
Neuroevolution of Spiking Neural Networks Using
Compositional Pattern Producing Networks
Daniel Elbrecht

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

8de@ornl.gov

Catherine Schuman
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

schumancd@ornl.gov

ABSTRACT
Spiking neural networks (SNNs) offer tremendous potential for the
future of AI, including the ability to be implemented efficiently on
neuromorphic systems. One of the challenges in building function-
ing SNNs is the training process, as standard error back-propagation
cannot be easily applied. In this work, we extend an evolutionary
approach for training SNNs by implementing an indirect encoding
of individuals. Specifically, we evolve SNNs using Compositional
Pattern Producing Networks, which are able to learn the connec-
tivity patterns between neurons defined in a coordinate space. We
validate the approach on multiple control and classification tasks.

KEYWORDS
spiking neural networks, genetic algorithms, evolutionary algo-
rithms, indirect encoding, neuromorphic computing

ACM Reference Format:
Daniel Elbrecht and Catherine Schuman. 2020. Neuroevolution of Spiking
Neural Networks Using Compositional Pattern Producing Networks. In
International Conference on Neuromorphic Systems 2020 (ICONS 2020), July
28–30, 2020, Oak Ridge, TN, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3407197.3407198

1 INTRODUCTION
Spiking neural networks (SNNs) are a class of neural networks
where network communication is done via spikes, which are bi-
nary signal that propagate information through the network. SNNs
incorporate biologically meaningful features such as spiking thresh-
olds, neuron potential leakage, synaptic strength, and spike timing
delay. A spectrum of biological fidelity exists within SNN models,
with the most realistic models even including cellular ion gradients.

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was 
authored or co-authored by an employee, contractor or affiliate of the United States 
government. As such, the Government retains a nonexclusive, royalty-free right to 
publish or reproduce this article, or to allow others to do so, for Government purposes 
only.
ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA

Additionally, SNNs are designed to operate on neuromorphic hard-
ware, which is characterized by parallel memory and computation,
low energy inference, and other desirable features [15].

The same properties that make SNNs unique also create diffi-
culties in training. Because the loss function for an SNN and the
activation functions of individual neurons are not differentiable,
back-propagation cannot be directly applied. Certainmethodologies
have been developed to apply a form of back-propagation to SNNs.
Such methods typically impose additional constraints on SNNs
to make them amenable to back-propagation, such as enforcing a
feed-forward architecture, or eliminating the timing component
from computations. Thus, they only operate on a subclass of po-
tential SNN architectures. Evolutionary algorithms have emerged
as a strategy for training or designing SNNs. In evolutionary ap-
proaches, neuron and synapse parameters as well as the network
connectivity and structure are all potentially subject to optimiza-
tion. Since evolutionary algorithms only require a definition for an
individual and the ability to measure individual fitness, they are
flexible for optimization in a wide variety of problem spaces.

In evolutionary algorithms, individuals are represented by en-
codings, which can either be direct or indirect. In a direct encoding,
every attribute that defines an individual is separately specified,
which can have an effect on the scalability of the evoluationary
approach. Conversely, in an indirect encoding, sections of the en-
coding are reused, so that the similar patterns and properties will
appear multiple times throughout the individual. Indirect encod-
ings have the ability to scale, so that the encoding (genotype) is
much smaller than the individual (phenotype). Additionally, indi-
rect encodings should be able to exploit regularities in the problem
space more easily than direct encodings. The hypothesis of this
paper is that SNNs can be evolved through an indirect encoding
approach. We demonstrate this by using an evolutionary algorithm
with an indirect encoding to optimize SNNs for several control and
classification tasks.

2 BACKGROUND AND RELATEDWORK
2.1 Training Methods for SNNs
A common approach for training or learning in SNNs is Hebbian
learning or synaptic plasticity mechanisms like spike timing depen-
dent plasticity (STDP) [5]. STDP is based on the neuroscience axiom
principle that “neurons that fire together, wire together." Though
STDP is typically an unsupervised training approach, there have
been efforts to extend it to be a supervised learning approach [9].
A key issue with utilizing approaches such as STDP for training or
learning in SNNs is that it is often not clear what the structure of the
network should be (i.e., number of neurons or layers, connectivity

https://doi.org/10.1145/3407197.3407198
https://doi.org/10.1145/3407197.3407198


ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA Elbrecht and Schuman

X1

Y1

X2

Y1

W

D

T

Figure 1: Generating a spiking neural network from a com-
positional pattern producing network. Coordinates for a
pair of neurons (left, red) are passed in to the compositional
pattern producing network (middle). The network output
determines the weight and delay of the connection between
the two neurons in the spiking neural network (right). This
process is repeated for each pair of neurons to construct the
full network.

between layers, etc.). This can make extending STDP-like training
approaches to new applications difficult.

Multiple approaches exist which apply back-propagation to SNNs
[2, 10, 16, 17]. Since the spike function is non-differentiable, these
methods cannot employ traditional back-propagation, and modify
the gradient update or the SNNs themselves in order to overcome
this difficulty. These types of methods often enforce architectural
constraints on the resultant SNNs, for example, by requiring a
feed-forward SNN architecture. Therefore there exists many SNN
topologies with desirable properties such as recurrence that cannot
be optimized by these methods.

Evolutionary algorithms have also been developed for training
SNNs [4, 7, 12, 14]. In an evolutionary approach, a population of
SNNs is evaluated, and stochastic variation and selection processes
are applied to generate the next population. Over successive iter-
ations of variation and selection, this process will yield networks
with increasing fitness, which can be widely defined as accuracy
on a classification task, or maximum reward signal from an envi-
ronment. One significant advantage of evolutionary approaches is
their flexibility. When applied to SNNs, evolutionary optimization
has the potential to act on any network topology, as well as to opti-
mize any network parameter. For example, in the EONS algorithm
[12], both network structure and parameter weights are optimized
through the evolutionary algorithm.

Population of CPPN
genomes

Reproduction via mutation and 
crossover result in next generation

Truncation based on fitness 
identifies individuals eligible 

for reproduction

Evaluate fitness

Defined 
neuron 

substrate

CPPN

Spiking
neural

network

Performance of 
SNN on task 
gives fitness

Figure 2: Overview of proposed method

2.2 HyperNEAT
NeuroEvolution of Augmenting Topologies (NEAT) is a method for
evolving traditional neural networks [20]. It uses a direct encoding,
each of the network is individually represented in the genome.
NEAT offers several advantages as an evolutionary algorithm: It
allows for crossover between networks by tracking the origin of
each parameter (node or connection) in the genome. This allows
homologous genes to be “lined-up" and swapped during crossover.
NEAT also uses speciation to protect innovation.

Compositional Pattern Producing Networks (CPPN) are a class
of neural networks which aim to abstract the processes of natural
evolution [18]. These networks are made up of neurons with differ-
ent activation functions, including periodic functions like sine and
symmetric functions like absolute value. These functions can be
composed to produce patterns with properties observed in nature,
such as bilateral and radial symmetry. In the HyperNEAT algorithm,
CPPNs are extended to define neural networks [19][6]. The main
insight was that while a CPPN with two inputs can define some
characteristic at a single point, such as a pixel value for a pattern,
a CPPN with four inputs can define a relationship between a pair
of points. In HyperNEAT, CPPNs are used to define the weights
of connections within a neural network. The fixed coordinated
of neurons, known as a substrate, are then inputs into the CPPN.
Then, to generate well performing neural networks, the CPPNs are
modified through the evolutionary algorithm NEAT.

3 METHODOLOGY
Here we present a method for evolving SNNs using a generative
encoding approach. First, we will describe the SNN model used in
the study, then describe the algorithm for evolving the networks.

3.1 Spiking Neural Network Model
We utilize accumulate-and-fire neurons models and synapses with
synaptic delays. To encode inputs values, inputs are converted into
spike trains through a combination of binning and varying spike
train length [13]. These spike trains are then applied to the input
neurons in the SNN. Classification and control decisions are made
by selecting the output neuron which has fired the most times
in a given time frame. The SNNs in this model support complete
recurrence, where any neuron can be connected to any other neu-
ron, including inputs and outputs. The parameters of the SNNs
to be optimized through the evolutionary algorithm are the con-
nectivity patterns, synapse weights, delays, and neuron thresholds.
These networks are compatible with the Caspian neuromorphic
system [8], and thus can be directly deployed on that hardware
without a mapping procedure.

3.2 Evolving SNNs using CPPNs
We use an evolutionary algorithm to evolve compositional pattern
producing networks, which determine the connectivity patterns of
the resulting SNNs. The format of our approach is as follows: an in-
dividual in our population is a CPPN, defined by its internal weights
and activation functions. Any individual neuron in the CPPN can
have any activation function from a defined set (sin, tanh, gauss,
relu, identity). The activations and weights are represented in a
linear genome, which defines one CPPN. To generate an SNN from



Neuroevolution of Spiking Neural Networks Using Compositional Pattern Producing Networks ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA

the CPPN, we input into the CPPN every pair of coordinates for
neurons, with the outputs defining the weight and synaptic delay of
the resulting connection. SNN neuron firing thresholds are defined
by a third output. The process of generating an SNN from a CPPN
is shown in Figure1. In order to encourage sparsity in the network,
outputs beneath a certain threshold result in no connection being
formed. The positions of the SNN neurons, referred to as the sub-
strate, are defined beforehand, and fixed for the duration of the
evolutionary search. Once the connectivity for the SNN is defined,
the network is constructed and evaluated on a given task, such as
classification or control. Therefore, the fitness of a CPPN within our
genetic algorithm is defined by the performance of the generated
SNN on the specified task. Evolution of the CPPNs is done through
the NEAT algorithm. Figure 2 demonstrates an overview of the full
method.

Figure 3: Effect of weight and structural mutation rates on
algorithm performance. Higher performance is achieved us-
ing the low structural and weight mutation rates

4 RESULTS
To demonstrate applicability of the proposed approach, we apply
it to multiple classification and control tasks. For control, we test
the approach in the classic control environments available in the
OpenAI gym[3]. For classification, we evaluated on the UCI wine
and breast cancer datasets[1].

4.1 Effect of evolutionary hyper parameters on
proposed method

We first explore the effect of several hyper parameters on the per-
formance of the proposed method. We investigated the effect of
the weight and structural mutation rates. The weight mutation
rate is the independent probability of connection weights in the
CPPN being mutated. The structural mutation rate is the probabil-
ity of structural mutations; node addition, node removal, synapse
addition, synapse removal. All other hyper parameters were held
constant. We evaluated each set of hyper parameters 15 times on the
cart-pole balancing task. The results of this experiment are shown
in Figure 3. Best performance is achieved with a comparatively low
weight mutation rate and low structural mutation rate. Indirect

Feed Forward Radial p-value
Cart pole balancing 0.612 1.0 0.01
Mountain car 0.865 1.0 0.66
Acrobot 1.0 1.0 0.99
Cancer 1.0 1.0 0.99
Wine 0.95 1.0 0.82

Table 1: Relative performance of radial and feed forward
neuron substrate configurations on multiple control and
classification tasks

encodings can be more sensitive to mutation, since there is a layer
of abstraction between genotype and phenotype. Consequently,
a single structural mutation can impact a significant portion of
the parameters of the expressed spiking neural network. This may
explain why a low structural mutation rate produces better results.

4.2 Effect of neuron substrate configurations
One advantage of using a CPPN encoding is that the neurons in the
spiking neural network have defined locations. Because of this, re-
lationships between input channels can be leveraged in the learned
encoding. Therefore, it is expected that, for certain environments
or problem spaces, a neuron configuration which exploits relation-
ships in that space will outperform other neuron configurations.
To test this, we examined the performance of multiple neuron con-
figurations ten times across a variety of tasks. We compared the
performance of a feed forward and radial neuron configuration,
shown in Figure 4. The results of the comparison are shown in Table
1. P-values shown are derived from a two-tailed Welch’s t-test, com-
paring 10 samples of each substrate configuration across multiple
tasks. Across tasks, there is variation in the relative performance
of each of the substrate configurations. While the radial substrate
performs greater than or equal to the feed forward substrate across
tasks, the degree varies significantly, indicating the task specific
importance of the substrate.

4.3 Comparison with existing methods
We compare the performance of the proposed method with EONS,
another algorithm for evolving spiking neural networks. Perfor-
mance of the twomethods was compared on the cart-pole balancing
task. Results of this comparison are shown in Figure 5. With popu-
lation size of 500, both methods converge on the maximum fitness
for the task, though EONS converges in fewer epochs.

5 DISCUSSION AND FUTUREWORK
In this work, we introduce an indirect encoding approach for gener-
ating spiking neural networks through an evolutionary algorithm.
The purpose of the work was to demonstrate the feasibility and
effectiveness of the method. The experiments shown demonstrate
strengths and weaknesses of the approach and also identify paths
for future research. One difficulty witnessed with the approach is
the sensitivity to mutations the genetic encoding. Since the muta-
tion of a single weight can impact the connectivity of a significant
portion of the spiking neural network the hyper parameters must



ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA Elbrecht and Schuman

(a) Feed forward neuron configuration

(b) Radial neuron configuration

Figure 4: Two possible neuron configurations, feed-forward
and radial. Neuron configurations can be selected to suit a
particular problem. The evolutionary algorithm learns the
spatial connectivity pattern between the neurons in this
space.

be carefully tuned to allow for an efficient search of the problem
space.

One theoretical advantage of utilizing an indirect encoding is
the ability to scale to large network sizes. In this work we only test
networks with less than one hundred neurons. Therefore the large
network scaling properties of using CPPNs to evolve spiking neural
networks remain to be explored. Additionally, there are many other
relationships between the unique characteristics of spiking neural
networks and CPPNs that remain to be explored. For example,
different strategies for encoding inputs may entail different neuron
configurations for the substrate. There is also precedent in the
literature for using Hyper-NEAT to encode a spatial pattern of
STDP-like weight update rules [11]. Such a strategy could be applied
in conjunction with the current approach to enable learning.

6 CONCLUSIONS
We demonstrate a indirect encoding approach for evolving spik-
ing neural networks. This approach evolves compositional pattern
producing networks which generate spiking neural networks that
can perform across multiple classification and control tasks. Future
work may exploit more relationships between HyperNEAT and
SNNs and extend this method to more complex tasks.

Figure 5: Comparison of EONS and proposedmethod on cart-
pole balancing task. Lines show averagemax fitness value at
each epoch over ten evolutionary runs for each algorithm.
Shaded areas show the 1 standard deviation range for the
maxfitness values acrossmultiple evolutionary runs at each
epoch.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research, under contract number DE-AC05-00OR22725.

REFERENCES
[1] Arthur Asuncion and David Newman. 2007. UCI machine learning repository.
[2] S.M. Bohte, J.N. Kok, and J.A. La Poutré. 2000. SpikeProp: backpropagation for

networks of spiking neurons.. In ESANN. 419–424.
[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] S. Cawley, F. Morgan, B. McGinley, S. Pande, L. McDaid, S. Carrillo, and J. Harkin.
2011. Hardware spiking neural network prototyping and application. Genetic
Programming and Evolvable Machines 12, 3 (2011), 257–280.

[5] Yang Dan and Mu-ming Poo. 2004. Spike timing-dependent plasticity of neural
circuits. Neuron 44, 1 (2004), 23–30.

[6] David B D’Ambrosio, Jason Gauci, and Kenneth O Stanley. 2014. HyperNEAT:
The first five years. In Growing adaptive machines. Springer, 159–185.

[7] N. Kasabov, V. Feigin, Z. Hou, Y. Chen, L. Liang, R. Krishnamurthi, M. Othman,
and P. Parmar. 2014. Evolving spiking neural networks for personalisedmodelling,
classification and prediction of spatio-temporal patterns with a case study on
stroke. Neurocomputing 134 (2014), 269–279.

[8] J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok.
2020. Caspian: A Neuromorphic Development Platform. In NICE: Neuro-Inspired
Computational Elements (NICE). ACM, To appear.

[9] Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masquelier, Abbas Nowzari-
Dalini, and Mohammad Ganjtabesh. 2018. First-spike-based visual categorization
using reward-modulated STDP. IEEE transactions on neural networks and learning
systems 29, 12 (2018), 6178–6190.

[10] Daniel Rasmussen. 2019. NengoDL: Combining deep learning and neuromorphic
modelling methods. Neuroinformatics (2019), 1–18.

[11] Sebastian Risi and Kenneth O Stanley. 2010. Indirectly encoding neural plasticity
as a pattern of local rules. In International Conference on Simulation of Adaptive
Behavior. Springer, 533–543.

[12] Catherine D. schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok,
and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems.
In NICE: Neuro-Inspired Computational Elements (NICE). ACM, To appear.

[13] Catherine D Schuman, James S Plank, Grant Bruer, and Jeremy Anantharaj. 2019.
Non-Traditional Input Encoding Schemes for Spiking Neuromorphic Systems. In
2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–10.

[14] Catherine D Schuman, James S Plank, Adam Disney, and John Reynolds. 2016.
An evolutionary optimization framework for neural networks and neuromorphic
architectures. In 2016 International Joint Conference on Neural Networks (IJCNN).
IEEE, 145–154.



Neuroevolution of Spiking Neural Networks Using Compositional Pattern Producing Networks ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA

[15] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell,
Mark E Dean, Garrett S Rose, and James S Plank. 2017. A survey of neuromorphic
computing and neural networks in hardware. arXiv preprint arXiv:1705.06963
(2017).

[16] William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B
Aimone. 2018. Whetstone: A method for training deep artificial neural networks
for binary communication. arXiv preprint arXiv:1810.11521 (2018).

[17] Sumit Bam Shrestha and Garrick Orchard. 2018. Slayer: Spike layer error reassign-
ment in time. In Advances in Neural Information Processing Systems. 1412–1421.

[18] Kenneth O Stanley. 2007. Compositional pattern producing networks: A novel
abstraction of development. Genetic programming and evolvable machines 8, 2
(2007), 131–162.

[19] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. 2009. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life 15, 2
(2009), 185–212.

[20] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99–127.
https://doi.org/10.1162/106365602320169811

https://doi.org/10.1162/106365602320169811

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Training Methods for SNNs
	2.2 HyperNEAT

	3 Methodology
	3.1 Spiking Neural Network Model
	3.2 Evolving SNNs using CPPNs

	4 Results
	4.1 Effect of evolutionary hyper parameters on proposed method
	4.2 Effect of neuron substrate configurations
	4.3 Comparison with existing methods 

	5 Discussion and Future Work
	6 Conclusions
	Acknowledgments
	References

