
logs; reliability, availability and serviceability (RAS) logs from
various sensors; and parallel file system logs. Due to the
challenges in joining multiple large logs, they implemented a
Spark-based big-data analytic infrastructure called LogSCAN.
Their analysis usecases include the correlation of job execu-
tions and errors, which is similar to the analysis presented in
this study. However, their study focused on establishing the
data analytics infrastructure, rather than resulting analysis.

III. METHODOLOGY

This section provides a brief overview of analysis and data,
along with relevant information about the system and error
collection methods.



A. Analysis overview

This study is organized into three dimensions based on
the idea that errors may stem from the characteristics of
nodes, jobs and users. (Figure 1) First, errors may exhibit
their own unique spatio-temporal patterns such as frequency
of errors and intervals between errors. These patterns may
vary according to the characteristics of nodes. A node is a
combination of multiple hardware and software components,
and the reliability of those components may vary from node to
node due to environmental factors such as thermal differences
and differing usage caused by, for example, network routing
and scheduling preference. We present a detailed analysis of
error characteristics and study if it varies based on compute
node differences.

In addition, error characteristics may vary based on the
jobs being run. Each job may represent a specific application
program with a set of input parameters and output data. In
distributed environments, each application may show different
communication patterns that can lead to a certain distribution
of errors among nodes allocated to a job. For example, if
a particular process is coordinating communications for all
processes in a job, the node running that process might be
more vulnerable to errors. We study if error patterns are related
to major job features.

Finally, each user can have different ways of executing
applications, though they run the same program with other
users. In addition, during the lifetime of a project, each
user may have different patterns of resource allocation and
running time for different sets of applications. We study the
relationship between user behavior and errors. The following
analysis is focused on understanding if the above hypotheses
can be confirmed.

B. Titan supercomputer

The Titan supercomputer is an 18,688 node 17.59 petaflop
Cray XK7 system. It was the primary compute platform for the
Oak Ridge Leadership Computing Facility (OLCF) up through
the end of 2018 and is expected to continue in service for
most of 2019.Each compute node consists of a 16-core AMD
Opteron CPU with 32 GB of memory and an NVIDIA K20X
GPU (Kepler G110 processor) with 6 GB of memory. Titan’s
compute nodes are connected via a high-performance Gemini
interconnection network, which is a 3D torus with XYZ
dimensions of 25×16×24. Since 3D networks are composed
of many small routing devices, multiple routing choices are
possible between a pair of compute nodes. Physically, compute
nodes are organized by 8 × 25 cabinets, where each cabinet
consist of 3 vertical cages. Each cage has 8 circuit boards,
or slots. Each slot has 4 compute nodes on it. The OLCF
runs around 500 jobs every day on Titan (∼182,000 jobs per
year). Jobs are scheduled using the Application Level Place-
ment Scheduler (ALPS) and the MOAB scheduler. ALPS is
responsible for enumerating all of the nodes within the system
and creating a network-aware ordered list. MOAB handles
both job scheduling and resource allocation. Scheduled jobs
are provided resources in order from the list created by ALPS.

Attributes Values
job monitoring period 2018-02-09 to 2018-08-06
error monitoring period 2015-01-27 to 2018-08-06
job entries 312,215
error entries 6,908,297
jobs with errors 24,337
errors during the job monitoring period 1,096,666
errors when jobs run 851,611
# of users 342

TABLE I: Facts of data sets

C. Log collection method and collected errors

For this study, two types of data were gathered: Machine
Check Exception errors and job start & end records. Both types
of data are logged via standard syslog processes. On Titan, all
syslog processes forward messages to a central server which
then forwards the messages to a Splunk [2] server. Due to
disk space constraints, data in the main Splunk index is only
kept for a few months. Thus, every two months, we would
extract the latest data from Splunk and save it offline for later
analysis.

The Machine Check Architecture (MCA) plays a vital
role in the reliability, availability, and serviceability of AMD
processors, as well as computer systems based on them. It logs
hardware and processor errors and reports them to system
software. It logs the error in specific registers (banks) and
then triggers a machine-check exception to notify the system
software.

When the MCA detects an error, hardware autonomously
acts to either correct the error or contain the propagation
of the corrupting effects of an uncorrected error. In other
words, there are three categories of hardware errors: corrected,
uncorrected, and deferred. If an error can be corrected by
hardware, no immediate action by software is required. In
this case, information is logged, if enabled, to aid in later
diagnosis and possible repair. If correction by hardware is not
possible, the error is classified as uncorrected. As hardware
cannot correct uncorrected errors, system software attempts
to correct the error and resume the user-level application. If
the error cannot be corrected in software, then the system
software determines the impact of the error. If the impact
of an uncorrected error can be contained, it is classified by
hardware as a deferred error. Deferred errors are logged, but
not immediately reported via a machine check exception.

A common example of deferred error processing and lo-
calization is the conversion of globally uncorrected DRAM
errors to process-specific consumed memory errors. In this
example, uncorrected ECC-protected data that has not yet been
consumed by any processor core is tagged as ”poison.“ The
hardware reports the uncorrected data as a localized error
via a machine check exception only when it is about to be
used by an instruction execution stream. In contrast, an error
that cannot be contained and is of such severity that it has
compromised the continued operation of a processor core,
requires immediate action to terminate system processing and
may result in a hardware-enforced shutdown.



Register Bank Error type Error subtype Description Counts

Bank0 Data cache error Data array load-store unit (LS), including data
cache

84
Tag error Tag array 8

Bank1

IC read error IC data load parity
instruction fetch unit (IF), including
instruction cache

370
IC read error Main tag 39
Tag probe Probe tag error 28
Tag probe Probe tag valid bit 1

Bank2

L2 Cache Fill parity error

combined unit (CU), including L2
cache

951
L2 Cache FillECC/L1 130,084
L2 Cache FillECC/L2 21,130
L2 Cache PrqData parity error 1
L2 Cache VbData ECC error 24,545
L2 Cache VbData Parity error 63
L2 Cache WCCTag ECC error 10,165
Tag L2Tag 1379

Bank4
Compute unit data error -

northbridge (NB)
2,171,095

Link data error - 4,548,314
Sync error - 11

Bank5
Internal error AG payload array parity

execution unit (EX)
1

Internal Error AG1PRF parity 25
Internal Error IDRF array parity 1

TABLE II: Error types and subtypes, with associated register banks.

D. Data Overview

Table I describes the summary statistics of the analyzed
logs. Since the different logs cover different time frames, we
must acknowledge the differences between the job monitor-
ing period (∼6 months) and error monitoring period (∼43
months). The job monitoring period is included in the error
monitoring period. We have a total of 7 million errors, while
1 million errors during the job monitoring period. A notable
statistic is that 92.3% of jobs do not have a single error, while
88% of errors occurred when jobs are running on the node. We
also find that errors occurred on 17,656 nodes out of 18,688
nodes, which is about 94.5 % of the nodes in the system.
This is a bit different from the previous reports, where errors
were mostly contained in a small number of nodes. We have
more detailed findings about the relationship between nodes
and error patterns in Section 4-D.

The errors are stored in different register banks, each of
which maps to different units in the processor, as shown
in Table II. We identify 29 different error signatures from
the entire logs, which consists of bank ID, error code, and
error code extension. However, we find the same error with
multiple error signatures and errors with multiple subcases.
After grouping errors by more semantically meaningful error
type and error sub-type, we find 20 types of errors as reported
in Table II. We find that a majority of errors, 6, 719, 420, occur
in Bank4, NorthBridge. Errors related to the Combined Unit
(CU) follows next, with a total of 88, 318 errors. Critical errors
from load-store units and instruction fetch units are relatively
rare, yet they happen. In Section 4-B we discuss uncorrected
errors by hardware, where a half of uncorrected errors are
related to load-store units.

Figure 2 shows the daily trend of the number of errors
from all the nodes. We observe that the average number of
errors during all the monitored period is 5, 376 errors per
day, and max number of errors per day is 26, 550 errors.
During the 1, 287 days of the monitoring period, 447 days
had a larger than average number of errors, which is about
34% of monitoring period. Two questions arise after observing

CECC UECC PCC UC counts

0 0 0 0 1,464
1 7

1 1 19
1 1 1 2

1 0 0 0 6,906,805

TABLE III: Basic statistics for each category of errors. Most
errors are correcctable ECC errors (CECC=1), while we do
have other types of errors. CECC: correctable ECC error.
UECC: uncorrectable ECC error, a deferred error if converted
to poison data. UC indicates whether the error was actually
corrected by the processor (UC=1), poison data consumed or
no way to avoid passing it to process. PCC: processor context
corrupt.

such a phenomenon: (1)which factors contribute such a wide
fluctuation of the number of errors; and (2) which errors cause
serious system crashes? Identifying dominant factors may lead
to more reliable system operations and lead to the designing
of more reliable hardware components in actual systems. In
the following sections, this study examines if this fluctuation
stems from the faulty hardware, the fluctuation of workloads,
or the specific applications (or users).

IV. DATA ANALYSIS

In this section, we analyze four major potential contributing
factors about errors. First, we look into the characteristics of
errors in order to answer questions around the effectiveness of
ECC and any need for additional protection for the memory
and processors. In addition, we look into error intervals in
order to identify the contributing factors of daily error trends.

A. Error characteristics

In this section, we describe the category of errors that we
find in the collected logs and their basic characteristics such as
error intervals. This section intends to show if we have serious
errors that can cause system or node crashes and if the daily
fluctuation of errors stem from specific errors with extremely
short intervals.
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Fig. 2: Daily error counts over the entire monitoring period

1) Error categories: Errors are categorized by whether
they are correctable ECC errors (CECC=1) or not (CECC=0).
However, CECC=0 does not always mean the error is an
uncorrectable ECC error (UECC=1), or multi-bit errors, since
some errors can be related to instruction fetches or program
context corruption (PCC=1). In addition, the hardware often
does not correct errors (UC=0) when the error should be
handled by software or when the error does not need to be
immediately corrected (deferred errors). Overall statistics on
each category of errors are shown in Table III.

The foremost finding from the three years of the error
monitoring period is that 99.97% of errors are correctable
ECC errors. We find that uncorrectable ECC errors (UECC=1)
due to the restrictions of the ECC algorithm are very rare.
Only two errors are recorded from the log of 18,688 nodes
for 30,888 hours, a total of 577,234,944 node-hours. Thus,
DRAM modules with ECC is very critical and effective to
ensure the system reliability. In addition, this might be a result
of constant attention on DRAM failure in the operation of
Titan supercomputer similar to other HPC centers [7].

Next, we look into errors that are not correctable ECC
errors (CECC = 0). Although they account for only 0.03%
of the total number of errors, they are serious errors such as
double bit errors or errors in hardware components other than
memory. These errors can cause immediate program exit and,
potentially, shutdown of the specific compute node. Among
errors that are not correctable ECC errors, we have a total of
28 errors corrected by hardware (UC=1) in Table III. Those
28 errors are mainly from two sources: 16 errors from load-
store units (8 data cache errors and 10 tag array errors) and 12
errors from the northbridge (10 northbridge array errors and
2 compute unit data errors).

For further detailed analysis of errors that are not correctable
ECC errors, Figure 3 shows the number of errors grouped
by error type and error sub-type and whether or not the
errors are correctable. In this analysis, bank ID, error type
and error subtype are as summarized in Table II. We find
that errors that are not correctable ECC errors happen across
all the components in the processor. However, 63.5% of non-
correctable ECC errors have the error type of L2 Cache with
the subtype of fill parity error in Bank 2 (Combined unit).
Fill parity error means fill parity error on instruction fills. All
errors in this category are 100% non-correctable ECC errors
in our log. Including fill parity error in L2 cache, we find that
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Fig. 3: The number of errors grouped by error codes, bank,
error code type, and error code subtype. Errors from north-
bridge (bank 4) are the most common, but more critical
CECC=0 errors are common from load-store unit (bank 0)
and instruction fetch unit (bank 1).

88% of non-correctable ECC errors are related to instruction
cache in the load-store unit (Bank 0) and instruction fetch unit
(Bank 1). We observe errors in Bank 0 (Load store unit), Bank
1 (Instruction fetch unit), and Bank 5 (Execution unit) are not
correctable ECC errors in certain cases. Therefore, we can
expect to significantly improve the reliability of large scale
systems by raising the reliability related to instruction cache
within a processor [5].

2) Error Intervals: Table IV shows basic statistics of error
intervals per node. Note that the max wall clock limit of jobs
on Titan is 24 hours, which aligns with the max error interval
(24 hours and 27 minutes). We find extreme situations such as
the situation where two consecutive errors are 134 days apart.
In addition, depending upon the number of requested nodes,
Titan supports different max wall time. For example, when
a user requests less than 125 nodes, the max wall time is 2
hours. Thus, the error intervals when jobs are running on the
node tend to be smaller than the overall cases. Notably, we
observe a highly temporal locality since 50% of errors have
an interval less than 6 seconds when jobs are running on the
node, and 0.05 seconds for all the cases.

Next, we analyze the distribution of error intervals for all
cases since the overall pattern of error interval is similar in
Table IV. Figure 5 shows the log of error intervals, where
we can find three peaks: 1) at tens of microseconds scale, 2)
tens of milliseconds scale, and 3) tens of minutes scales. The
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Fig. 4: The boxplot(min,25%,median,75%, max) of error in-
tervals per error code on a node when jobs are running on the
node (w-jobs) and all cases during the job monitoring period
(all-trunc).

largest interval is more than tens of days. Since we identified
three distinct groups of error intervals, we further investigate
if each error interval group can be connected to different error
types or error subtypes.

Figure 4 shows the distribution of error intervals for each
error type and error subtype. Here, the error interval represents
the interval between two errors on the same node. Thus, some
error types and error subtypes in Figure 3 do not appear
in Figure 4 Firstly, the intervals of errors do not change
significantly whether a job is running on a node or not.
However, we confirm that a few errors occurred when jobs
are not running on the node as we have observed in Figure 3
and Figure 4.

In this analysis, we find that error intervals have different
distributions depending on error type and error subtype. For
errors matching to the first peak centered around 10−4 seconds
in Figure 5, we find errors with the error subtype of Fill parity
error, errors with the error subtype of FillECC/L1, and errors
with the error type of Compute Unit Data Error. Errors with the
error subtype of Fill parity error happens when we find parity
error on instruction fills in instruction cache. Errors with the
error subtype of FillECC/L1 happens when we find ECC error
on data fills and the data source is L1 cache. Compute unit
data error means Northbridge received a data error from a core.
This error may occur for the data writes to DRAM, APIC, and
IO. Short error intervals of these errors imply that these errors
exhibit high temporal locality. The relatively narrow ranges of
error intervals of these errors also support the possibility of

statistics w/ Job all cases
mean 00:29:20.982055 13:36:52.522612
std 01:35:11.146578 89:48:42.928203
min 00:00:00.000016 00:00:00.000005
25% 00:00:00.000058 00:00:00.000056
50% 00:00:06.040840 00:00:00.055997
75% 00:08:43.046752 00:17:27.961082
max 24:27:30.421187 134 days 14:54:38.632010

TABLE IV: Statistics of error intervals per node.
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Fig. 5: The histogram of log(error intervals) for all errors,
showing three distinctive ranges of error intervals.
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Fig. 6: The daily number of errors per node for each percentile.
Error bar represents the standard deviation of each percentile
to show daily fluctuation.

high temporal locality of these errors.
For the second peak that is centered on 10−1 seconds in

Figure 5, we find that errors with the error subtype of L2Tag
is the closest. However, the high frequency of errors in this
range may stem from the fact that many errors happen around
this range. The third category of errors that is centered on 103

seconds in Figure 5 can be attributed to errors with fill ECC
errors corrupted on L2 cache (FillECC/L2), write coalescing
cache tag ECC errors (WCCTag ECC error), victim buffer
data ECC errors (VbData ECC error), and link data errors.
These errors have a median around 103 seconds, or about a
half hour between two errors. It implies that temporal locality
in these errors is not clear. With respect to the data access
pattern, data in L2 cache will show high temporal locality,
compared with link data. Thus, this result may indicate that
ECC error pattern may not align with the data access pattern
since errors in the combined unit that includes L2 cache in
the processor (FillECC/L2, WCCTag ECC error, VbData ECC
error) show relatively low temporal locality compared to the
errors in the northbridge (link data errors). Identifying such a
relationship between ECC error pattern and data access pattern
should deserve a in-depth study with the actual program.

B. Node Characteristics

In this section, we analyze the relationship between errors
and node characteristics. First, we counted the daily number
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Fig. 7: The number of errors and the number of nodes with
errors for each day. The linear regression result shows R2 =
0.68, a medium positive linear relation.

of errors per node. Figure 6 shows the max number of errors
in a node, the 98-th percentile of number of errors in a node,
the 90-th percentile of number of errors in a node, and the
75-th percentile of number of errors in a node, where error
bars represent standard deviation of their daily fluctuation.
We observe that, for each day, the worst node records around
377 errors with relatively small standard deviation, while 98-th
percentile records around 220 errors with very wide fluctuation
according to day. Meanwhile, 75-th percentile of nodes only
generates 6 errors with small fluctuation per day. Thus, we
can say that the number of daily errors fluctuates mainly due
to a small set of nodes less than top 25-th percentile of nodes
with respect to the number of errors. This analysis implies
that errors do not occur in a uniform distribution and it might
be possible to significantly raise the reliability of large scale
systems by focusing on a small set of nodes.

Followed by this finding, the question is if this small set of
nodes can explain the daily fluctuation of errors in the system.
We analyzed the association between the number of errors
and the number of nodes with errors for each day, where we
obtained 0.730 of Spearman coefficient that implies positive
monotonic correlation between them. Spearman correlation
measures the strength and direction of monotonic association
between two variables which may or may not be linear. A
perfect Spearman correlation of +1 occurs when one variable
is a monotonically increasing function of the other, or −1
when it’s a monotonically decreasing function. In order to
identify if a linear relationship exists between the number of
errors and the number of nodes with errors for each day, we
attempted a linear regression and obtained R2 = 0.68, which
means a mild positive linear relationship exists, as shown in
Figure 7. That is, when we have a larger number of errors
in the system, it is very likely that a larger number of nodes
generate errors in the system. In this analysis, we also find that
up to 3, 024 nodes (16% of compute nodes) generate errors a
day, and the median number of nodes with the error per day is
only 221 nodes (1% of compute nodes). Thus, we can say that
errors are generated from a small set of nodes for each day and
the daily fluctuation would be contributed by more number of
nodes with errors, instead of a single dominant node.
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Fig. 8: The empirical cumulative distribution function of the
number of nodes according to the total number of errors in a
node for all errors, correctable ECC errors (CECC=1), non-
correctable ECC errors (CECC=0). We found a total of 1,492
non-CECC errors (CECC=0), including 2 errors that UECC
set as 1, as reported in Table III. Note that non correctable
ECC errors include UECC errors (e.g., multi-bit ECC errors),
processor context corrupt errors and deferred errors to be
handled by software.

Now, we show the overall errors from the empirical cumula-
tive distribution of the number of nodes according to the total
number of errors from the node as shown in Figure 8. We
discover a bi-modal, log-normal distribution among the nodes
according to the total number of errors. In this analysis, we
confirm that 76.1% of the nodes have less than 100 errors
during the observed time period. The remaining 23.9% of
nodes contain more than 100 errors, which forms the second
slope beginning with 100 errors in Figure 8. This set of
nodes account for 98% of the entire errors. Narrowing down,
we find that 373 nodes (2% of compute nodes) with more
than 1,000 errors generate 77.5% of the entire errors. This
analysis discovers the existence of a set of error-prone nodes
that significantly influence the overall number of errors in the
system. Thus, if we pay close attention to these nodes, we have
a good chance to significantly lower the number of errors in
the system.

The majority of errors found in the hardware error log are
correctable ECC errors (CECC = 1), which can be easily
corrected through ECC modules. However, we have found a
total of 1,492 non-correctable ECC errors (CECC = 0) from
1,253 unique nodes, throughout the entire error monitoring
period, as reported in Table III. On average, we have 1.16
of these non-correctable errors per each day. These non-
correctable ECC errors are tend to be more critical errors,
including UECC errors (multi-bit ECC errors, UECC = 1),
processor context corrupt errors (PCC = 1) and deferred
errors to be handled by software. Thus, it means we need to
investigate at least one machine in the Titan supercomputer for
any given day, which highlights the importance of managing
these errors.

We check if these critical non-correctable errors happen
more often in the more error-prone nodes, but only 6% of
nodes had non-correctable errors among nodes with more than
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Fig. 9: The empirical cumulative distribution function of the
number of jobs according to the number of errors in a job.

100 errors. Thus, we claim that the occurrence of correctable
ECC errors (CECC = 1) does not indicate higher possibility
of other serious non-correctable errors (CECC = 0). It is
because other critical errors are related to instructions rather
than data accesses. Thus, although ECC modules dramatically
improve system reliability, in order to prevent systems from
critical errors, we need to raise fault tolerance on hardware
components related to instructions.

In summary, we discover the existence of error-prone nodes
whether they are ECC errors or other types of errors. A
possible hypothesis of concentrated errors on a small number
of nodes is that the jobs scheduled on the node may have
impacted the error pattern of the node. Thus, in the following
section, we will analyze if the error pattern varies according
to the jobs on the node.

C. Job characteristics

Each job log entry records the starting time, the ending time,
the list of allocated nodes, and UID associated with the user
who submitted the job. Thus, major features of a job are 1)
the running time and 2) the number of allocated nodes. This
section analyzes if error patterns are related to those major job
features.

Figure 9 shows the empirical cumulative distribution func-
tion of the number of jobs according to the number of errors
in a job. Overall, the empirical CDF shows that the number
of jobs according to the number of errors follow zipfian
distribution. Note that 24,337 jobs out of 312,215 recorded
jobs contain errors (refer to Table I.) The analysis in this
section focuses on the jobs with errors, which comprises of
only 7.8% of jobs. Among 24,337 jobs with errors, 37% of
jobs contain a single error and 80% of jobs contain less than
20 errors. However, there exist jobs with more than 10, 000
errors.

We calculated Spearman correlation coefficients in order to
find correlation between the number of errors and features
of a job. We computed Spearman coefficients 1) between the
number of errors in a job and the running time of the job
(0.289); 2) between the number of errors in a job and the
allocated number of nodes for the job (0.339); and 3) between
the number of errors in a job and the number of nodes with
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Fig. 10: The empirical cumulative distribution function of the
number of jobs according to the number of nodes with errors,
for the jobs with different groups of allocated nodes. All is for
all jobs. jobs < n represents jobs with more than n allocated
nodes.

errors iamong the allocated nodes for the job (0.630.) From
this calculation, we find no strong association between the
number of errors and both job size and running time, while a
good association between the number of errors and the number
of nodes with errors among the nodes allocated to the job.

Let us investigate into the weak correlation between the
number of errors and the number of allocated nodes. If there
exist specific less reliable nodes, jobs with large allocation
will have greater chance to include them. Thus, the number of
errors will have correlation with the number of allocated nodes
for a job. However, if errors are related to the computational
pattern of a job, errors only may happen in nodes depending
on the computational pattern of the job. For instance, there
can be a small set of nodes with heavy communication, I/O
accesses, and processing.

To address this question, we calculated the cumulative
distribution function (CDF) of the number of jobs according
to the number of nodes with errors in the job as shown in
Figure 10. This analysis shows that 61.9% of all jobs have
errors only in a single node, 61.4% of jobs with more than 10
allocated noes, 53.9% of jobs with more than 100 allocated
noes, and 20% of jobs with more than 1, 000 allocated nodes.
For jobs with 1, 000 allocated noes, 80% of jobs have errors in
less than 1% of nodes (10 nodes). Jobs with 10, 000 allocated
nodes show similar pattern. Although the chance of having
errors in a single is lower than other cases, the chance of
having errors in less than 1% of nodes (less than 100) is still
high, 71.9%. Thus, this analysis discovers that errors occur in
a small set of allocated nodes for a job. This result suggests
that focusing on those 1% of nodes will be sufficient in order
to understand the reliability of most of user jobs.

However, we also note outlier cases where jobs experienced
errors more than 10% of allocated nodes. For instance, at the
worst case, a job had errors in 1, 884 nodes out of 11, 274
allocated nodes, or 16.7% of allocated nodes had errors.
Interestingly, including this job, a few other outlier jobs are
submitted by the same user. The next section will be discussed
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Fig. 11: The total number of errors with respect to the total
number of jobs for each user. Note that both x-axis and y-axis
are in log-scale.

such correlation between user and the number of errors in
detail.

D. User Characteristics

Users may run specific workloads (e.g., simulation and
data analysis) within the scope of each project. This section
considers the hypothesis that there is a relationship between
users’ characteristics and errors. For instance, a user may have
more errors than others or a user may have a strong association
with specific errors. Firstly, we begin with analyzing the
frequency of errors per user.

Figure 11 shows the total number of errors versus the
number of all jobs per user. The figure shows that moderately
positive relationship exhist between the total number of jobs
and the total number of errors, since the Spearman correlation
between two variables is 0.476 We further investigate if the
important feature of jobs per user is the size of allocation or
the running time.

Figure 12 shows the relationship between the total number
of allocated nodes and the total number of errors for each
user. In this analysis, we find a strong monotonic association
between the total number of allocated nodes and the total
number of errors, according to 0.898 of Spearman correlation
coefficient. This indicates that users who have often submitted
large jobs will be likely to experience a large number of errors
throughout associated projects. It does not necessarily mean
all the large jobs will have large number of errors. However,
considering the same analysis for each user, we discover the
number of allocated nodes is correlated to the number of
errors. Therefore, focusing on the users with large jobs can
significantly reduce the total number of errors in the system.

On top of this analysis, we can claim that user character-
istics are clearly a factor in generating errors in a job, as we
have previously discussed in the analysis related to Figure 10.
Such a correlation may happen because a user will employ
specific applications with specific input parameters, software
libraries, and data analysis methods, throughout the project.
Indeed, fusion simulation is well-known for the challenging
I/O workloads [10] and large-scale collaboration between
national labs [18], all of which may contribute to the distinct
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Fig. 12: The total number of errors with respect to the total
number of allocated nodes for each user shows a strong
correlation.
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Fig. 13: The empirical cumulative distribution function of the
number of users according to the total number of errors.

error pattern of this user. We will again confirm this trend is
not only restricted to this top user in the following analysis.

Figure 13 shows empirical cumulative distribution function
(CDF) of the number of users according to the total number
of errors. This analysis shows that the empirical CDF of the
number of users according to the total number of errors fol-
lows power-law distribution since the empirical CDF follows
normal distribution when x-axis is transformed with logarithm
as shown in Figure 10. The highest number of errors for a user
is 276, 973, but 288 users out of 342 total users has less than
1% of errors of the top error user.

This trend leads us to detailed analysis of users with high
number of errors. The total number of errors from top 10
users is 463, 937, which is 54.4% of total errors. Interestingly,
the top 2 users are associated with the same project, fusion
energy, and the number of errors from both users is 318, 094,
37.3% of the total errors. Among top 10 users, we have three
users in fusion energy area and their total number of errors
is 330, 152. Since we are not able to access their codes or
simulation parameters, we cannot decisively clarify the root
cause of this phenomenon. Those users mostly ran fusion
simulation, xgc [6], which is one of the important simulation
code in high performance computing centers [15]. The I/O
scalability of this simulation code has been an important
issue [8], [17]. Therefore, it might be worth of studying the



relationship between memory errors and I/O issues in order to
identify the root cause of seriously high number of memory
errors for this simulation, compared with all other simulations.

V. CONCLUSIONS

This paper rigorously studied the hardware error patterns
combined with job scheduler logs from one of the fastest
supercomputers in the world. We used error logs that were
collected over 3 years and job scheduler logs that were col-
lected over 6 months. We discovered three distinctive temporal
locality patterns of errors according to the error types. We
found a nested power-law distribution on the number of errors
according to the nodes, jobs, and users, which implies that
errors are highly concentrated in a small number of nodes,
jobs, and users. We revealed that such a power-law distribution
stems from user behavior, rather than the impacts from user-
independent job characteristics (e.g., allocated node size, and
the execution time) or specific hardware component defects.
The low impact from hardware component defects may be
credited to agile system operation practices such as a rapid
identification and replacement of defective hardware compo-
nents. Since CPU-GPU heterogeneous systems are gaining
popularity for both the newer generation of applications (e.g.,
machine learning) and traditional scientific applications in
HPC environments (e.g., scientific simulations), this study
provides valuable statistical information to help design de-
pendable large scale systems
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