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ABSTRACT

Grid integration of the increasing distributed energy re-
sources could be challenging in terms of new infrastructure in-
vestment, power grid stability, etc. To resolve more renewables
locally and reduce the need for extensive electricity transmission,
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a community energy transaction market is assumed with market
operator as the leader whose responsibility is to generate local
energy prices and clear the energy transaction payment among
the prosumers (followers). The leader and multi-followers have
competitive objectives of revenue maximization and operational
cost minimization. This non-cooperative leader-follower (Stack-
elberg) game is formulated using a bi-level optimization frame-
work, where a novel modular pump hydro storage technology
(GLIDES system) is set as an upper level market operator, and
the lower level prosumers are nearby commercial buildings. The
best responses of the lower level model could be derived by nec-
essary optimality conditions, and thus the bi-level model could
be transformed into single level optimization model via replac-



ing the lower level model by its Karush-Kuhn-Tucker (KKT) nec-
essary conditions. Several experiments have been designed to
compare the local energy transaction behavior and profit distri-
bution with the different demand response levels and different
local price structures. The experimental results indicate that the
lower level prosumers could benefit the most when local buying
and selling prices are equal, while maximum revenue potential
for the upper level agent could be reached with non-equal trad-
ing prices.

1 INTRODUCTION

Aiming at reducing carbon dioxide emissions and slowing
down temperature increase under the Paris Agreement, clean
electricity underpins almost all efforts to shift towards decarbon-
isation worldwide. Based on Renewables 2019 Global Status Re-
port [1], a total of 181 gigawatts of renewable power was added
in year 2018, and the global renewable power capacity reached
2,378 gigawatts. For the fourth year in a row, additions of re-
newable power generation capacity outpaced net installations of
fossil fuel and nuclear power combined. In the U.S., renewable
energy sources accounted for about 11% of the total U.S. en-
ergy consumption and about 17% of the electricity generation in
year 2018. In the latest long-term projections, the U.S. Energy
Information Administration projects electricity generation from
renewable sources such as wind and solar to surpass nuclear and
coal by year 2021 and to surpass natural gas in year 2045 [2].

Due to the intermittent nature of renewables, efficient en-
ergy storage is critical in aiding the integration of variable re-
newable generation and supporting for more resilient power grids
by providing a portfolio of grid services, such as peak demand
shaving/reduction, system balancing services (fast frequency re-
sponse, contingency reserves), transmission services (congestion
relief, etc.) [3] [4]. Although various energy storage technolo-
gies are in developing phases, four storage types are considered
deployed: Pumped Hydroelectric Storage (PHS), Compressed
Air Energy Storage (CAES), Advanced Battery Energy Stor-
age (ABES), and Flywheel Energy Storage (FES) [5]. PHS and
CAES are large-scale technologies capable of discharge times of
tens of hours and capacities up to IGW. ABES and FES have
lower power and shorter discharge times (from seconds to 6
hours) with a very high cost. The first U.S. grid scale energy stor-
age facility was the Rocky River Pumped Storage plant in 1929
on Housatonic River, Connecticut [60], and the largest pumped
hydro facility in the world is in Bath County, VA, U.S. with a
capacity of 3GW [7]. However, PHS and CAES are geographi-
cally limited and there are very limited locations remaining. To
address the need for a more ideal energy storage, Ground-Level
Integrated Diverse Energy Storage (GLIDES) was invented aim-
ing at favorable characters of high efficiency, low capital cost,
and scalability without geographic constraints. GLIDES is mod-
ular pump hydro storage technology, it could be treated as the

combination of compressed air energy storage (CAES) and con-
ventional PHS [8], details on the main difference and system con-
figuration will be explained in the next section. Most recently, in
year 2020, the U.S. Department of Energy has launched the En-
ergy Storage Grand Challenge program to accelerate the develop-
ment, commercialization, and utilization of the next-generation
energy storage technologies.

The arising renewables and storage technologies have at-
tracted more and more attentions on the potential from demand
side management instead of traditional generation dominant op-
erations in the grid. Under that context, the traditional energy
consumer (e.g. building) has been transformed into a prosumer
(producer & consumer) that could interact with the power grid
via two-way communication capability, where storage systems
enable the flexibility for demand response. For instance, sev-
eral studies have presented the estimation framework to quantify
demand response potential for aggregated residential and com-
mercial buildings [9] [10]. Also a lot of different pricing strate-
gies for utility companies have been proposed to better leverage
response potential using a Stackelberg game [11] [12] [13] and
data-driven approaches [14]. Besides the research efforts of in-
centivizing the demand side to participate in market services at
the transmission level or distribution level, local energy transac-
tions at the community level [15] are also motivated by the de-
centralized local renewable generation and the noticeable power
loss in distribution networks. Fair profit distribution via busi-
ness model ensures the creation and operation of such a mar-
ket. Several models have been proposed to guarantee the relative
and absolute fairness in balancing collective and individual in-
terests [16], and the results demonstrate the existence of optimal
local transaction price that could maximize the absolute bene-
fit for each participants in the clusters. Different architectures
have been proposed for local transaction, for example, peer-to-
peer energy trading topology [17], and bi-level energy transac-
tion framework [18] [19]. Some previous works on bi-level en-
ergy trading are: one hour price determination of a retailer in
the wholesale market and the consumption scheduling of flexible
consumers [20], and one hour simultaneous operation of distri-
bution companies and microgrids [21]. The most related work
to this study is in [22], where a retailer with storage decides in-
ternal sharing prices at the upper level and prosumer microgrids
response to the prices by deciding their energy sharing profiles.
All related works presume that the internal buying price is greater
than the selling price which is generally true at the utility or
retailer level, however, at the community level, as independent
building prosumers, they will compare their gains with a sepa-
rate operation and may prefer equal price structure for more fair
negotiation. With the consideration of the high battery degra-
dation cost and return-of-investment advantage of GLIDES over
battery storage at large scale [8], we adopt the GLIDES system
at the upper level for potential large-scale applications.

In this research, the energy trading problem at a commu-



nity level is modeled as non-cooperative leader-follower game
with competitive objectives. Correspondingly, a general bi-level
optimization model is developed with the local market operator
(with GLIDES) as a leader and the prosumers as participants. In
designed experiments, different local price structures have been
proposed to compare the profit distribution. This paper is or-
ganized as follows: Section 2 provides a brief description on
the invented modular pump hydro storage technology. Section
3 models the local energy trading problem in a bi-level optimiza-
tion framework. Section 4 presents the experimental results. And
conclusions are drawn in Section 5.

2 GLIDES System Description

As descried in invention patent [23], a typical GLIDES sys-
tem consists of a liquid storage reservoir, pre-pressurized pres-
sure vessel(s), a pump/motor, and a hydraulic turbine/generator,
see Figure 1. The electricity is stored by using pump/motor to
pump liquid (e.g. water, oil, etc.) into the pressure vessel with
pre-pressurized gas (e.g. air, carbon dioxide, etc.). In discharg-
ing process, the now high-head water will be pushed by high
pressure gas through the hydraulic turbine to drive the electricity
generator. More details on the GLIDES system and its thermal
dynamics can be found in our previous studies [4] [24] [25].

As a modular pump hydro storage, the main difference be-
tween GLIDES and CAES is that it uses generally a high efficient
hydraulic machinery (water pump/turbine) instead of a gas com-
pressor/turbine. Also, it uses compressed air pressure to create a
high water head instead of lifting the water body to a upper reser-
voir (usually the mountain top). This design has eliminated the
geographical location limitation of conventional PHS (needs wa-
ter reservoir) and underground CAES (needs underground cav-
ern). In summary, the GLIDES system has several advantages:
1) it can be installed at ground level or below, basically anywhere
that can structurally support the pressure vessels; 2) it has the
ability to integrate a diverse range of low grade heat sources and
use the waste heat to boost efficiency in the discharging process;
3) it is scalable which makes it possible to be allocated and uti-
lized at the grid-scale or equipped for smart buildings for behind-
meter applications (see modular version in Figure 2-3). Storage
technologies with similar advantages could be found in liquid air
energy storage [26] and pumped thermal electricity storage [27].

The first-generation of the GLIDES prototype (see Figure 4)
has been designed to operate between 70-130 bar pressure range
with four 500 L vessels. In accounting for pump/motor, tur-
bine and electric generator losses, the 91% indicated efficiency
reduces to 66% round-trip efficiency for the first-generation of
GLIDES. For second generation of GLIDES, 84% round-trip ef-
ficiency could be achieved. Please note that the round-trip effi-
ciency greatly depends on different configurations and turboma-
chinery efficiencies [24] [25], and about 80% of the capital cost
is on the pressure vessel. Several cost reduction opportunities of

the GLIDES system is explored in [28].
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3 Bi-level Optimization Model
In the bi-level optimization here, the local market operator
at the upper level owns the GLIDES system, and the lower level



FIGURE 4: Prototypes of first (left) and second (right)
generation GLIDES. a) pressure vessels, b) pelton turbine, c¢) IR
image in charging, d) charging pump/motor, e) electric
generator

prosumers are equipped with solar photovoltaic (PV) panels and
battery storage. The lower level prosumers don’t have direct con-
nection with the external power grid and can only buy/sell energy
from/to local energy market. The surplus or unsatisfied energy
demand in the local market will be transacted with the external
power grid through the upper level market operator.

3.1 Upper level model
1) Objective function for local market

max OR =Y ,[(Ps; - es; — Pp; - ep;)

» _ €y
+(ptt+'2rlet;l,t_ptt 'Znetr{l),t)]

The objective of the local market operator at the upper level
is to maximize its own revenue OR, including revenue in the
transaction process with the external power grid (first term in
Eq.(1)) and the revenue from the local transaction market (sec-
ond term in Eq.(1)). etfm and ety , are local energy transaction
amount, defined in Table 2. Different from the battery storage
at the lower level, the degradation cost of GLIDES can be ne-
glected.

2) Price range in local market
Ps; < pt; <pt; <Pp, 2)

To absorb more distributed renewables locally and encour-
age prosumers to participate into the local energy transaction
market, the transaction (purchasing and selling) prices are set to
be within external price range in Eq.(2).

3) Load balance in local market

epitegt+Yety, =es teu+Y, et}'h, 3)

In the bi-level optimization here, it is assumed that the lower
level prosumers can only purchase energy from or sell energy

TABLE 1: Notation table for the upper level market operator

Index

T,t Decision periods, index for hours
Parameters

Pp;,Ps; | Purchasing, selling price in power grid

SV, At Size of pressure vessel, time period length
Vo, Po Initial volume and gas pressure in vessel
v,V Max, min liquid volume in pressure vessel
PP Max, min pressure level in pressure vessel

ne,Mu Pump efficiency, motor efficiency of GLIDES

nr,Ne Turbine efficiency, generator efficiency of GLIDES

O, O, Coef. of max, min charging flow rate

g, 0y Coef. of max, min discharging flow rate

Variables

pt;",pt; | Electricity buying, selling price in local market

ep:,es; Electricity bought from, sold to power grid

euy,egy Electricity charging to, discharging from GLIDES

xcy, xdy Binary status of pumping/generating of GLIDES

ver, vdy Charging, discharging flow rate of GLIDES

(N Liquid volume level, pressure level in GLIDES

via local energy transaction market at internal prices, and the up-
per level agent will transact with the external grid for supple-
ment. Hence, for the upper level, the total energy balance (en-
ergy transaction with external grid, power charged to/discharged
from GLIDES, energy transaction with lower level prosumer) is
maintained in Eq.(3).

4) Volume control in GLIDES

xc +xdy <1 4

V<vw <V (5)

vr ZVO (6)

vi = Vo + (vey —vdy) @)

v —vi_1 = (ve, —vdy), Vi > 2 (8)
V-gc-At-xc,SVC, <V Af-x¢ ©)
V-ay, At-xd; <vd, <V @, At -xdy (10)

For GLIDES energy storage, its liquid volume level in the
pressure vessel should be kept between a permitted lowest level
(Eq.(5)) and a maximum level, which is determined by the charg-
ing/discharging activities (Eq.(7)-(8)). The volumetric flow rate



TABLE 2: Notation table for the lower level prosumers

Index

n,k Index for buildings, segments in linearization

Parameters

SP,,SB, Size of solar panel, battery in buildings

EB,,At Initial energy level in battery, time period length
El,;,Sol; Nominal demand of buildings, solar radiation level
an HE El ns | Lower bound, upper bound of power demand

Qntkybngk | Coef. of linear function for each segment

Nes Ny Charging, discharging efficiency of battery

g, 0p Min, max coefficient of battery storage level

A, Ay Max coefficient of charging, discharging of battery
Y,0,p Coef. of degradation, load shifting, load curtailment
Variables

elns,leny Actual demand, inconvenience cost of load shifting
eth el Electricity bought from, sold to local market
evp,eb,, | Electricity generation from PV, energy level in battery
ecp;,edy, | Electricity charging to, discharging from battery

in the charging/discharging process cannot excess the range of
the lowest and highest levels (Eq.(9)-(10)). Eq.(4)) ensures mu-
tual exclusive charging/discharging status and Eq.(6)) ensures
that the final liquid volume level at the end time period T should
restore to its initial level.

5) Power generation for GLIDES

pi/Po=[(SV =Vo)/(SV —w1)]" (11)
eus -Mp - My < vey - pr /3600 (12)
eg; < Nr-Ng - vd; - p; /3600 (13)

The pressure-volume relation in Eq.(11) is given from the
polytropic gas compression/expansion process between a min
and max pressure Pascal. The polytropic index, u, is set to be
1.2 based on experimental data from the first lab-scale proof-
of-concept GLIDES prototype in Oak Ridge National Labora-
tory. For the linearization of the bilinear terms in Eq.(12)-(13)
and polytropic nonlinear term in Eq.(11), binary piecewise Mc-
Cormick relaxation method is used, the reader could refer to our
previous study [4].

3.2 Lower level model
1) Objective function for buildings

minOC, = ¥, [(pt," - etril,t -pt -
+4- (6‘ln,t - ELn,t)

:Zt[(ptt"'-eti 27
+len +y- (ecnt—|—edm)

frs)

Y- (ecns +edy ;)] (14)
frs)

]

For each individual prosumer n, the objective is to mini-
mize its operational cost OC,,, which equals the summation of the
transaction cost in the internal market, inconvenience cost of load
shifting, and the battery degradation cost. The quadratic term for
the inconvenience cost could be linearized using piecewise seg-
ment method in ref [22] and substituted by /¢, (Eq.(15)). For
every constraint (numbered by c1, c2, etc.) in lower level model,
its corresponding dual variable A is also shown after the colons.

2) Load shifting linearization (c1)

g €lug +bpgg < long : Aoty (15)

3) Electricity load balance (c2-c4)

evn; + edit ‘Na+ et,i, =ely; ety ACZ (16)
El,, <ely, <El,: A:ﬁ,)f (17)
Yoehs=(1=p) X Ely: A5t (18)

The load balance for the lower level prosumer in Eq.(16)
considers the energy generation from solar PV panel, battery dis-
charging, and energy purchasing from local market on the left
side, also the actual demand, battery charging, and energy sold
to local market on the right side. Eq.(17) ensures that energy
consumption should not drop below base load or exceed upper
limit, and Eq.(18) ensures total usage for normal operation with
potential curtailment.

4) PV generation (c5)

c5

0 < evay < SPy-Sol, -8y 1 Aoy, Ay, (19)

=n,t»

The energy generation from solar PV panel could be esti-
mated by its panel area, solar radiation level, and generation ef-
ficiency.

5) Battery storage (c6-c10)

0 < ecny < SBy- e : A, Tr (20)

0 < edns < SBy-Tg: A, Ay @1
by = EBpp: A (22)

SBy- Gy < eby, < SBy-Qp: AS, Any 23)
ebn,1 = EByo+ (ec1 —edy1) - At : ALY (24)

ebus — ebyy—1 = (ecpy —edyny) - At A5, Vi >2 (25)



The relationship between charging/discharging power, avail-
able energy level and charging/discharging activities for battery
storage could be modeled by Eq.(20)-(25), similarly as GLIDES
energy storage.

6) Boundary constraints (c11-c12)

0<ety, : A (26)
0<ety,: Aot 27)

All the variables in the upper level and lower level model are
positive. Here, the two variables for local energy transaction are
explicitly defined as positive by Eq.(26)-(27) since they are not
dependent on any other constraints above.

3.3 KKT transformation

To transform the bi-level optimization problem into a single-
level optimization problem, the lower level problem can be re-
placed with its Karush-Kuhn-Tucker (KKT) conditions as the
lower level model is continuous and linear and thus is convex.
The Lagrangian function for the lower level model is assumed
as L. It should be noted that the upper level variables pt;" and
pt; should be treated as parameters for the lower level model.
The KKT necessary conditions includes primal feasibility con-
straints, stationary constraints, complementary slackness con-
straints, dual feasibility constraints, shown as follows, respec-
tively. For the continuous convex model here, these KKT neces-
sary optimality conditions are also sufficient for optimality. More
details on KKT based bi-level transformation could refer to [29].

1) Stationary Constraints

ser = Eani A +AG A5+ T -2 =0 (29
(;_L =1 LA, =0 (29)

s = HAEATI=0 o

oy BT e =0 on
T = AT AR AR =0 G
G = AL AR AT =0

aitl,;i, =pt =it =iy =0 (35)

%II;“J =—pt, +h7 A’ =0 (36)

2) Complementary Slackness Constraints

0 < (Ieny — g €lyy —bugi) LAk >0 (37)

0< (elns—EL,,) LA;, >0 (38)
0< (Elyy —elys) L Apy >0 (39)
0<evy LA >0 (40)

0 < (SP,-Sol, - 8 —evy;) L Ay >0 1)
0<ecny LAS >0 (42)

0 < (SBy - T — ecuy) L Ay >0 43)
0 < edy, LAy, >0 (44)

0 < (SB, -y —edys) L Ay >0 45)
0 < (ebus — SBy-ag) L Aoy >0 (46)
0 < (SB, -0 —eby,) L Ay >0 @7
0<et,, L2} >0 (48)
0<etS, LAS*>0 (49)

As the constraints in Eq.(37) - (49) are nonlinear, auxiliary
binary variables are introduced to recast each of these constraints
into two linear constraints, for example, the constraint Eq.(37)
could be written as:

1
lcn,t —Antk- dn,t - bn,t,k < M‘E;,Jyk (50)

A <M-(1-x510) (51)

where )_cfllt i 18 binary variable and M is sufficiently large positive
constant.

3) Dual feasibility

Dual variables are free variables if the primal constraints are

equations, and all other dual variables should be nonnegative, see
the following constraints

AT A AR A ER (52)
c 3 73 5 7S c6 76
)Ln;?&n,t?A’nﬁt’&n,ﬂ/xmt’&n,ﬂln,t 2 O (53)
7 = 9 =9 . .
AT T A T A A1 > 0 (54)

4) Strong duality property

According to the strong duality theory, the objective of
the primal problem is equal to the objective of the correspond-
ing dual problem, therefore, the lower level objective function
Eq.(14) satisfies the following relationship when the lower level



problem reaches optimality.

Y, [(ptfr -et,"l!, —pt; -etn"’t) +lcn+7y-(ecny —|—ed”7,)]
—c3 —
= Zt [Zk(kd bn,t,k) + 2“03 'ﬂn,t - An,t 'Eln,t

n,tk =nt
) —c5
+ 254 (1—p) - Elyy — A, - SPy - Sol; - 8y (55)
- SBy-Tp — Mgy - SBy Ty + A - SB, -

n

——9 —
_ An)t -SB,, - aB] 4 A;S 'EBn,O + AC}IO .EBm0

Due to equation (55), the bilinear term Y.,, , (pt;" - et} , — pt; -
et;),) in the upper level objective function Eq.(1) could be substi-
tuted. The resulted single level optimization model is a mixed-
integer linear program as follows. It could be solved to global
optimal by off-the-shelf solvers, like CPLEX, GUROBI.

maxOR =Y, (Ps; -es; — Pp; -ep;)
+ ):n {Zt [Zk (/,L,ﬁyk . bmt,k) +&2,3t ’E_ln,t

Ty g+ A8 (1) Ely,

TSPy -Soly - 8y — Ky - SBy - T (56)
RSBy T+ A - SB, - au

- Iﬁf, -SBy - 0| + A - EByo+ A5\ -EByo }

—Ya X [lcn,t +7-(ecns + edn,t)]

And the final constraint sets for the resulted single level
optimization includes: upper level constraints (2)-(13), lower
level primal feasibility constraints (15)-(27), lower level station-
ary constraints (28)-(36), linearized version for lower level com-
plementary slackness constraints (37)-(49), and lower level dual
feasibility constraints (52)-(54)

4 Numerical Experiments

For the GLIDES system in the upper level, one pressure ves-
sel with 20 kW rated power and 4 hours of storage time is as-
sumed here. The other parameter settings of GLIDES are listed
in Table 3.

TABLE 3: Parameter settings for the GLIDES system

Parameter | P(kpa) P V(m?) \4 NY% Vo Py

Value 13000 7000 37.211 0 92.331 | 18.605 | 9170.095

Parameter | np,nm nrG | ®c,0q | Q.0 — — —

Value 0.9,0.9 | 09,09 0.25 0.083 - - -

Three prosumers: large office nl, supermarket n2, and large
hotel n3 are assumed for the lower level in this research. Their

nominal load profile E/ are obtained from the reference data
for commercial buildings maintained by the U.S. Department
of Energy [30] and scaled to the same level. By name or-
der, PV size and power capacity of battery are set as SP =
[180,200,200](m?), SB = [150,100,120](kW). The following
parameters are set to be same for all prosumers: 1Ny = 0.25,
a, =005 a, =1, a. =0.25, @y =0.1, n. = ng = 0.95,
¥=10.008, p = 0. For each hour, £l =0.8-El, El=1.2-El Ini-
tial energy level EB = 0.5 - SB. The nominal load profile and net
load profile (equals nominal load - solar power) for prosumers
nl ~ n3 are shown in Figure 5-6. Since the available solar power
mainly concentrates in the time period 6:00 to 20:00, hence, this
time period is chosen as the decision period (totally 15 hours) in
this research.
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FIGURE 5: Nominal demand of three prosumers
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FIGURE 6: Net demand of three prosumers

To study energy transaction in local market, two different
transaction price structures (equal pt™ = pt~) and (nonequal
ptT > pt7) and three different demand response level (6 =
0.001,0.005,0.01) for prosumers are compared in the experi-
ments. The obtained transaction prices are shown in Figure 7-9.



External prices (dash lines) are the upper and lower bound for
local market and the transaction prices from equal price struc-
ture (blue line) are always within the range of local buying (black
line) and selling prices (red line) for the nonequal price structure.

Since the upper level agent is trying to maximize its profit, it
intends to set the local transaction prices as close as the external
prices, for instance, the upper level has set the local buying price
pt™ to be the external buying price Pp before 10:00 and after
17:00 as the net demand profile indicates that there won’t be sur-
plus energy for transaction in these two time periods (load shift-
ing needs to be considered). Meantime, when there are potential
local transaction, the upper level also needs to take the responses
from all lower level prosumers into account when setting the best
prices because the prices will affect their local energy transaction
amount.

The liquid volume level in the pressure vessel of GLIDES
is also plotted in Figure 10 for § = 0.001 case. The discharged
power of GLIDES with equal price structure is less than that of
nonequal price structure, which implies more local energy trans-
action among prosumers with equal price structure. This conclu-
sion could be backed up by the local energy transaction amount
results shown in Figure 11-12, which shows prosumer n3 sold
more energy and n1, n2 have bought more energy (between 10:00
and 17:00) when local buying and selling prices are set to be
equal.

Bi-level optimization, §=0.001
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FIGURE 7: Local energy transaction price (6 = 0.001)

In order to compare the cost and benefit distribution in the
bi-level optimization, single level separate operation for the three
prosumers are also conducted. In the separate operation, local
energy transaction is not allowed and each prosumer optimizes
its own operation schedule based on external prices Pp, Ps. All
the detailed results are summarized into Table 4.

In the separate operation, GLIDES has zero profit because
external grid Pp is greater than Ps all the time and thus there
is no arbitrage space. For individual prosumers, their cost will
be slightly lower if they are less sensitive to load shifting (lower
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0) for both separate operation and bi-level optimization. When
the local market adopts equal price structure, as mentioned, more
local energy transaction is expected (comparison between Figure
11 and 12) and each prosumer could share more benefit due to
lower local prices, however, the upper level GLIDES will have
less revenue potential with equal transaction price, around $2 ~ 3
in Table 4. When local transaction prices are not equal, the upper
level has more arbitrage space to boost its revenue from around
$3 to $45, meanwhile, the prosumers’ cost increases as compared
to equal price structure but it is still guaranteed (by lower local
transaction prices) to be not greater than the cost in the separate
operation.

TABLE 4: Cost comparison for the bi-level optimization with
different internal price structures

Separate Profit ($) Operation Cost ($)
Pp,Ps GLIDES nl n2 n3

6 =0.001 0 191.621 | 173.417 | 129.127
6 =0.005 0 197.835 | 181.052 | 136.526
6=0.01 0 198.595 | 181.997 | 138.288
Bi-level Profit ($) Operation Cost ($)

ptT =pt~ | GLIDES nl n2 n3

6 =0.001 2.237 183.466 | 166.532 | 94.222
6 =0.005 3.072 185.361 | 171.337 | 107.426
6=0.01 3.282 184.113 | 170.892 | 112.371
ptT > pt~ | GLIDES nl n2 n3

6 =0.001 37.767 | 191.357 | 172.492 | 128.899
6 =0.005 45.055 | 197.503 | 180.172 | 134.212
6=0.01 46.405 | 198.267 | 181.267 | 135.724

CONCLUSION

In this work, an application case of local energy trading
in smart community is studied for a novel modular pump hy-
dro storage. Bi-level optimization is adopted for energy pricing
and trading locally with GLIDES as the upper level agent and
three commercial buildings as the lower level prosumers. De-
tailed KKT conditions for the lower level model is derived to
transform bi-level optimization into single level mixed-integer
linear optimization. With lower energy transaction prices, pro-
sumers are promoted to be involved in the local market and their
operation cost will be guaranteed to be lower than the separate
operation. The results also indicate revenue potential for the up-
per level agent is between $2 ~ $45 depending on the local price
structure in studied cases. More cooperative optimization and
profit sharing in the local market will be studied in the future.
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