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Abstract

Over the past decade, Health Information Technology (Health IT) has enabled an explosion in the amount of digital information
stored in electronic health records (EHRs). According to recent studies, safety-related issues in healthcare can present themselves
as anomalies in EHR data. Motivating examples of anomalous events in EHRs include clinical events related to invalid order
cancellations or rejections, which may be initiated by clinical staff or automatic software routines in Health IT systems. Such
events may be detected using anomaly detection or change point detection methods. In this paper, we explore the use of a forecasting
approach to detect anomalies in EHR data using an online Support Vector Regression technique. Specifically, the proposed approach
uses temporal frequency of activities in EHRs, coupled with dynamic robust confidence intervals, to characterize events as normal
or anomalous. Once an event is characterized as an anomaly, our approach suppresses its effects in subsequent time intervals. The
proposed approach shows encouraging results using real-world EHR data from the Veterans Affairs’ corporate data warehouse.
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1. Introduction
Health Information Technology (Health IT) is the hardware and software used in large-scale healthcare systems to
support healthcare services [1]. In addition to facilitating efforts to decrease healthcare overhead and increase the
quality of healthcare services, Health IT systems have enabled massive amounts of digital information to be stored
in electronic health records (EHRs). Traditionally, EHR data has been used for archiving patient information and
performing administrative tasks. Recently, EHRs are being used for more complex tasks such as aiding in clinical
research advances and informing improved clinical decision making. In light of recent studies (e.g., [2–4]) revealing
new safety issues related to Health IT use, there is an opportunity to explore an additional use of EHR data – detection
of safety-related issues (anomalies) in healthcare.

Some of the existing methods for anomaly detection using EHR data rely on retrospective approaches. For example,
in [5], EHR data was used to evaluate six offline statistical anomaly detection models in their ability to detect malfunc-
tions in clinical decision support systems. These retrospective approaches serve as an initial step in identifying what
went wrong and why. Recently, in [6], an online process monitoring approach uses a statistical process control (SPC)
method to detect high numbers of invalid cancellations of radiology orders using EHR data. In this paper, we propose
an improvement to the online process monitoring approach through a real-time detection of anomalies in Health IT
systems. Specifically, we present a real-time forecasting approach to detect hazardous events in streaming EHR data.
This approach uses temporal frequency of activities in EHRs such as order submission, order cancellation, and order
rejection, among others. In particular, we use a regression technique to forecast the next value based on historical
patterns in the data. To allow for variation in the predictions, we compute robust confidence intervals around the pre-
dicted values using a data-driven, dynamic procedure. This computed confidence interval is then used to evaluate the
next activity frequency in real-time, determining whether it is normal or abnormal. If an activity frequency is charac-
terized as abnormal, the approach suppresses its effects in subsequent time intervals. Therefore, our contributions in
this paper are the: (i) application of a forecasting approach for estimating future frequency of activities in EHRs using



Pellett et al.

an online Support Vector Regression (SVR) technique; (ii) development of an approach which allows for real-time
anomaly detection in EHRs, rather than relying on retrospective analysis; and (iii) development of a dynamic robust
confidence interval technique suitable for online SVR.

The remainder of the paper is structured as follows: Section 2 presents the foundational techniques used in our pro-
posed approach. Section 3 discusses the detailed proposed approach. Section 4 presents and discusses some numerical
results. Finally, Section 5 presents the conclusions from our study.

2. Methods
In this section, we discuss the base components of our proposed approach.

2.1 Accurate-Online Support Vector Regression
The proposed approach uses the accurate-online support vector regression (AOSVR) algorithm [7]. Unlike conven-
tional batch implementations of support vector regression, AOSVR allows for real-time forecasting without having to
retrain the model from scratch every time the training set is modified. With AOSVR, when a new point is added to
the existing dataset, the trained SVR model is efficiently updated rather than retrained. Highlights of the theoretical
framework for SVR are provided below. For more detailed theory for SVR and AOSVR algorithms see [7].

From the training set T = {(xi,yi), i = 1 . . .m} , where xi ∈ Rn and yi ∈ R, establish a linear regression function by

f (x) = wT
φ(x)+b (1)

on a feature space F . In Equation (1), w is a vector in F called the weight vector, b is the bias term, and φ(x) maps x
to a vector in the higher dimensional feature space F . The weight vector w and the bias b are obtained by solving the
following primal optimization problem
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where C is a positive regularization constant that penalizes y-values that differ from f (xi) by more than ε. The slack
variables ξ

+
i and ξ

−
i represent the excess deviation size for upper and lower deviations, respectively. Data points with

| f (xi)− yi| ≤ ε are defined to have no contribution to the regression model (their coefficients equal 0). Alternatively,
data points with | f (xi)−yi|> ε (called support vectors) have nonzero coefficients and thus contribute to the regression
function.

The dual formulation of the primal optimization problem is crucial for extending SVR to nonlinear functions. Once
the related Lagrangian function is obtained and the Karush-Kuhn-Tucker conditions are applied, we arrive at the
dual formulation. See [7] and references therein for more detailed information about the dual formulation. Finally,
resolving the dual problem gives following regression function

f (x) =
m

∑
i=1

(α+
i −α

−
i )K(xi,x)+b. (3)

Here, α
+
i and α

−
i are Lagrange multipliers and K(xi,x) is known as the kernel function. The kernel function allows

non-linear function approximations to be made with SVR, but maintains the computational efficiency present when
making linear approximations [7]. Our current analysis utilizes the radial basis kernel.

2.2 Simulated Annealing
To compute the SVR parameters (C and ε), we integrate simulated annealing (SA) into the AOSVR algorithm. SA
was first introduced in 1983 by Kirkpatrick et al. [8] as a probabilistic technique for approximating global optima
in discrete combinatorial optimization problems. Since its introduction, SA has become a widely used tool for both
discrete and continuous problems in several application areas including medicine, engineering, and business [9].

Generally, local search techniques begin with a current solution which is slowly improved as neighbor solutions
obtained from small perturbations to the initial solution are considered. If a neighbor solution has a lower cost, it
replaces the current solution. This process continues until no improved solutions are found. The problem with these
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techniques is that the search often stops prematurely at a local, rather than global optimum [9]. SA attempts to
overcome this by allowing, with a certain probability, acceptance of some non-improved higher cost solutions. Given
a current solution Sc and current temperature Tc, the acceptance probability of a neighbor solution Si is

PTc =

{
1, if Ei < Ec

exp(−∆E/Tc), otherwise
(4)

where Ec and Ei are costs of Sc and Si respectively and ∆E = Ei−Ec. That is, if a neighbor solution has a lower cost
than the current solution, it is always accepted. Otherwise, it is accepted with probability exp(−∆E/Tc). For the latter
case, a random number rd ∈ (0,1) is generated. If rd < exp(−∆E/Tc) , the neighbor solution is accepted. Observe
that limTc→0 exp(−∆E/Tc) = 0 and thus the probability of accepting a higher cost solution decreases as Tc decreases.
In the context of AOSVR, SA seeks values of C and ε which minimize the mean squared error over the training set.
The steps of the SA algorithm are summarized below.

Algorithm 1: Simulated Annealing
Result: Sc
Initialization: Tf ,Tc,r,N,Sc ;
while Tc ≥ Tf do

for i = 1 to N do
∆E = Ei−Ec
if ∆E < 0 then

Sc← Si, Ec← Ei;
else if rd < exp(−∆E/Tc) then

Sc← Si, Ec← Ei;
end

end
Tc = r ∗Tc

end

3. Prediction and Detection Workflow for the Proposed Approach
The workflow for our approach is summarized in Figure 1. The proposed approach modifies the AOSVR algorithm by
incorporating the computation of robust confidence intervals (RCIs) using a data-driven approach. The RCI method-
ology is based on [10]; however, in this paper we implement two RCI versions – static RCI and dynamic RCI.

The base approach uses the static RCI procedure and consists of all the steps shown in Figure 1, except the step shown
with gray background. The approach begins with data normalization followed by model training. Once the trained
SVR model is obtained, it is used to compute the training and validation error set described in Section 3.1. Next, the
trained model forecasts a prediction from test set data. The model prediction and previously obtained error set are then
used to compute the corresponding confidence interval. If the observed value falls outside of the confidence interval, it
is classified as an anomaly and we implement a replacement strategy in order to suppress its effects in subsequent time
intervals. That is, prior to updating the model to reflect the new test point, we replace the anomalous value with the
average of the previous ` values, where ` is the embedding length of the time series. If, on the other hand, the observed
value falls within the confidence interval, it is not classified as an anomaly, the replacement step is skipped, and the
observed value is used in updating the model. The updated model is then used to predict the next point, from which the
process continually repeats until the end of the test set. The compared approach uses the dynamic RCI procedure and
follows the same workflow, but with an additional step (the gray box in Figure 1). The following subsections describe
the detailed procedures for computing static and dynamic RCIs.

3.1 Static RCI
The procedure for computing static RCIs (same technique as in [10]) is as follows. After obtaining the trained forecast-
ing model, errors are computed on both the training and validation sets. Suppose the combined training and validation
set S (maintaining order) consists of values x1, . . . ,xn such that S = {x1, . . . ,xn}. Starting with x1, the first ` values
are fed into the trained model to predict x̂(`+1). Taking the difference between the predicted value and the known
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Figure 1: The prediction and detection workflow for the proposed approach

observed value, we obtain the first error e1 = x̂(`+1)− x(`+1). This procedure is repeated such that ei = x̂(`+i)− x(`+i),
until the end of the set S is reached. After the set of errors E = {e1, . . . ,en−`} is obtained, the errors are sorted in
ascending order by value. The set of errors, minus a number of sample errors from each extreme is used to com-
pute the RCI. For small datasets, the number of sample errors to be removed from each extreme of the error set E is
((n− `)× p− 1) where n− ` is the cardinality of E and 2p is the corresponding significance level of the confidence
interval. If ((n−`)× p−1) is not a whole number, it is truncated. We denote this new error set by ECI . The confidence
interval for each new predicted value, t̂ j, of the test set, is then formed as {t̂ j +min(ECI), t̂ j +max(ECI)}.

3.2 Dynamic RCI
As described in Section 3.1, the static RCI computes, from the training and validation sets, a single error set used to
estimate the confidence interval. Thus, the width of the confidence interval around a given predicted point is constant
with time as new predictions do not change the original error set. This technique is appropriate for conventional
regression approaches. However, since with AOSVR, the regression function may be updated when new data points are
added, we propose a modified version of the static RCI called dynamic RCI. The dynamic RCI allows for modifications
to the training and, consequently, the error set. Thus, the width of the computed confidence interval can change with
time. The dynamic RCI method is as follows. First, the original error sets E and ECI are computed from the training and
validation sets in the same manner as was described for the static RCI. The confidence interval around the first predicted
value t̂1 is {t̂1 +min(ECI), t̂1 +max(ECI)}. The difference between the predicted value t̂1 and observed value t1, call
it et1 , is then added to the error set E. Next, ECI is recomputed using the usual procedure and denoted as ECI2 . The
trained model is then used to predict t̂2 and the corresponding confidence interval is {t̂2 +min(ECI2), t̂2 +max(ECI2)}.
This process is continued such that for j > 1, the corresponding confidence interval around t̂ j is {t̂ j +min(ECI j), t̂ j +
max(ECI j)}.

4. Results
Our proposed approach was tested using data acquired from the Veterans Affairs’ corporate data warehouse for 130
stations. In this section, we compare results obtained using static versus dynamic RCIs in establishing the threshold
for anomaly detection. In this context, an anomaly is defined as any observed data point whose value is above the
upper confidence interval for the corresponding forecast value. We also compare results obtained by our approach to
those obtained by the traditional SPC method.

4.1 Dynamic vs. Static Robust Confidence Interval
Figure 2 depicts a time series corresponding to a stream of EHR data (specifically, number of cancelled consult orders)
and provides an illustration of the differences in behavior observed when using the dynamic RCI method (Figure 2a) as
opposed to the static RCI method (Figure 2b). Illustrated is the proof of concept that the dynamic RCI method allows
the width of the confidence interval to change with time, while the static RCI width remains constant. Additionally,
we observe for this specific subset of EHR data with C = 100 and ε = 0.1, that the first point classified as an anomaly
(around day 60) with the dynamic RCI method is not classified as an anomaly using the static method. This additional
classified anomaly occurs four time steps prior to the cluster of anomalous behavior from days 64 through 90 and thus
could serve as a warning for Health IT safety managers. In general, it appears that the dynamic RCI method is more
conservative in that it classifies more lower values as anomalies than the static RCI method. Thus, the dynamic RCI
method is used in the remaining analysis.
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(a) Prediction and detection approach: dynamic RCI (b) Prediction and detection approach: static RCI

Figure 2: Dynamic vs. static RCI method

4.2 Dynamic RCI vs. Statistical Process Control
Figure 3 compares results obtained using our proposed approach to those obtained using SPC. For station A the
proposed approach classifies cancellation numbers above approximately 15 as anomalous (Figure 3a), whereas SPC
classifies cancellation numbers above approximately 95 as anomalous (Figure 3b). For station B the proposed approach
classifies numbers of cancellations greater than approximately 30 as anomalous (Figure 3c), while SPC classifies
numbers of cancellations greater than approximately 175 as anomalous (Figure 3d). Analyzing between approaches,
we find that our proposed approach has a lower threshold for detection than SPC. Without ground-truth data, we
hypothesize that 15 invalid cancellations is a high number that must be detected and reported; hence, the proposed
approach seems to be an improvement over SPC. Future studies will further analyze the performance of these methods.
Analyzing the between-stations results, we find that the results appear to be station dependent. That is, the lower bound
for what is considered anomalous varies by station.

5. Conclusions
In this paper, we proposed a novel approach for utilizing EHR data to detect safety issues in Health IT systems that is
suitable for both batch and streaming EHR data implementations. Further, we find that the proposed AOSVR approach
coupled with dynamic robust confidence intervals gives encouraging results for real-time detection of anomalies in
EHR data; thus showing improvement over conventional methods such as SPC. Future studies include training the
AOSVR model with a set of data characteristic of normal operations in representative stations to potentially eliminate
the cause of station-dependent results.
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