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Abstract. We analyze the opportunities for in-transit visualization to
provide cost savings compared to in-line visualization. We begin by de-
veloping a cost model that includes factors related to both in-line and in-
transit which allows comparisons to be made between the two methods.
We then run a series of studies to create a corpus of data for our model.
We run two different visualization algorithms, one that is computation
heavy and one that is communication heavy with concurrencies up to
32,768 cores. Our primary results are in exploring the cost model within
the context of our corpus. Our findings show that in-transit consistently
achieves significant cost efficiencies by running visualization algorithms
at lower concurrency, and that in many cases these efficiencies are enough
to offset other costs (transfer, blocking, and additional nodes) to be cost
effective overall. Finally, this work informs future studies, which can fo-
cus on choosing ideal configurations for in-transit processing that can
consistently achieve cost efficiencies.

1 Introduction

In situ visualization is increasingly necessary to address 1/O limitations on su-
percomputers [2, 3]. That said, the processing paradigm for in situ visualization
can take multiple forms. With this study, we consider two popular forms. In the
first form, which we refer to in this paper as in-line visualization, the visual-
ization routines are embedded into the simulation code, typically via a library
which is linked into the simulation binary. In this case, the visualization rou-
tines directly access the memory of the simulation code. When it is time to
perform visualization tasks, the simulation pauses, and the visualization tasks
use the same nodes that were being used for the simulation. With the second
form, which we refer to in this paper as in-transit visualization, extra compute
nodes run concurrently to the simulation. In this case, the simulation runs on
the primary compute nodes (the “simulation nodes”) and the visualization runs,
as a separate program, on the extra compute nodes (the “in-transit nodes”). The
simulation shares data with the visualization program by sending data over the
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network. In this scenario, the simulation and visualization are both running at
the same time.

In-line and in-transit both have beneficial aspects [6]. For example, in-transit
naturally lends itself to fault tolerance, while in-line saves on usage of primary
memory. In short, there are good reasons motivating the use of either technique.
However, one factor has a special importance, namely cost. With this study, we
define cost to be in units of “node seconds,” i.e., using ten compute nodes for
one second or one compute node for ten seconds are both “ten node seconds.”
Cost directly informs the size of the request needed on a supercomputer to
perform the simulation. Therefore, we believe understanding the relative costs
of in-transit and in-line is critical in helping scientists determine which paradigm
to use. While other factors (fault tolerance, memory usage, etc.) may play a role
in the decision, we believe cost will be a critical factor.

In-transit visualization incurs new costs that do not exist with in-line vi-
sualization. There are additional resources for the in-transit nodes, and a new
activity to perform: transferring the data from the simulation nodes to the in-
transit nodes. Further, if the in-transit nodes are not able to perform their tasks
quickly enough, they can block the simulation from advancing. While blocking
the simulation is not the only possible decision for this scenario, it is the decision
we consider in the context of this paper.

Despite these additional costs, in-transit also has a potential cost advantage
that in-line does not have. The number of in-transit nodes is typically much less
than the number of simulation nodes. Further, when algorithms exhibit poor
scaling, fewer nodes are more efficient. In effect, in-transit has the potential to
reduce costs that result from poor scaling of visualization algorithms. Consider
a scenario: if a visualization algorithm takes 1 second on 1000 nodes running
in-line, but the same algorithm takes 50 seconds on 10 nodes running in-transit,
then the visualization cost is 1000 node seconds for in-line and 500 node seconds
for in-transit. We define a term to capture this phenomenon: Visualization
Cost Efficiency Factor (VCEF). VCEF is the in-line visualization cost di-
vided by the in-transit visualization cost. In the scenario just described, the
VCEF would be 1000/500 or 2 — the cost to perform in-line is 2X more than
in-transit. Of course, VCEF is just one consideration for in-transit, and must be
considered alongside its other factors, including, extra resources, transfer costs,
and blocking, which impose barriers to cost savings

Our hypothesis entering this study is that there are configurations of in-
transit visualization such that the cost to reach the final solution are less in-
transit than in-line. To that end, for this study, we consider the topic of relative
costs between in-transit and in-line visualization. What makes our study novel is
the identification and usage of VCEF. We observe that VCEF is a significant
phenomenon; our communication-heavy algorithm regularly yields a VCEF of
four or above, and even our computation-heavy algorithm yields such values at
very high concurrency. This high VC'E'F value in turn allows in-transit to become
cost effective overall in many scenarios, as the savings are enough to offset other
costs (extra resources, transfer costs, and blocking). We also provide a model for
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reasoning about this space, and a corpus of data that reflects experiment times
for currently popular software. Overall, this study provides significant evidence
that in-transit can be cost effective.

2 Related Works

In recent years, some application teams have began seeing the need to adopt the
in situ approach for visualization and analysis of large-scale simulations [10]. One
strength of in situ methods is the ability to access all of the data during the course
of a simulation, and only save what is interesting. This means, in situ is not just a
tool for visualization, but also for processing of data such as reduction, explorable
feature extractions, simulation monitoring, and the generation of statistics [11].
The choice then, comes down to which in situ approach is appropriate for a given
application.

To aid in making that choice, several studies have looked at in-transit and
in-line from the perspective of time. Morozov et al. [16] describes a system for
launching in situ/in-transit analysis routines, and compares each in situ tech-
nique based on time to solution for two different analysis operations. They find
there were times when in-transit analysis was faster due to how the analysis
code scaled. Friesen et al. [5] describes a setup where in-line and in-transit visu-
alization are used in conjunction with a cosmological code to run two different
analysis routines. They analyze the time to solution using both in situ tech-
niques, finding that there are configurations where in-transit is faster to use,
due to the inter-node communication overhead of the analysis routines. These
and other studies have largely focused on analysis pipelines which can have differ-
ent communication and computation scaling curves than visualization pipelines.
Further, they do not do an in depth analysis of the trade-offs associated with
in-transit or in-line methods.

Our work takes a different view than these past works. First, we concentrate
on in situ visualization pipelines. Second, we focus specifically on in-line in situ
vs. in-transit in situ from the perspective of visualization frequency, resource
requirements, and how different combinations of these factors impact the final
cost of the simulation and visualization for research scientists.

There are three highly relevant works preceding this work:

— Oldfield et al. [17] also considered in-transit and in-line costs. The main
difference between their work and our own is that they focused on analysis
tasks which did not benefit from a VCEF speedup. As such, their findings
differ from ours.

— Malakar et al. did twin studies on cost models, one for in-line [12] and one for
in-transit [13]. Once again, these studies did not consider VCEF. Further,
they considered optimizing allocation sizes and analysis frequencies which is
a complementary task to our effort.

— Work by Kress et al. [7] considered trade-offs between in-transit and in-line
for isosurfacing at high concurrencies. This study was the first to show evi-
dence of VCEF. However, the algorithm considered was computation-heavy,
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so the extent of the effect was smaller and only appeared at very high con-
currency. Further, that paper lacked a cost modeling component, rather just
observing that the phenomenon was possible. Our paper focuses exclusively
on cost savings, providing a model and considering both computation- and
communication-heavy visualization algorithms. Finally, we note the corpus
of data for our study in part draws on runs from the Kress et al. study.

3 Cost Model

This section defines a cost model for determining when in-transit visualization
can cost less than in-line visualization. First, terms are introduced for the oper-
ations that occur in both in-line and in-transit visualization. Next, we use those
terms to demonstrate when in-transit will cost less than in-line visualization, and
provide a discussion for when and how this occurs. Finally, we derive a formu-
lation to determine the degree of scalability of in-transit over in-line, (VCEF),
that is required for in-transit to be cost effective.

3.1 Definition of Terms

Below we define terms for both in-line and in-transit visualization operations.

— Let T be the time for the simulation to advance one cycle.

— Let N be the number of nodes used by the simulation code.

— Let Res, be the proportion of nodes (resources) used for in-transit visu-
alization. E.g., if the number of nodes for the simulation (N) is 10,000
and the number of nodes for in-transit visualization is 1,000, then Res, =
1,000/10, 000, which is 0.1.

— Let Vis, be the proportion of time spent doing visualization in the in-line
visualization case. E.g., if T is 5 seconds and the in-line visualization time
is 1 second, then Vis, = 1/5, which is 0.2.

— Let Block, be the proportion of time that the simulation code is blocking
while waiting for in-transit visualization to complete. E.g., if T' is 5 seconds
and the simulation has to wait an additional 2 seconds for the in-transit
resources to complete, then Block, = 2/5, which is 0.4. If the in-transit
visualization completes and does not block the simulation, then Block, is 0.

— Let VCEF be the term identified earlier in this paper that captures the effi-
ciency achieved by running at lower concurrency. E.g., if in-line visualization
took 1 second on 10,000 nodes, but in-transit visualization took 5 seconds

on 1,000 nodes, then VCEF would be 21200 which is 2.

We have two terms for transferring data because sending data from the simula-
tion side may be faster than receiving it on the in-transit side. For example, if
8 simulation nodes send to 1 visualization node, then that 1 visualization node
will need to unserialize eight times as much data as each of the simulation nodes
serialized.



Opportunities for Cost Savings with In-Transit Visualization 5

— Let Send), be the proportion of time by the simulation code sending data to
in-transit visualization resources. E.g., if T' is 5 seconds and the send time
is 2 seconds, then Send, = 2/5, which is 0.4.

— Let Recv, be the proportion of time spent receiving data on the in-transit
visualization resources. E.g., if T is 5 seconds and the transfer time is 2
seconds, then Recv, = 2/5, which is 0.4.

3.2 Base Model Defined

We define our base cost model below. This cost model will be refined in Sec-
tion 3.4 as we consider the implications of blocking. The cost for in-transit vi-
sualization will be lower than in-line visualization when:

(total resources with in-transit) x (time per cycle for simulation with in-transit)
<
(total resources with in-line) X (time per cycle for simulation with in-line)
=
(# in-transit nodes + # simulation nodes)x
(simulation cycle time + transfer time + block time)
<

(# simulation nodes) x (simulation cycle time + in-line vis time)

(1)
Using the terms defined above in Section 3.1, this becomes:
(N x Resp +N) x (T+T x Send, + T x Block,) < (N) x (T'+T x Visp) (2)

This equation can be simplified by dividing both sides by the simulation cycle
time (7') and number of nodes (N):

(14 Resp) x (1 + Send, + Block,) < (14 Visp) (3)

If Equation 3 is true, then in-transit costs less than in-line.

3.3 Base Model Discussion

In-transit visualization has three different costs that do not occur with in-line.
(1) In-transit visualization requires data transfer, which slows down the sim-
ulation nodes. (2) In-transit visualization requires dedicated resources beyond
those required for in-line. If the in-transit visualization finishes quickly, these
additional resources sit idle, and yet still incur cost. (3) In-transit can block the
simulation if the visualization is not finished before the simulation is ready to
send data for the next cycle. This is very harmful since it slows down the sim-
ulation nodes. There are alternatives to blocking, for example skipping cycles,
and only visualizing the latest. In this study, our focus is on blocking, and we
do not consider the alternatives.
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Given the three additional costs incurred by in-transit, the only way for it to
cost less than in-line is for the visualization to run faster at lower concurrency.
In other words, the cost savings with in-transit can only occur if the benefit of
(VCEF') outweighs the combined effects of the three additional costs described
above. The fact that certain operations are more efficient at lower levels of con-
currency provides an opporunity for a more cost effective solution.

That said, there are scenarios where any value of VCFEF is insufficient to
achieve cost savings. Examples where in-transit can never be more cost effective,
regardless of VCEF, are discussed below:

— If blocking takes longer than in-line visualization (e.g., Block, = 0.3, Vis, =
0.2), it is impossible to be more cost efficient. For example, even if T' = ¢,
then (14 ¢€) x (1 4+ €+ 1.3) < (14 1.2) is not possible.

— Further, even if Block, = 0 (no blocking), then some in-transit configura-
tions will still always be less efficient:

e if the simulation transfer cost is bigger than the in-line visualization time
(e.g., Send, = 0.4,Vis, = 0.2), then: (1+¢€) x (14+0.4+0) <1.2

o if there are many in-transit nodes (e.g., Res, = 0.5) and the in-line
visualization time is sufficiently fast (e.g., Vis, = 0.5), then: (1+0.5) x
(I1+4e4+0)<1405

3.4 When Does Blocking Occur?: Replacing Block, via VCEF

In this section we expand the model by using the VCEF term to determine
when blocking will occur. We then present two new equations that define when
in-transit will cost less if blocking does or does not occur.

Consider what it means to block. Blocking occurs when in-transit resources
are taking longer to do their job than the simulation resources are taking to do
their job. Similarly, “not blocking” means that the in-transit resources are doing
their job faster than the simulation resources take to do their job. So, what does
“time to do their job” mean? For the simulation side, this means the time to
advance the simulation plus the time to send the data, i.e., T'+ T x Send,. For
the in-transit side, this means the time to receive data (T x Recv,) plus the time
to do the visualization task. This latter time is explored below.

Nominally, assuming that visualization scaled perfectly as a function of con-
currency, the cost (number of node seconds) to do the visualization task can be
directly calculated from the in-line case: N x (Vis, x T'). However, a key premise
of this study is that in-transit has an advantage at lower concurrency because of
VCFEF. Because in-transit is running at a lower concurrency, the cost is scaled
by the VCEF term: % Finally, the time to carry out the visualization
task on the in-transit nodes would be the VCEF-reduced cost divided by the
resources (N x Resp). Thus, the in-transit visualization time is:

N x (T x Visp)
VCEF x N x Res,

(4)
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Canceling out N gives a simpler form:

Vis, xT (5)
VCEF x Res,
Restating, blocking occurs with in-transit when the time to receive data plus
the visualization time is greater than the simulation time plus the time to send

data:
Visp, xT

RGCUp x T 4+ m >T x (1 + Sendp) (6)
This means that blocking does not occur if:
Vis, xT
Recvp X T+m STX (1—|—Sendp) (7)

The terms in Equation 7 can be rearranged to find the VCEF values when
blocking does not occur:
Visy
Resy, x (1 + Send, — Recvp)

<VCEF ®)

This analysis on blocking informs the original question: when does in-transit
incur less cost than in-line? This can be answered using a combination of Equa-
tions 3 and our observations about blocking in this section. If blocking does not
occur, then Block, drops out as zero, and Equation 3 is simplified:

(14 Resp) x (14 Sendy,) < (1+ Visp) (9)

If blocking does occur, then the simulation advances only as fast as the in-transit
resources can take new data. This means that the time term for the left-hand side
of Equation 3, which was previously 1 + Send,, is replaced with the in-transit
time. Using the relationship in Equation 6, we get:

Vis,

1 - F
(L+ Resy) x (Reevy + GEpE Res,

) < (1+Visp) (10)

3.5 Cost Model Discussion

The basis of the cost model are described above in Equations 3, 8, 9, and 10.
This model allows the relative costs of in-line and in-transit visualization for a
particular configuration to be analyzed. The first step is to determine the cost
feasibility of in-transit. Equation 3 serves as a threshold for determining when
this is possible. If Equation 3 is false, in-line visualization is the cost-effective
solution. Otherwise, when Equation 3 is true, Equations 8, 9, and 10 are used
to determine cost feasibility based on blocking, as follows:

— The VCEF value necessary to prevent blocking is given by Equation 8:

Visy
VCEF > Resp X (1+Send,—Recvp)
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(a) In-line visualization setup. The simulation and visualization alter-

nate in execution, sharing the same resources.
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(b) In-transit visualization setup. The simulation and visualization
operate asynchronously, and each have their own dedicated resources.

Fig. 1: Comparison of the two workflow types used in this study.

e For cases when there is no blocking, using Equation 9 shows that in-
transit is cost efficient if:
(14 Resp) x (1+ Send,) < (1+ Visp)

e Otherwise, for cases where blocking occurs, using Equation 10 shows
that in-transit is cost efficient if:

Visp .
(1 + R@Sp) X (RSC’UP + m) < (1 + V’LSP)

4 Corpus of Data

In this section we detail the experimental setup, methods, and software used
to generate our corpus of data, as well as a cursory overview of the data we
collected.

4.1 Experiment Software Used

To generate data for this study, we use CloverLeaf3D [1,14], a hydrodynamics
proxy-application. Cloverleaf3D spatially decomposes the data uniformly across
distributed memory processes, where each process computes a spatial subset of
the problem domain. To couple CloverLeaf3D with both in-transit and in-line in
situ, we leveraged existing integrations with Ascent [8].

In-line visualization is accomplished with Ascent which uses VIK-m [15] for
visualization operations. The visualization is described through a set of actions
which Ascent turns into a data flow graph, and then executed. Figure 1a depicts
how the software components interact in the in-line workflow.

In-transit visualization used Ascent’s integration with the Adaptable 1/0
System (ADIOS) [9] to transport data from the simulation nodes to the in-transit
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nodes using its RDMA capabilities [4, 18]. ADIOS requires the use of dedicated
staging nodes to hold the metadata necessary to service RDMA requests. Once
the data are transported, the visualization tasks are performed using VTK-m.
To be clear, the same VTK-m code was being used for both in-line and in-transit
visualization. The only differences are the number of nodes used for visualization,
the shared-memory parallelism approach (see 4.5), and the use of ADIOS for data
transport to a separate allocation.

Figure 1b depicts how the software components interact in the in-transit
workflow.

4.2 Visualization Tasks Studied

There were two classes of visualization tasks in this study, computation heavy
and one that is communication heavy. The computation heavy task was isocon-
touring and parallel rendering, while the communication heavy task was volume
rendering. Visualization was performed after each simulation step. The compu-
tation heavy task consisted of creating two isocontours at values of 33% and 67%
between the minimum and maximum value of the simulations energy variable,
followed by ray trace rendering. The ray tracing algorithm first locally rendered
the data it contained, then all of the locally rendered images were composited
using radix-k. The communication heavy task consisted of volume rendering the
simulations energy variable. Compositing for volume rendering is implemented
as a direct send.

4.3 Application/Visualization Configurations

In this study we used five different in situ configurations of the application and
visualization:

— Sim only: Baseline simulation time with no visualization

In-line: Simulation time with in-line visualization

Alloc(12%): In-transit uses an additional 12% of simulation resources
— Alloc(25%): In-transit uses an additional 25% of simulation resources
— Alloc(50%): In-transit uses an additional 50% of simulation resources

For in-transit visualization, predetermined percentages of simulation resources
for visualization were selected. These percentages, were selected based off of a
rule of thumb where simulations typically allow up to 10% of resources for visu-
alization. 10% was our starting point, and we then selected two additional higher
allocations to explore a range of options. We initially considered in-transit al-
locations that were below 10%, but due to the memory limitations on Titan
(32 GB per node), the visualization nodes ran out of memory. We leave a lower
percentage study as future work on a future machine. Finally, we ran each one
of these configurations with weak scaling with concurrency ranging between 128
and 32,768 processes, with 1283 cells per process (268M cells to 68B cells).

CloverLeaf3d uses a simplified physics model, as such, it has a relatively fast
cycle time. This fast cycle time is representative for some types of simulations,
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but we also wanted to study the implications with simulations that have longer
cycle times. We simulated longer cycle times by configuring CloverLeaf3D to
pause after each cycle completes, using a sleep command. This command was
placed after the simulation computation, and before any visualization calls were
made. We used three different levels of delay:

— Delay(0): simulation ran with no sleep command.
— Delay(10): a 10 second sleep was called after each simulation step.
— Delay(20): a 20 second sleep was called after each simulation step.

Lastly, we ran each test for 100 time steps using a fixed visualization fre-
quency of once every time step. This frequency ensures that fast evolving struc-
tures in simulation data are not missed. Also, very frequent visualization gives
us an upper bound for how visualization will impact the simulation.

4.4 Hardware

All runs in this study were performed on the Titan supercomputer deployed at
the Oak Ridge Leadership Computing Facility (OLCF). Because the mini-app
we used for our study runs on CPUs only, we restricted this study to simulations
and visualizations run entirely on the CPU.

4.5 Launch Configurations

The configuration for each experiment performed is shown in Table 1. Isosurfac-
ing plus rendering was run on up to 16K cores, volume rendering was run on up
to 32K cores. Because CloverLeaf3D is not an OpenMP code, the in-line in situ
and the simulation only configurations were launched with 16 ranks per node.
The in-transit configurations used 4 ranks per visualization node and 4 OpenMP
threads to process data blocks in parallel. Therefore, in-transit and in-line both
used 16 cores per node. Additionally, the in-transit configuration required the
use of dedicated staging nodes to gather the metadata from the simulation in
order to perform RDMA memory transfers from the simulation resource to the

Table 1: Resource configuration for each experiment in our scaling study.
Sim Procs 128 256 512 1024 2048 4096 8192 16384 32768
Test Data Cells 648 816° 1024° 1296° 1632° 2048 2592° 3264° 4096°

Configuratio

In-line Total Nodes 8 16 32 64 128 256 512 1024 2048
Vis Nodes 1 2 4 8 16 32 54 128 256
Staging Nodes 1 2 2 4 4 8 8 16 16
Total Nodes 10 20 38 76 148 296 584 1168 2320
Vis Nodes 2 4 8 16 32 64 128 256 512
Staging Nodes 1 2 2 4 4 8 8 16 16
Total Nodes 11 22 42 84 164 328 648 1296 2576
Vis Nodes 4 8 16 32 64 128 256 512 1024
Staging Nodes 1 2 2 4 4 8 8 16 16
Total Nodes 13 26 50 100 196 392 776 1552 3088

In-transit
Alloc(12%)

In-transit
Alloc(25%)

In-transit

Alloc(50%)
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(a) Cost breakdown for the isosurfacing and rendering tests.
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(b) Cost breakdown for the volume rendering tests.

Fig. 2: Stacked bar charts comparing the total cost per step for using in-transit
and in-line visualization. In-transit visualization is broken down into cost for the
time that the visualization is actively working, cost for the time that it is idle,
cost for the time it is receiving data from the simulation, and cost associated
with blocking the application. The application active cost is excluded from this
chart as it is the same for each level of Delay, and obfuscates the times for
visualization and data transfer.
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visualization resource. These additional resources are accounted for in Table 1
and are used in the calculation of all in-transit results.

An important detail from these configurations is that the in-line tests have
one core per MPI task, while the in-transit tests have four cores per MPI task.
Where the in-line tests were restricted to the MPI approach of the simulation
code, the in-transit tests were not, enabling shared-memory parallelism. As a
result, in-transit had even fewer participants in communication, which will boost
its VCEF factor.

4.6 Overview of data collected

In total, we ran 255 individual tests, each for 100 time steps. From each of these
tests we collected the total time for each time step from both the simulation and
visualization resources, as well as more fine grained timers placed around major
operations. After the runs were complete, the total cost was calculated by mul-
tiplying the total time by the total number of nodes listed in Table 1. Figure 2a
shows the total cost per time step we observed for each of the isosurfacing plus
rendering tests and Figure 2b shows the total cost per time step we observed for
each of the volume rendering tests. These charts break down the cost of each
step associated with each of our runs, showing if the simulation was blocked by
the visualization and how much that blocking cost, how much it cost to transfer
data from the simulation to the in-transit resources, how long the visualization
resources were active and their cost, how long they were idle and that cost, and
how long the in-line visualization operation took and its associated cost.

There are marked differences in the performance of the isosurfacing and ren-
dering runs versus the volume rendering runs. The isosurfacing tests have large
periods of blocking whereas the volume rendering runs have very little. One
reason for that blocking was that on average, isosurfacing and rendering took
twice as long per step as volume rendering. Finally as the simulation cycle time
increased, isosurfacing and rendering benefited more than volume rendering,
showing that the isosurfacing tests were compute bound on the in-transit re-
sources.

5 Results

In this section we use the model described in Section 3 to analyze the data
collected from our experiments. In particular, we follow the discussion detailed
in Section 3.5. In Section 5.1, we discuss and analyze the magnitude of VCEF
(Equation 8) for each experiment. In 5.2 we use Equation 3 from our model to
determine the in-transit cost savings feasibility for each experiment. Finally, in
Section 5.3, we combine these two and discuss the experiments that are feasible
and have sufficient VCEF to produce cost savings using in-transit for both
non-blocking and blocking cases (Equations 9, and 10).

5.1 VCEF Magnitude Across Experiments
Figure 3 shows the VCEF for each experiment. We felt the most surprising re-
sult was how large VCE'F values were as a whole. Many of the experiments had
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Fig. 3: This plot shows in-transit VCEF as a function of the in-line cycle time.
Isosurfacing experiments are denoted with a triangle glyph and volume rendering
with a circle glyph. Each glyph is scaled by the concurrency of the experiment
(isosurfacing 8-1024; volume rendering: 8-2048). Experiments are group by color
(configuration) and connected by lines (concurrency sequence).

values above 4 X, which creates significant opportunities for the cost effectiveness
of in-transit. Surprisingly, volume rendering experiments where the in-transit re-
sources were 50% of the simulation (Alloc(50%)) were able to achieve VCEF
values of about 4X. Putting this number in perspective, if an Alloc(50%) exper-
iment runs in the same amount of time as its in-line counterpart using half the
concurrency, then its VCEF would be 2. This is because it would have run using
half the resources while taking the same amount of time as in-line. Higher val-
ues indicate that the runtime has decreased at smaller concurrency, i.e., 4X cost
efficiency via using half the resources and running 2X faster. Further, we note
this volume rendering algorithm has been extensively optimized and is used in a
production setting. This result highlights the significant advantage that VCEF
provides. Algorithms with poor scalability (i.e., heavy communication) are able
to run at lower levels of concurrency, and therefore achieve better performance.

As expected, VCEF is heavily dependent on the type of algorithm. The vol-
ume rendering experiments were communication-heavy, lending itself to higher
cost efficiency when running at lower concurrency. The isosurfacing experiments
were computation-heavy — first, an isosurface is calculated, and then it was
rendered. The isosurface calculation is embarrassingly parallel, so there is no
reason to expect a high VCEF. That said, the parallel rendering became very
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slow at high concurrency, as evidenced by the high in-line times (>10 seconds).
This was due to the communication required to perform the image compositing
and the final reduction using the radix-k algorithm. In these cases, the VCEF
values increased from 3X to 6X.

While the main takeaway of Figure 3 is high VCEF values, a secondary
takeaway looks ahead to our analysis of cost savings, and in particular estab-
lishing intuition about which configurations will be viable for cost savings. All
volume rendering experiments had high VCEF values, while only isosurfacing
experiments at very high concurrency had high VCEF values. The isosurfac-
ing experiments at lower concurrencies had smaller VCEF values, which makes
them less likely to offset the additional costs incurred for in-transit (transfer
times, blocking, idle).

5.2 Feasibility of Cost Savings

Equation 3 from our model is used to determine the feasibility of cost savings for
in-transit visualization. When Equation 3 is true, then cost feasibility is possible.
Figure 4a uses this equation to show the feasibility for each experiment. The
black line shows where in-line and in-transit costs are identical, and the region
above the black line is cost feasibility for in-transit. This figure follows discussion
from Section 3.3. For example, if the in-line cost is less than the transfer cost,
then no VCFEF value can make in-transit cost effective. Or if the resources
devoted to in-transit are very large, then they will likely sit idle and be a incur
cost at no gain. About half of our experiments were in this category, incapable
of achieving cost savings with in-transit, because the transfer and resource costs
exceeded the in-line costs. In the remaining half of the experiments, our choice
for the number of in-transit nodes created a potentially feasible situation — the
resources dedicated to in-transit and the cost of transferring data was less than
the in-line visualization cost. That said, only some of these experiments actually
led to cost savings with in-transit. This is because the feasibility test for Figure 4a
placed no consideration on whether the in-transit resources were sufficient to
perform the visualization task. In some cases, VCEF was enough that the in-
transit resources could complete its visualization task within the allotted time. In
others cases, VC EF was not sufficient, and this caused the in-transit resources to
block. Figure 4b takes this blocking into account, and faithfully plots the terms
from Equation 3 from Section 3.2. The difference between Figure 4a and 4b,
then, is whether blocking is included when considering in-transit costs.

A final point from Figure 4a is the trend as concurrency increases — in-line
visualization increases at a much higher rate than transfer costs. Consider the
example of isosurfacing, with Alloc(50%) and Delay(0) i.e., the blue lines on
the right of Figure 4a with triangle glyphs. These experiments have in-line costs
that go from 0.6X of the simulation cycle time at the smallest scale to 2.2X
for the largest scale. Further, the x-values (i.e., transfer cost and resource cost)
change in a much more modest way (0.75X to 0.85X, with this representing only
a variation in transfer since the resource cost is fixed at 0.5 for this case). This
is a critical point to bring up for in-line visualization: It can be very difficult to
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Fig. 4: Plot of cost savings feasibility for each test case. Each glyph denotes the
in-line cost as a function of transfer and resource costs. Glyph size represents
the number of simulation nodes used in each test (isosurfacing: 8-1024; volume
rendering: 8-2048). Hollow glyphs indicate in-line was more cost efficient and
solid glyphs indicate that in-transit was more cost efficient. The black line marks
where in-line and in-transit costs are equal. Above the line is where in-transit
can be cost effective.
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Fig.5: This plot takes the points from experiments in Figure 4b where in-transit
was cost effective and plots the achieved VCEF as a function of the required
VCEF to prevent blocking. The black line is Equation 8. Points above the line
did not block, while those below did block. This plot shows two things: first, the
necessary VCEF speedup required to prevent blocking, and second, that cost
feasibility is possible even with simulation blocking.

scale some algorithms up to the scale of the simulation without incurring huge
penalties. All of the other families of experiments exhibit a similar trend, with
little variation in X (transfer and resource) and significant increases in Y (in-
line visualization) as scale increases. Extrapolating forward, the opportunities
demonstrated in our experiments will only become greater as supercomputers
get larger and larger.

5.3 Achieved Cost Savings

Figure 5 extends Figure 4b by plotting the results of Equation 8 for each of the
points that did provide cost savings. Equation 8 calculates the required VCEF
value for a in-transit experiment to not block the simulation. While blocking the
simulation is certainly not an ideal configuration, it is still possible to achieve
cost savings if the cost savings gained through VCFEF is greater than the cost
of the blocked simulation. About a third of the experiments that provided cost
savings from Figure 4b actually blocked the simulation (points to the right of
the black line).

The main takeaway from this plot though, is the rate at which VCEF allowed
in-transit visualization to achieve cost savings and prevent blocking. About two
thirds of the cases that achieved cost savings did so by not blocking the simula-
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Fig. 6: This plot takes the points from experiments in Figure 4b where in-transit
was cost effective and plots the in-transit cost as a function of the in-line cost

using Equation 9 (if no blocking occurred), or Equation 10 (otherwise). The
black line indicates where costs are equal.

tion. This was in large part due to the high values for VCEF that were achieved
in those cases.

Looking back to the intuition we established in Section 5.1 about which
experiments would be viable from a cost savings standpoint, we see that our
intuition was correct. Our intuition was that volume rendering would lead to
more experiments with cost savings vs. isosurfacing due to its high VCEF values
across all concurrencies, whereas isosurfacing only had high VCEF values at
high concurrency. Looking at Figure 5, we see that the majority of the points
are for volume rendering, 19 cases were more cost efficient, vs. isosurfacing, 9
cases being more cost efficient. This trend indicates two important things: first,
at even higher concurrency we should expect to see larger values for VCEF, with
even more cases where in-transit is more cost efficient, and second, in future as
more algorithms are studied, those with even more communication than volume
rendering should see even greater cost savings due to VCEF.

Figure 6 takes all of the cases that achieved cost savings from Figure 4b
and shows what the observed in-transit and in-line costs were in each case. The
further the points are from the black line the larger the in-transit cost savings.
This chart shows that 30 cases out of a possible 58 cases from Figure 4a were able
to achieve cost savings. Meaning that overall, out of our 153 in-transit tests, we
demonstrated high VCEF values and cost savings in 30, or 20%, of our cases. We
note that these test cases were originally conceived for a study on the fastest time
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to solution, not cost savings, so seeing 20% of cases costing less is encouraging.
Stated differently, our experiments did not focus on optimizing over resources,
and so it is possible that more success could have been found. By focusing on
smaller allocations, these studies should see a much higher percentage of cases
where in-transit is the most cost efficient choice.

6 Conclusion

The primary results from this paper are three-fold: (1) VCEF values are surpris-
ingly high, and in particular high enough to create opportunities for in-transit
to be cost effective over in-line, (2) a model for considering the relative costs
between in-transit and in-line that incorporates VCEF, and (3) consideration
of that model over a corpus of data that demonstrated that VCEF-based savings
do in fact create real opportunities for in-transit cost savings. We feel this re-
sult is important, since it provides simulation teams a valuable metric to use in
determining which in situ paradigm to select. Combined with in-transit’s other
benefits (such as fault tolerance), we feel this new information on cost could be
impactful in making a decision. In our studies, our communication-heavy algo-
rithm showed more promise for in-transit cost benefit than the computation-
heavy algorithm. This observation speaks to an additional role for in-transit:
sidestepping scalability issues by offering the ability to run at lower concur-
rency. This is particularly important as the visualization community considers
critical algorithms like particle advection, topology, connected components, and
Delaunay tetrahedralization.

The results of this study open up several intriguing directions for future work:

The first direction is in selecting an in-transit allocation that is likely to
create cost benefits. Our corpus of data was originally conceived for a study on
time savings. This is why it included configurations like Alloc(50%), which have
very little chance of providing cost savings. Saying it another way, although we
put little effort into choosing configurations that could achieve cost savings, we
still found these cost savings occurred 20% of the time. If we put more effort into
choosing such configurations, perhaps by incorporating the work of Malakar [13,
12], who had complementary ideas on choosing allocation sizes and analysis
frequencies, this proportion could rise significantly. A twin benefit to choosing
an appropriately sized in-transit allocation is that potentially more nodes would
be available for simulation use, as over allocating an in-transit allocation can
limit the maximum size of a simulation scaling run.

The second direction is in further understanding of VCEF'. For our study,
we ran production software for two algorithms. We were able to observe VCEF
factors after the run, but we are not able to predict them. Predicting VCEF
is hard — it will vary based on algorithm, data size, architecture, and possibly
due to data-dependent factors. However, being able to predict VCEF would
have great benefit in being able to choose cost effective configurations. Further,
our test configuration had in-line experiments that were restricted to the MPI
approach of our studied simulation code (one core per MPI task). While this



Opportunities for Cost Savings with In-Transit Visualization 19

configuration reflects an advantage of in-transit (i.e., freedom to select the opti-
mal configuration), this likely boosted VCEF', and future work should evaluate
the extent of VCEF when in-transit runs does not have such an advantage.

The third direction is in considering more alternatives to blocking. Making
the choice to block simplified our cost model and study. A twin choice was to
ignore idle time — we could have tried to do “more visualization” when the in-
transit resources completed their initial task and went idle. Making a system that
is more dynamic (not blocking and instead visualizing data from the next time
step and/or also adding tasks when there is idle time) would be an interesting
future direction. Such a system would be able to realize cost savings compared
to in-line, provided VCEF can offset transfer costs.
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