
Evolutionary Optimization for Neuromorphic Systems
Catherine D. Schuman, J. Parker Mitchell,

Robert M. Patton, Thomas E. Potok
schumancd@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee

James S. Plank
jplank@utk.edu

Department of Electrical Engineering and Computer
Science, University of Tennessee

Knoxville, Tennessee

ABSTRACT
Designing and training an appropriate spiking neural network for
neuromorphic deployment remains an open challenge in neuromor-
phic computing. In 2016, we introduced an approach for utilizing
evolutionary optimization to address this challenge called Evolu-
tionary Optimization for Neuromorphic Systems (EONS). In this
work, we present an improvement to this approach that enables
rapid prototyping of new applications of spiking neural networks
in neuromorphic systems. We discuss the overall EONS frame-
work and its improvements over the previous implementation. We
present several case studies of how EONS can be used, including to
train spiking neural networks for classification and control tasks, to
train under hardware constraints, to evolve a reservoir for a liquid
state machine, and to evolve smaller networks using multi-objective
optimization.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Genetic al-
gorithms; • Hardware→ Neural systems.

KEYWORDS
spiking neural networks, neuromorphic computing, genetic algo-
rithms

ACM Reference Format:
Catherine D. Schuman, J. ParkerMitchell, RobertM. Patton, Thomas E. Potok
and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic
Systems. In Neuro-inspired Computational Elements Workshop (NICE ’20),
March 17–20, 2020, Heidelberg, Germany. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3381755.3381758

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
NICE ’20, March 17–20, 2020, Heidelberg, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7718-8/20/03. . . $15.00
https://doi.org/10.1145/3381755.3381758

1 INTRODUCTION
In order to evaluate a neuromorphic hardware implementation,
neuromorphic computing researchers must first be able to define a
spiking neural network (SNN) for their hardware. Ideally, this SNN
not only runs on the hardware successfully but also performs some
task, such as data classification or a control task. It remains an open
question for SNNs as to how to appropriately train those networks,
both in general and specifically for neuromorphic deployment.

Though there have been significant advances in traditional neu-
ral network training in recent years, there are a variety of charac-
teristics associated with training spiking recurrent neural networks
that make them difficult to train using these approaches, includ-
ing the requirements for input and output data to be in the form
of spikes, as well as the internal spike-based activation function.
Moreover, neuromorphic computing systems can present additional
difficulties for training, as they may include the presence of noise
in the operation of the network, physical connectivity restrictions,
and limited synaptic weight resolution.

Several potential training approaches have been presented to
accommodate for one or more of these issues. Those approaches
include traditional gradient descent or back-propagation-like ap-
proaches that have been adapted to deal with spike-based activa-
tions, spiking input and output and/or hardware limitations; liquid
state machine approaches, which may rely on a non-spiking read-
out layer; and and neuroscience-inspired plasticity mechanisms
such as spike-timing dependent plasticity. Though these approaches
have compelling applications spaces, they also each have their own
limitations that can make them difficult to use in practice.

We have previously presented an evolutionary optimization-
based approach for training SNNs for neuromorphic deployment,
called EONS [31]. In this work, we present an overview of the dif-
ferent features of EONS, as well present the updated version of
EONS, which allows for more rapid application development. We
discuss how the new approach is implemented, but our primary
focus is on how it is utilized from a neuromorphic researcher per-
spective. There are several key reasons that motivate using EONS
as an approach for training SNNs for neuromorphic deployment:

• EONS can be applied tomultiple types of tasks (e.g., classifica-
tion, control, etc.) without altering the underlying algorithm.

• EONS can train networks for different hardware implemen-
tations. In this work, we focus on one hardware implementa-
tion, but EONS has previously been used to train networks
directly for memristive [5], digital [9, 23], optoelectronic [3],
and biomimetic [16] implementations.

• EONS can operate within the constraints and characteristics
of a hardware implementation and can be used as part of the
co-design process in understanding design trade-offs.

https://doi.org/10.1145/3381755.3381758
https://doi.org/10.1145/3381755.3381758

NICE ’20, March 17–20, 2020, Heidelberg, Germany Schuman, et al.

• EONS can determine the structure of the required SNN
and/or the required parameters.

• EONS can be used in combination with other training ap-
proaches, such as back-propagation or reservoir computing
[27]. In Section 4.4, we illustrate how we can use EONS to
train the spiking reservoir in a liquid state machine.

• EONS can be parallelized in order to get to better solutions
faster. We have previously presented a scalable version of
EONS [30], scaling up to nearly 300,000 cores on the Oak
Ridge National Laboratory Titan supercomputer [32].

Here, we present results using EONS for a variety of practical
use cases, including training for both classification and control
problems, training within hardware constraints, training a reser-
voir for a liquid state machine, and multi-objective optimization to
minimize network size.

2 BACKGROUND AND RELATEDWORK
Given the success of conventional neural networks in recent years,
it is unsurprising that a common approach for training SNNs has
been to use some variation on back-propagation or gradient de-
scent. Some of these approaches focus on training an SNN in general
[1, 20, 26, 33, 34], while others focus on training an SNN for neuro-
morphic deployment by taking into account restrictions present in
neuromorphic systems, such as reduced weight precision [7, 12].
Others still, focus on back-propagation tailored to specific neu-
ral network approaches and specific application domains such as
sparse coding for adversarial image attacks [18].

All of these training approaches provide a compelling way to to
train SNNs, and for several of the approaches, there are open-source
software packages available and/or they utilize common machine
learning frameworks (PyTorch, TensorFlow, Keras). However, there
are also several issues associated with these approaches. Some of the
approaches do not utilize all potential computational capabilities
of an SNN or a neuromorphic system, e.g., by not taking advantage
of axonal or synaptic delay. Some of the approaches do not take
into account the corresponding hardware restrictions during the
training process, which can require significant effort in order to
embed the resulting SNN onto a new neuromorphic system and
which may result in a loss in performance. Finally, as is the case in
general for gradient descent-based neural network training, these
approaches can be difficult to extend to non-classification tasks.
For example, to use these approaches for control tasks, it may be
required to include a reinforcement learning approach, which can
add greatly to the training time and may not be successful (may
want to quote that paper from Purdue from John’s dissertation).

Reservoir computing, or for SNNs, liquid state machines (LSMs)
[28], provide another approach for defining a network to be de-
ployed onto neuromorphic hardware. In the case of reservoir com-
puting, the SNN (which becomes the reservoir or the “liquid") is
random – that is, the connectivity and parameters such as weights
and delays are randomly defined for the reservoir. It has been shown
that there are metrics that a reservoir must have in order to be suc-
cessful (such as input separability and fading memory [11, 19, 25]).
However, it is not clear how to build a reservoir from these prop-
erties. In practice, often random reservoirs are tried until one is
successful. Thus, even though there is no explicit training of the

reservoir, there is often significant computational power required
to determine the appropriate reservoir.

Plasticity mechanisms such as spike-timing dependent plasticity
(STDP) have been proposed as mechanisms for training SNNs for
neuromorphic deployment as well. Though there has been some
limited success in using variations of STDP [13, 36], there is still no
clear evidence that they are broadly applicable and even if they are
applicable to the task, they may require significant hand-tuning,
e.g., to find appropriate the network structure to use.

In this work, we apply an evolutionary algorithm approach for
training SNNs. Using evolutionary algorithms for training neural
networks in general is sometimes called neuroevolution [14] and
has been utilized as an approach for training neural networks since
the late 1980’s. Yao notes several major reasons for using GAs or
evolutionary approaches to train neural networks rather than using
gradient-descent based approaches, including that they are not re-
liant on gradient information (which may be unavailable or difficult
to calculate), they can be applied to any neural network architec-
ture, and they are less sensitive to initial conditions [37]. Though
neuroevolution approaches can be applied simply for weight train-
ing [15], we are more interested in methods that utilize GAs to
train both network topology (number of neurons, number of layers,
connectivity patterns, etc.) and network parameters, such as the
NEAT method [35]. Neuroevolution approaches have been applied
to many different types of neural networks, including recurrent
neural networks [35], deep neural networks [21, 38], and SNNs
[17, 31]. In this work, we are concerned primarily with training
SNNs specifically for neuromorphic implementation, which come
with additional challenges due to hardware constraints. GAs have
also been investigated to help overcome the challenges associated
with designing SNNs for neuromorphic systems [4, 31].

3 EONS
We have previously introduced the Evolutionary Optimization for
Neuromorphic Systems (EONS) approach in [31]. However, both
the algorithmic approach and the corresponding software imple-
mentation have undergone significant shifts and expansions since
that time. In the following subsections, we detail the key features
of the latest EONS implementation and how they can be used for
neuromorphic implementation. The overall workflow of EONS is
shown in Figure 1. The first step for EONS is to generate a popula-
tion of potential solutions. This initial population can be randomly
generated, or it can be seeded with pre-existing network solutions
from which to start the evolution. Once a population of networks is
defined, there are three key steps: evaluation, selection, and repro-
duction. We detail each of those steps in the following subsections.

Though EONS was created with neuromorphic systems in mind,
it is also simply operating on a network structure and can be used
for any task that requires network optimization. We restrict our
attention to use on neuromorphic systems here. EONS optimizes a
flexible network structure that is made up of nodes and edges. This
network type can have input nodes, output nodes, and hidden nodes.
The only way that EONS distinguishes input/output nodes from
hidden nodes is that EONS leaves the input and output nodes fixed,
while hidden nodesmay be added or deleted. This network structure
allows for networks, nodes, and edges each to have any number

Evolutionary Optimization for Neuromorphic Systems NICE ’20, March 17–20, 2020, Heidelberg, Germany

Generate
Population of

Networks

Evaluate Networks in
Population to Produce

Fitness Scores

Select
Networks as

Parents

Perform
Reproduction on

Parents to Produce
Child Population

0

1
2

B

A

0

1
2

D

A

E

C

0

1
2A

0

1
2A

0

1
2

B

A

0

1
2

D

A

E

C

0.21

0.15

0.07

0

1
2

B

A

0

1
2

D

A

E

C

0

1
2

B

ADuplication

0

1
2A

E

B

Crossover

0

1
2A

E

C

Mutation

Figure 1: EONS Overview.

evolve = eons.EONS(eons_params)

EONS creates a template network based on the
neuromorphic processor , and the number of
inputs and outputs required for the task
evolve.make_template_network(processor , nin , nout)

pop = evolve.generate_population(eons_params)
for i in range(num_epochs):

fitness () is a task -specific function
fits = [fitness(processor , net) for net in pop]
pop = evolve.do_epoch(pop , fits , eons_params)

Figure 2: Example of EONS code in Python

of parameters. For example, a node may have a leak parameter, a
threshold parameter and/or an axonal delay, while an edge may
have a weight parameter or a delay parameter. EONS is written in
C++, but there are Python bindings for EONS for ease of use. An
example of how EONS is used in Python is given in Figure 2.

3.1 Evaluation
In the evaluation step of the EONS process, each network in the
population is assigned a fitness score. It is up to the user to define
how that score is determined, and it can be as simple or complex
as the user requires. The only requirement for EONS is that higher
scores correspond to better performing networks. Typically, for neu-
romorphic systems, the network that is being evaluated is loaded
onto neuromorphic hardware or into a neuromorphic simulator
and evaluated on a given task (by converting inputs into spikes and
interpreting spiking output as decisions).

For classification tasks, the fitness score is typically calculated as
the accuracy on the data, but the user may adapt this score to the
dataset as needed, for example, by weighting certain classes as more
important. Unlike back-propagation-style algorithms, there is no

requirement that anything associated with the task be differentiable,
so the score can be adjusted depending on the goal. For control tasks,
the fitness evaluation is also related to how well the task is being
performed. For example, if the neuromorphic system is learning
to play a game, then the fitness score could simply be the score
on the game. However, depending on the types of behaviors one
would like to see, the fitness score may be adjusted. For example,
in playing an Atari game, one may be interested in maximizing the
score and minimizing the number of times a button is “pushed."
This can be accomplished through a weighted fitness score that
considers both the score and the number of buttons pushed.

Finally, the score can be made more complex by adding or multi-
plying factors that take in account different characteristics of the
network being evaluated. For example, one may subtract a factor
related to a network’s size in order to evolve smaller networks, as
we demonstrate in Section 4.5, or one can add factors that take into
account energy or power usage or resiliency of the network.

3.2 Selection
EONS provides a variety of common selection algorithms from the
genetic algorithm literature, including tournament, Roulette wheel
or fitness proportionate, and truncation selection [29]. The default
selection approach is tournament selection. Tournament selection
has two parameters: tournament size and p, the probability that the
best member of the tournament is selected. EONS also allows users
to implement custom selection approaches (either natively in C++
or in Python) so that more advanced selection functionalities can
be implemented as needed for their tasks.

3.3 Representation and Reproduction
In the original EONS implementation described in [31], the repre-
sentation and reproduction of instances in the EONS population

NICE ’20, March 17–20, 2020, Heidelberg, Germany Schuman, et al.

were specific to the neuromorphic hardware implementation. In
other words, for each new neuromorphic hardware implementa-
tion, a custom network representation and custom reproduction
operators (e.g., crossover and mutation) had to be created, which
made it difficult to extend EONS to new hardware implementa-
tions, as operations such as crossover are non-trivial to define and
implement on a network-like structure.

In the new EONS implementation, a generic network represen-
tation is used. This network implementation is made up of nodes
and edges, and each node and edge, as well as the network it-
self, can have any number of parameters associated with it. All of
these parameters can be evolved using EONS. When using EONS to
evolve an SNN for neuromorphic deployment, the hardware speci-
fies the parameters that should be optimized. For example, a neuron
may have an associated threshold, leakage parameter(s), etc., and a
synapse may have an associated weight, learning parameters, etc..
The hardware will have some bounds on what values are attainable
for these parameters, and those bounds are specified to EONS as
“properties" of the network. Then, the user converts the correspond-
ing EONS network to and from the network specification required
by the hardware for evaluation on the hardware system.

Unlike the previous implementation, reproduction operators for
EONS are no longer hardware implementation-specific. Instead,
these reproduction operators operate directly on the generic net-
work implementation, but utilize the hardware-specific properties
to tailor the network design to the hardware implementation. There
are two major types of reproduction operations: those that take
two or more parent networks to produce one or more child net-
works and those that operate solely on a single parent network to
produce a child network. The first type includes operations such as
crossover (or recombination) and merging, and the second type in-
cludes duplication and different forms of mutation. When building
the next generation, we also include some percentage of random
networks to inject diversity into the population (governed by the
random_factor parameter). To guarantee that we also keep the
best performing networks, we specify a parameter num_best, which
is the number of best networks from the previous population to
directly duplicate into the next generation.

Multi-parent reproduction operations that are currently imple-
mented in EONS include crossover and merging. The previous
implementation of crossover relied on spatial coordinates in the
network in order to function. In the current version of crossover,
no spatial coordinates are required, though each node within a net-
work is required to have a unique ID. In crossover, two parents are
selected and two children are generated. In particular, the nodes and
edges of each parent are distributed into each child such that each
node/edge in each parent has a corresponding node/edge in exactly
one of the children. For merging, two parents are selected and one
child is generated such that all of the nodes and edges in each parent
appear in the single child network (essentially performing a union
operation on the two networks). The user sets the probability of
crossover or merge occurring in the production of children, setting
the crossover_rate and merge_rate, respectively.

The other type of reproduction operations are those that produce
one child from one parent. These operations currently include
duplication andmutation. EONS allows for parameterized structural
and parameter mutations. In particular, the user can specify the

Table 1: EONS Hyperparameters

Hyperparameter Value
crossover_rate 0.5
merge_rate 0
mutation_rate 0.9
num_mutations 7
add_node_rate 0.09
delete_node_rate 0.07
add_edge_rate 0.16
delete_edge_rate 0.14
node_param_rate 0.27
edge_param_rate 0.27
selection_type tournament
random_factor 0.1
num_best 3
population_size 500
num_generations 100

frequency of each type of mutation (e.g., adding a node, deleting
a node and all of its associated edges, adding an edge, deleting an
edge, and randomizing network, node, and edge parameters), as
well as turn off mutations that should not occur.

4 RESULTS
We present several case studies to illustrate the diversity of ways
in which EONS can be used to produce SNNs for neuromorphic de-
ployment,. All of these approaches train networks for the Caspian
neuromorphic computing system [22]. The input/output encoding
for data to/from spikes is provided by the TENNLab neuromor-
phic software framework [24]. We note, though, that EONS is not
bound to Caspian or the TENNLab framework; it is an independent
optimization module that works on graphs that are converted to
Caspian networks, and executed via TENNLab framework. Unless
otherwise noted, each of the tests below uses the EONS default
hyperparameters, given in Table 1.

4.1 Evolving Networks for Classification
We begin with simple data classification tasks and show the perfor-
mance of EONS with default parameters. We use three classification
datasets from scikit-learn’s toy datasets collection: iris, wine, and
breast cancer. For each of these datasets, we use a 2/3 training, 1/3
testing split on the dataset, and the train/test split is consistent
across all techniques evaluated. We compare the resulting EONS
network results with results for a reservoir computing approach
(using a randomly generated reservoir and a linear regression imple-
mentation from scikit-learn for the readout layer), the scikit-learn
MLP implementation with a single hidden layer of 100 neurons, and
Whetstone [33], in which we use the default parameters (except
for a batch size of 8), a hidden layer of 100 neurons, and 10 times
the number of outputs for 10-hot encoding. For Whetstone, we
also normalize the input data. For the EONS evaluation, the fitness
function is simply the accuracy on the training set. That is, in order
to evaluate the fitness function, for each network in the population,

Evolutionary Optimization for Neuromorphic Systems NICE ’20, March 17–20, 2020, Heidelberg, Germany

Figure 3: Comparison of Classification Results

each of the training examples are run through the SNN, the output
is recorded, and the output is compared to the correct label.

Figure 3 gives the results for the performance of EONS on the
testing set as compared with the other approaches. For each of
the four approaches, 100 different runs were completed, showing
variation in performance of each of the different algorithms for
each of the datasets. It is worth noting that the MLP, reservoir, and
Whetstone approaches all use fixed size networks, while EONS also
optimizes the network size for each of the different networks.

EONS produces comparable results with each of the other ap-
proaches. It has more consistent performance than the random
reservoir approach and the MLP approach, and is outperformed
only by Whetstone. However, it is worth noting that the Whetstone
results do not take into account mapping onto a specific neuro-
morphic platform and may have some performance degradation as
part of that mapping process (which will need to accommodate for
spiking input and perhaps for limited weight resolution).

To illustrate that EONS does not evolve “traditional" network
structures, we show the best networks evolved for EONS for the
wine dataset in Figure 4 and for the breast cancer dataset in Figure
5. We do not eliminate any input or output neurons in these fig-
ures, even though they may not be used. As can be seen in these
figures, the network structures do not conform to traditional ANN
structures and are relatively simple. The best wine network has
only two hidden neurons and the best breast cancer network has
only one hidden neuron. Both networks leverage input-to-input
and output-to-input connections and include at least one cycle.

4.2 Evolving Networks for Control
To illustrate the versatility of EONS on different types of tasks,
we also demonstrate the results on two control tasks from the
OpenAI gym [2]: CartPole-v1 and LunarLander-v2. We leave the
EONS default parameter values the same as in the classification
task, but we decrease the population size from 500 to 200 and
increase the number of epochs from 100 to 200. Otherwise, the only
other change is to the fitness function. That is, rather converting
data examples into spikes and using the neuromorphic network

0

4

8

1

6

15

101

2

3

14

45

5 13

7

9

10

11
12

Figure 4: Best network for wine dataset. Neurons are pink
(input), blue (output) and hidden (green). Labels correspond
to the internal EONS representation of the network.

0

12

1

11

2

3

21

4

5

6

27

7

117

8
17

9

10

13

24

14

15

16

18

22

26

19

30

20

28

23

31

25

29

Figure 5: Best network for breast cancer dataset. Neurons are
pink (input), blue (output) and hidden (green). Labels corre-
spond to the internal EONS representation of the network.

under evaluation to produce a classification decision, we instead
convert the observation from the OpenAI gym to spikes and use the
neuromorphic network to come up with an action. We then update
the OpenAI gym environment based on that action to get a new
observation. The fitness score for these tasks is simply the score
obtained from the OpenAI gym. For the fitness value in training, we
use 10 random episodes. For the testing value, we use 100 episodes
(seeding OpenAI gym with 0).

Figure 6 gives the results for this task. Unlike the classification
task, there is significant variation in the performance of EONS for
the LunarLander task. However, it is clear that EONS is able to
discover a solution in some cases; thus, it is likely that EONS simply
needs more generations or a larger population in order to converge
consistently for these harder tasks.

NICE ’20, March 17–20, 2020, Heidelberg, Germany Schuman, et al.

Figure 6: Results for control problems from OpenAI Gym.

3 7 15 3 7 15 3 7 15
Maximum Delay Value

3
7

15
31
64

127

M
ax

im
um

 W
ei

gh
t V

al
ue Iris Wine Breast Cancer

Mean Testing Value Heatmap

0.900 0.9250.905 0.910 0.915 0.920

Figure 7: Mean testing results for different hardware con-
straints (limited weight and delay values) for three datasets.

4.3 Evolving Under Hardware Constraints
In this work, we are demonstrating different use cases of EONS for a
single neuromorphic hardware platform, Caspian. However, EONS
can be utilized on different neuromorphic systems with different
constraints, and it will attempt to optimize within the constraints
of that system. A common hardware constraint on neuromorphic
systems is limited weight resolution or limited delay values on the
synapses or neurons. The default implementation of Caspian has
an 8-bit weight resolution and represents integer values between
-127 and 127, inclusive, and a maximum synaptic delay of 15. To
illustrate that EONS is capable of optimizing within different hard-
ware constraints, we evaluate different constraint combinations:
restricting the weight resolution to 3 bits, 4 bits, 5 bits, 6 bits, and 7
bits, and restricting the maximum delay values to 3 and 7.

For this case study, the only change that was made with respect
to tests in Section 4.1 is that the default parameter values of Caspian
were changed. Nothing about the EONS approach was updated to
accommodate for differences in the hardware, including the fitness
function. Because the hardware parameters have changed, EONS
automatically accommodates for those changes in the networks
that are randomly generated and the mutations that are allowed.

Figure 7 shows the results for the mean testing value across
100 EONS runs for different hardware constraints. As can be seen
in this figure, there is relatively little difference in terms of mean
performance across all of the different hardware constraints, and in

Figure 8: Testing results for evolving a reservoir using EONS
as compared with randomly generated reservoirs.

fact, constraining the space can sometimes help the performance
of EONS. These results demonstrate that EONS is capable of opti-
mizing within the hardware constraints provided, but it also shows
that EONS can be used as part of a hardware co-design process. In
particular, because settings like maximum weight value and max-
imum delay value can have a substantial effect on the efficiency
of the hardware implementation, using the minimum acceptable
settings for those values could potentially result in significantly
more efficient hardware. By performing studies using EONS, differ-
ent hardware features can be evaluated for inclusion. A previous
version of EONS has been used for a similar co-design study in [3]
for an optoelectronic neuromorphic system.

4.4 Evolving a Reservoir
We have previously demonstrated that EONS can be used to intelli-
gently generate reservoirs for liquid state machines [27]. For this
work, we demonstrate that, using the same number of network eval-
uations, a better reservoir can be found using EONS than through
random network generation. We use the same toy datasets from
Section 4.1. To allow for evolving a reservoir (rather than an entire
network solution), the fitness function of EONS was adapted to
include the training of the readout layer (a linear regression imple-
mentation from scikit-learn). Unlike the other examples, we use a
population size of 100 and evolve for 20 generations. To compare
with reservoir performance, rather than using a fixed size reser-
voir as in Section 4.1, we sweep over different numbers of hidden
neurons (10 to 200 in increments of 10) and synapses (50 to 500 in
increments of 50), and we randomly generate 1000 networks for
each of those sizes. This is equivalent to doing a grid search and
allowing for the same number of evaluations as our EONS searches.
A similar approach was taken by Reynolds [27].

Figure 8 gives the results for the random reservoir generation
as compared with using EONS to evolve an appropriate reservoir.
As can be see in this figure, there is much more variation in using
random reservoir generation than there is for the EONS generated
approach. In particular, though the starting best reservoir for EONS
may have low accuracy, it can refine the reservoir to produce a
well-performing solution. It is also worth noting that, on average,
the best performing reservoir sizes for the randomly generated
reservoirs were 10 hidden neurons and 150 synapses for iris, 20
hidden neurons and 150 synapses for wine, and 50 hidden neurons
and 250 synapses for breast cancer. In contrast, the best performing
EONS-evolved “reservoirs" had an average of 14.96 synapses for iris,
22.63 synapses for wine, and 21.1 synapses for breast cancer, and no
hidden neurons at all for each of those datasets. It is worth noting

Evolutionary Optimization for Neuromorphic Systems NICE ’20, March 17–20, 2020, Heidelberg, Germany

that the logistic regression layer alone cannot achieve the results
achieved by our best reservoirs, indicating that these reservoirs,
though small, are still performing valuable computation.

4.5 Multi-Objective Optimization
We have previously demonstrated that EONS is capable of multi-
objective optimization through augmenting the genetic algorithm’s
fitness function. In particular, in [8], we show that by adding
weighted values that take into account network size and network
performance in the presence of synaptic variation to the typical
fitness function of accuracy, we can produce smaller, more resilient
networks than we can otherwise.

In this work, we focus on demonstrating how EONS can easily
be adapted to evolve significantly smaller networks at little or no
performance cost to the actual networks.We demonstrate this result
on the same three datasets as the results presented in Section 4.1:
iris, wine, and breast cancer. The original fitness, which is simply
the accuracy on the training set or (accuracy(net)), is augmented
to include a penalty for larger networks as follows:

f it(net) = accuracy(net)−α(nsynapses (net)+nneurons (net)) (1)

where α is a weighting parameter, nsynapses (net) is the number
of synapses and nneurons (net) is the number of neurons. To demon-
strate the effect that adding this penalty has on performance, we
ran EONS 100 times for each of the datasets, using the same EONS
random number generator seeds for the original fitness function (
f it(net) = accuracy(net)), which corresponds to nomulti-objective
optimization, and the fitness function shown above, which has the
penalty associated with network size, which corresponds to a multi-
objective optimization approach to maximize the accuracy on the
training set while minimizing network size. In this case, α was
chosen experimentally (α = 10−7) and used for all three datasets.
This value is a hyperparameter for this approach and will need to
be customized to the given application. We ran the 100 test cases
for each approach using the same random number generator seeds
so that the initial populations are the same for each approach. As
such, the variation in performance is entirely due to the difference
in the way that the fitness function is evaluated.

Figure 9 shows the results for the two approaches. It shows box
plots for the testing accuracy, the number of neurons, and the num-
ber of synapses for each data set. As can be seen in this figure, there
is very little difference in the testing accuracy performance of the
resulting networks produced by EONS. However, the networks for
the multi-objective approach that includes a penalty for network
size produces significantly smaller networks in terms of number of
neurons and number of synapses. This sort of reduction in network
size can result in more power efficient and area efficient deploy-
ments in neuromorphic systems. It is worth noting that this drastic
difference in network size is a result of changing a single line of
EONS code – the line that specifies the fitness function.

5 DISCUSSION AND CONCLUSIONS
In this work, we demonstrate five different use cases of EONS,
showcasing several of its features. The development of EONS has
several different motivations and user groups in mind. One of the

Figure 9: Multi-objective optimization results, where results
without multi-objective optimization (No MOO) are shown
in the blue box plots and the results with multi-objective
optimization (MOO) are shown in the orange box plots. The
mean is plotted as a black dot on each of the box plots.

EONS user groups is new users of neuromorphic computing. With
this group in mind, EONS is meant to be a tool that can quickly and
easily get a user started with applying neuromorphic computing to
their problems of interest. We demonstrate in Sections 4.1 and 4.2
that, unlike other algorithmic approaches, which have to be adapted
for different types applications, EONS can be used essentially out-
of-the-box for two different types of applications (classification and
control, respectively). In the future, we plan to continue building
out EONS capabilities to enable further ease of use, including hyper-
parameter optimization features for EONS and tools that allow the
user to seamlessly utilize high performance computing or cluster
resources from the Python interface, expanding on our previous
work that implements EONS for supercomputers [30].

Another user group that we envision benefiting from EONS is
hardware developers. In Section 4.3, we demonstrate how EONS
can optimize within different hardware constraints for a single neu-
romorphic platform. We also note that previous version of EONS
have been used to train networks for a variety of hardware im-
plementations. We note that the type of results that are presented
in Section 4.3 can be used as part of a neuromorphic hardware
co-design process in developing new hardware implementations.
Because EONS typically produces small networks, and can be easily
expanded to include additional objectives such as network size (as
shown in Section 4.5), we believe that EONS networks will be of
use to neuromorphic hardware developers who are working with
experimental devices and who may benefit from smaller networks
that are easier to build. We intend to further pursue multi-objective
optimization approaches for EONS to producemore energy efficient,
area constrained, and resilient SNNs for neuromorphic hardware
that are more well-suited to real-world deployment.

NICE ’20, March 17–20, 2020, Heidelberg, Germany Schuman, et al.

Our third user group that we hope to target with EONS is algo-
rithms researchers. We demonstrate in Section 4.4 that EONS can
be used to optimize a reservoir for a liquid state machine. In the
future, we intend to use EONS to refine networks that have been
pre-trained using other algorithms, including back-propagation-
like algorithms. We also intend to use EONS to optimize learning
rules for unsupervised and semi-supervised learning tasks.

EONS is not without its difficulties. Depending on the problem
and the size of the network, EONS can take many epochs and
large population sizes to converge. One direct consequence is that
it can require a very large amount of CPU cycles. Fortunately, it
parallelizes easily; however, if one is limited in CPU resources,
EONS may require too much of a computing burden. A more subtle
consequence is that EONS configures a network for each population
member in each epoch, and each of these networks may be different
in structure. Therefore, if a software simulator is not available, and
the communication overhead to neuromorphic hardware is high,
the hardware/software boundary becomes the limiting factor in
performance, significantly hampering EONS. Utilizing EONS for
Intel’s Loihi processor [6] has proved challenging in this respect. It
was also a bottleneck for leveraging GPUs when performing EONS
on the DANNA neuromorphic simulator [10].

We would like to stress that EONS exists independently from the
TENNLab Neuromorphic Software Framework [24] and from any
particular neuromorphic processor or application. Its most recent
design, to work on general graphs rather than SNNs, has been made
to increase its applicability. It exists as a C++ package, with Python
bindings for interoperability with more popular machine learning
frameworks like scikit-learn and OpenAI Gym.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, under contract number DE-AC05-00OR22725, and by
the Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory.

REFERENCES
[1] S.M. Bohte, J.N. Kok, and J.A. La Poutré. 2000. SpikeProp: backpropagation for

networks of spiking neurons.. In ESANN. 419–424.
[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.

Zaremba. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[3] S. Buckley, A. N. McCaughan, J. Chiles, R. P. Mirin, S. W. Nam, J. M. Shainline,

G. Bruer, J. S. Plank, and C. D. Schuman. 2018. Design of superconducting
optoelectronic networks for neuromorphic computing. In IEEE International
Conference on Rebooting Computing. Tysons, VA, 36–42.

[4] S. Cawley, F. Morgan, B. McGinley, S. Pande, L. McDaid, S. Carrillo, and J. Harkin.
2011. Hardware spiking neural network prototyping and application. Genetic
Programming and Evolvable Machines 12, 3 (2011), 257–280.

[5] G. Chakma, N. D. Skuda, C. D. Schuman, J. S. Plank, M. E. Dean, and G. S. Rose.
2018. Energy and Area Efficiency in Neuromorphic Computing for Resource
Constrained Devices. In Proceedings of ACM Great Lake Symposium on VLSI
(GLSVLSI). Chicago, IL, 379–383.

[6] M. Davies et al. 2018. Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning. IEEE Micro 38, 1 (2018), 82–99.

[7] Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre
Neftci. 2016. Conversion of artificial recurrent neural networks to spiking neural
networks for low-power neuromorphic hardware. In 2016 IEEE International
Conference on Rebooting Computing (ICRC). IEEE, 1–8.

[8] Mihaela Dimovska, J. Travis Johnston, Catherine D. Schuman, J. Parker Mitchell,
and Thomas E. Potok. 2019. Multi-Objective Optimization for Size and Resilience
of Spiking Neural Networks. In 2019 IEEE Annual Ubiquitous Computing, Elec-
tronics, and Mobile Communication Conference. IEEE, In press.

[9] A. Disney, J. Reynolds, C. D. Schuman, A. Klibisz, A. Young, and J. S. Plank. 2016.
DANNA: A Neuromorphic Software Ecosystem. Biologically Inspired Cognitive
Architectures 9 (July 2016), 49–56.

[10] A. W. Disney, J. S. Plank, and M. Dean. 2018. Four Simulators of the DANNA Neu-
romorphic Computing Architecture. In International Conference on Neuromorphic
Computing Systems. ACM, Knoxville, TN.

[11] Chao Du, Fuxi Cai, Mohammed A Zidan,WenMa, Seung Hwan Lee, andWei D Lu.
2017. Reservoir computing using dynamic memristors for temporal information
processing. Nature communications 8, 1 (2017), 2204.

[12] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. 2015. Backpropagation for energy-efficient neuromorphic
computing. In Advances in Neural Information Processing Systems. 1117–1125.

[13] P. Ferré, F. Mamalet, and S.J. Thorpe. [n.d.]. Unsupervised feature learning with
winner-takes-all based STDP. Frontiers in computational neuroscience 12 ([n. d.]).

[14] Dario Floreano, Peter Dürr, and Claudio Mattiussi. 2008. Neuroevolution: from
architectures to learning. Evolutionary intelligence 1, 1 (2008), 47–62.

[15] F. Gomez, J. Schmidhuber, and R. Miikkulainen. 2008. Accelerated neural evo-
lution through cooperatively coevolved synapses. Journal of Machine Learning
Research 9, May (2008), 937–965.

[16] M. S. Hasan, C. D. Schuman, J. S. Najem, R. Weiss, N. D. Skuda, A. Belianinov, C. P.
Collier, S. A. Sarles, and G. S. Rose. 2018. Biomimetic, Soft-Material Synapse for
Neuromorphic Computing: From Device to Network. In IEEE 13th Dallas Circuits
and Systems Conference (DCAS). https://doi.org/10.1109/DCAS.2018.8620187

[17] N. Kasabov, V. Feigin, Z. Hou, Y. Chen, L. Liang, R. Krishnamurthi, M. Othman,
and P. Parmar. 2014. Evolving spiking neural networks for personalisedmodelling,
classification and prediction of spatio-temporal patterns with a case study on
stroke. Neurocomputing 134 (2014), 269–279.

[18] E. Kim, J. Yarnall, P. Shaha, and G. T. Kenyon. 2019. A Neuromorphic Sparse
Coding Defense to Adversarial Images. , 8 pages.

[19] Dhireesha Kudithipudi, Qutaiba Saleh, Cory Merkel, James Thesing, and Bryant
Wysocki. 2016. Design and analysis of a neuromemristive reservoir computing
architecture for biosignal processing. Frontiers in neuroscience 9 (2016), 502.

[20] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training deep spiking
neural networks using backpropagation. Frontiers in neuroscience 10 (2016), 508.

[21] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H.
Shahrzad, A. Navruzyan, N. Duffy, et al. 2019. Evolving deep neural networks. In
Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier,
293–312.

[22] J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok.
2019. Caspian: A Neuromorphic Development Platform. In Submitted.

[23] J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj,
C. D. Schuman, M. E. Dean, G. S. Rose, N. C. Cady, and J. Van Nostrand. 2019.
The TENNLab Suite of LIDAR-Based Control Applications for Recurrent, Spiking,
Neuromorphic Systems. In 44th Annual GOMACTech Conference. Albuquerque.

[24] James S Plank, Catherine D Schuman, Grant Bruer, Mark E Dean, and Garrett S
Rose. 2018. The TENNLab exploratory neuromorphic computing framework.
IEEE Letters of the Computer Society 1, 2 (2018), 17–20.

[25] Anvesh Polepalli, Nicholas Soures, and Dhireesha Kudithipudi. 2016. Digital
neuromorphic design of a liquid state machine for real-time processing. In 2016
IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1–8.

[26] Daniel Rasmussen. 2019. NengoDL: Combining deep learning and neuromorphic
modelling methods. Neuroinformatics (2019), 1–18.

[27] John JM Reynolds, James S Plank, and Catherine D Schuman. 2019. Intelligent
Reservoir Generation for Liquid State Machines using Evolutionary Optimization.
In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[28] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. 2007. An overview of
reservoir computing: theory, applications and implementations. In Proceedings of
the 15th european symposium on artificial neural networks. 471–482.

[29] C.D. Schuman, G. Bruer, A.R. Young, M. Dean, and J.S. Plank. 2018. Understanding
Selection And Diversity For Evolution Of Spiking Recurrent Neural Networks.
In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[30] C.D. Schuman, A. Disney, S.P. Singh, G. Bruer, J.P. Mitchell, A. Klibisz, and
J.S. Plank. 2016. Parallel evolutionary optimization for neuromorphic network
training. In Proceedings of the Workshop on Machine Learning in High Performance
Computing Environments. IEEE Press, 36–46.

[31] C.D. Schuman, J.S. Plank, A. Disney, and J. Reynolds. 2016. An evolutionary
optimization framework for neural networks and neuromorphic architectures. In
2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 145–154.

[32] C. D. Schuman, T. E. Potok, S. Young, R. Patton, G. Perdue, G. Chakma, A. Wyer,
and G. S. Rose. 2017. Neuromorphic computing for temporal scientific data
classification. In Neuromorphic Computing Symposium (NCS ’17). ACM, New
York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3183584.3183612

[33] William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B
Aimone. 2019. Training deep neural networks for binary communication with
the Whetstone method. Nature Machine Intelligence 1, 2 (2019), 86.

[34] S.B. Shrestha and G. Orchard. 2018. SLAYER: Spike layer error reassignment in
time. In Advances in Neural Information Processing Systems. 1412–1421.

https://doi.org/10.1109/DCAS.2018.8620187
https://doi.org/10.1145/3183584.3183612

Evolutionary Optimization for Neuromorphic Systems NICE ’20, March 17–20, 2020, Heidelberg, Germany

[35] K.O. Stanley and R. Miikkulainen. 2002. Evolving neural networks through
augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[36] Johannes C Thiele, Olivier Bichler, and Antoine Dupret. 2018. Event-based,
timescale invariant unsupervised online deep learning with STDP. Frontiers in
computational neuroscience 12 (2018), 46.

[37] X. Yao. 1999. Evolving artificial neural networks. Proc. IEEE 87, 9 (1999), 1423–
1447.

[38] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and
Robert M Patton. 2015. Optimizing deep learning hyper-parameters through an
evolutionary algorithm. In Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments. ACM, 4.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 EONS
	3.1 Evaluation
	3.2 Selection
	3.3 Representation and Reproduction

	4 Results
	4.1 Evolving Networks for Classification
	4.2 Evolving Networks for Control
	4.3 Evolving Under Hardware Constraints
	4.4 Evolving a Reservoir
	4.5 Multi-Objective Optimization

	5 Discussion and Conclusions
	Acknowledgments
	References

