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Localized deformation, including that by the deformation-induced shearing martensitic phase transformation, is
responsible for hardening and embrittlement in irradiated face-centered cubic alloys. These localized
deformation processes can have profound consequences on the mechanical integrity of common structural
metals used in extreme radiation environments such as nuclear reactors. This article aims to review and
understand exactly how irradiation affects the martensitic phase transformation in face-centered cubic alloys,
with an emphasis on austenitic stainless steel, given its ubiquity in the archival literature. The influence of
irradiation on stacking fault energy and subsequent implications on the phase transformation are discussed.
Mechanisms by which irradiation-induced microstructures enhance the phase transformation are also described,
including the surface energy contribution of irradiation-induced cavities (i.e., voids and bubbles) toward the
critical martensite nucleation energy, and partial dislocation—cavity interactions. A deformation mechanism map
illustrates how irradiation-induced cavities can modulate the martensitic transformation pathway.

Irradiation of metals and alloys with energetic particles causes
severe degradation of mechanical performance, most notably
through hardening and embrittlement. These phenomena
dramatically compromise the safety, operating margins, and
lifetime of structural and cladding components of nuclear
fission and fusion reactors. Mechanistically, the most signifi-
cant contributor to irradiation hardening and embrittlement in
face-centered cubic (fcc) metals and alloys tested at low
temperatures (i.e., 400 °C, outside of the creep regime) is
the tendency toward localized deformation [1, 2, 3].

Localized deformation in fcc metals and alloys can occur
through several modes, including dislocation channeling [4, 5],
slip [6], twinning [7], and the so-called martensitic phase
transformation [8, 9]. The martensitic transformation is
a diffusionless phase transformation, wherein fcc y Fe austenite
reverts to hexagonal close-packed (hcp) € martensite or body-
centered cubic (bcc) o martensite. All of the aforementioned
localized deformation mechanisms are known to interact in
a complex manner [10]. In nonirradiated materials, these

mechanisms and their interactions are dependent upon
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deformation temperature, strain, strain rate, and stacking fault
energy (SFE). Meric de Bellefon and van Duysen [10] have
recently reviewed these low-temperature deformation mecha-
nisms in austenitic stainless steels (SSs).

Under irradiation, localized deformation modes can occur
more readily. Specifically, the activation of dislocation chan-
nels, deformation twins, and deformation-induced martensites
occurs at higher deformation temperatures, lower strains, and/
or lower strain rates than in nonirradiated materials [1, 11, 12].
Most studies on deformation of irradiated fcc alloys have
focused on dislocation channeling or deformation twinning,
rather than on the martensitic transformation. As such, the
mechanisms underpinning the irradiation enhancement of
martensitic transformations remain only moderately under-
stood. Historically, most studies have tended to ascribe de-
formation-induced martensites to the twinning associated with
irradiation-induced dislocation loops (i.e., interstitial-type
defects) [13, 14, 15, 16]. Recently, however, porosity has been
shown to enhance the martensitic transformation in shape
memory alloys [17, 18, 19] through surface energy effects. A

series of systematic deformation studies on neutron-irradiated
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AISI 304L SS have also corroborated the central role of cavities
(i.e., irradiation-induced voids and/or bubbles, rather than
metal casting-induced pore defects) in the activation of
martensitic transformations. Thus, there is considerable evi-
dence throughout the archival literature on the importance of
both interstitial-type (e.g., loops) and vacancy-type (e.g.,
cavities) irradiation defects on the martensitic phase
transformation.

This article will review the effects of irradiation on localized
deformation, with specific focus on the deformation-induced
martensitic phase transformation. This article will begin with
a brief overview of the well-understood mechanisms by which
irradiation enhances dislocation channeling and deformation
twinning. Subsequently, the article will review the existing
literature on the deformation-induced martensitic phase trans-
formation in irradiated materials. The role of SFE, interstitial
type, and vacancy-type irradiation-induced defects on the
deformation-induced martensitic phase transformation path-
way will be surveyed. Finally, a deformation mechanism map
will be generated based on observations in the archival
literature, revealing the role of irradiation-induced cavities on

the martensitic phase transformation pathway.

The interplay of low-temperature deformation mechanisms can
be understood by considering the deformation mechanism
maps from the fcc y austenite phase in high-Mn steels
commonly known as transformation-induced plasticity (TRIP)
or twinning-induced plasticity (TWIP) steels, Fig. 1(a). The
influence of SFE, strain, and test temperature on deformation
mode is similar in 300-series austenitic SSs as in TRIP/TWIP
steels. In general, with decreasing SFE and/or test temperature,
the deformation mechanism tends to evolve from dislocation
glide to twinning to deformation-induced martensitic trans-
formations [20, 21]. This evolution in deformation mode cor-
responds to a general increase in ultimate tensile stress (UTS)
as well as a peak in uniform elongation (UE) when deformation
twinning is predominant [Fig. 1(a)]. The o martensites tend to
be lower SFE, lower temperature phases than & martensites,
although complex deformation microstructures exhibiting
a combination of o' martensites, £ martensites, and/or twins
can be observed under varying loading conditions, strains, and
alloy compositions [12, 20, 21, 22, 23, 24, 25, 26, 27, 28].
Irradiation produces a supersaturation of point defects—
vacancies and interstitials—in metals and alloys; over time,
these defects alter the microstructure and can subsequently
have profound impacts on deformation mechanisms [29].
Irradiation-induced Frenkel pair defects can recombine, remain

as freely migrating vacancies and interstitials, diffuse to point
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Figure 1: Deformation mechanism maps for (a) TRIP/TWIP steels as a function
of temperature and SFE, from Ref. 20 and (b) irradiated austenitic SS as
a function of irradiation dose, adapted from Ref. 34. (color online)

defect sinks (e.g., grain boundaries), or diffuse into clusters of
vacancies or clusters of interstitials [30]. With increasing
irradiation fluence (i.e., dose), a defect microstructure evolves,
the most notable features of which are dislocation loops and
voids. Dislocation loops are two-dimensional defects typically
formed by collapse of interstitial-type or vacancy-type platelet-
like clusters. However, in austenitic SS irradiated at nuclear
reactor-relevant conditions, there is a strong bias for the
formation of interstitial-type Frank loops [29, 31, 32, 33].
Voids are three-dimensional vacancy-type defects, typically
faceted along crystallographic planes [29, 32, 33]. In-reactor
irradiation also produces transmutation gases, often He in
austenitic SS, which can agglomerate into bubbles [30]. Bubbles
can be difficult to distinguish from voids, although their
internal gas pressure creates a spherical, nonfaceted appearance
[30].

Under irradiation, Byun et al. [34] suggest that a similar
evolution in deformation mechanism occurs in austenitic SS as
in TRIP/TWIP steels, although the irradiation fluence—rather
than SFE—is believed to strongly influence the operative
deformation mechanism. The influence of irradiation on de-
formation mechanisms is mapped for irradiated austenitic SS,
as shown in Fig. 1(b). With increasing load, the deformation
mechanism evolves from dislocation-mediated to formation of
stacking faults to deformation twinning [34]. We also add
a theorized region of martensitic transformation at higher

irradiation doses, based on reports in the archival literature to
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be presented later in this review [blue dashed region, Fig. 1(b)].
Irradiation-induced embrittlement occurs at high doses by
eliminating dislocation-mediated plasticity in favor of plasticity
through localized channeling or deformation twinning.

Historically, studies on localized deformation of irradiated
materials have most commonly focused on dislocation chan-
neling [3, 35, 36, 37], primarily in austenitic SSs, and often in
the context of stress corrosion cracking (SCC) susceptibility [5,
38]. Dislocation channeling in irradiated materials occurs when
gliding dislocations are pinned by clusters of irradiation-
induced defects, absorb these defects to become unpinned,
and then cross-slip under increasing stress [39]. Multiple
passing dislocations ultimately create a defect-free path, or
“channel,” characterized by dense dislocation tangles along the
channel-matrix wall [40]. Subsequent dislocations can then
easily glide in channels in a highly localized deformation
process [39, 40]. There is evidence that channel formation
occurs most readily at grain boundary triple junctions [5] and
in the middle of grain boundaries between grains having high
Schmid factor mismatch [41]. Mechanisms of dislocation
channeling in irradiated materials, and the interaction between
dislocation slip, cross-slip, and channeling, have recently been
reviewed in Refs. 42 and 43.

The idea that irradiation enhances the propensity for
deformation twinning has also been established in the literature
for decades. The seminal Cottrell & Bilby [13] deformation
twinning mechanism suggests that prismatic loops can serve as
sources of twinning partials. A decade later, Venables [14, 15]
confirmed that neutron irradiation-induced prismatic loops
cause gliding dislocations to dissociate into partial dislocations,
which then jog to create a twin source, as sources of twinning
partials. In the 1990s through 2000s, a series of studies from
Byun, Hashimoto, Lee, and colleagues [2, 4, 7, 11, 12, 16, 34, 44,
45, 46, 47, 48, 49, 50] have shown that a wide variety of neutron
irradiations of 300 series austenitic SSs conducted over temper-
atures ranging ~200-450 °C and doses ranging ~0.1-40
displacements per atom (dpa), and tensile tested over a wide
range of temperatures ranging —150 to 400 °C, causes the room
temperature deformation mechanism to change from disloca-
tion-mediated to deformation twinning. Irradiation-induced
Frank loops and other planar defects act as deformation twin
nucleation sites [16]. Additionally, Gussev et al. [41] have
found that dislocation channels exhibit a twinning nature in
neutron irradiated AISI 304 SS and a model 304 SS, empha-
sizing the complex interplay between these low-temperature
deformation mechanisms.

Meanwhile, the influence of irradiation on deformation-
induced phase transformations has received significantly less
attention and remains poorly understood [1, 2, 3]. The de-
formation-induced martensitic transformation is believed to occur
through three possible pathways [26, 46, 51, 52, 53, 54, 55]:

© Materials Research Society 2020

(i) strain-induced: y austenite transforms to a twin
structure, and then to o' martensite, y — T — o';
(ii) stress-induced: direct y — o'; or
(iii) stress-induced: via metastable hcp € martensite,
y—&— o

Although a few studies have observed the deformation-
induced martensitic transformation in neutron [8, 11, 16, 18,
46, 48, 56, 57, 58, 59, 60] or ion [61, 62] irradiated SSs, they
have also observed complex deformation microstructures con-
taining various combinations of o' martensites, € martensites,
deformation twins, and/or stacking faults. Hence, it remains
unclear which martensitic transformation pathway(s) are
active, and, specifically, how irradiation-induced defects enable
the martensitic transformation. The remainder of this review
will focus on three primary mechanisms through which
irradiation influences the propensity for the deformation-
induced martensitic transformation: (a) SFE, (b) cavity surface
energy, and (c) vacancy-type and interstitial-type defect

morphologies.

Effect of irradiation on stacking fault energy

The SFE (ysge) is well known to influence the mechanical
properties and deformation mechanisms of metallic alloys [63].
That is, under identical loading conditions, low SFE alloys are
inclined to form twins and martensite, whereas higher SFE
alloys tend to undergo dislocation slip [46, 64]. Hence, it is
worth considering first the role of irradiation on SFE. Several
studies have suggested that irradiation reduces the bulk SFE in
a material. Specifically, Hashimoto and Byun [11] irradiated an
AISI 316 SS to 0.1 dpa over 65-100 °C. They observe the y —
o transformation over a range of strain levels at room
temperature and suggest that the transformation is induced
by spreading a Shockley partial over successive (111) fec
planes, which effectively reduces SFE. Models have also shown
dislocation channel widths exhibit a power law dependence on
irradiation-induced defect cluster size, number density, and
distance from dislocation source [65], suggesting that SFE is
reduced with larger and more populous irradiation defects.

It is well established SFE is highly composition dependent.
In order to control SFE—and hence, the deformation mecha-
nism—alloy designers often employ the approach of modifying
the global chemical composition. Nearly a half-century ago,
Latanision and Ruff [66] showed that cyclic heating of
austenitic Fe-Cr-Ni alloys induces an irreversible change in
intrinsic SFE due to substitutional solute atmospheres around
dislocations. Since then, generalized SFE-composition relation-
ships have been identified for Fe-base alloys; Mn [21] and C
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[67] increase SFE, whereas N decreases SFE [68, 69], although
these trends may differ for different host alloys [70]. Even our
understanding of the temperature dependence of SFE is tied to
composition effects, specifically solute segregation and diffu-
sion with increasing temperature [71].

The work in the archival literature has largely focused on
the influence of composition on SFE, with almost no un-
derstanding of the effect of microstructure—not to mention,
the irradiated microstructure—on SFE. To our knowledge, only
a few studies [72, 73] have expressly focused on understanding
the role of point defects or microstructure on SFE. Jun and
Choi [73] focus on grain size and show an inverse relationship
between grain size and SFE. An increase in SFE has also been
associated with severe plastic deformation (SPD) such as high-
speed drawing [74], although it is uncertain whether this SFE
increase is associated with the introduction of dislocations
during the SPD process, grain size refinement, and/or chemical
inhomogeneities. Asadi et al. [72] conduct density functional
theory (DFT) calculations to show that the generalized SFEs in
fce Ni, Cu, and Al decrease significantly when a single atomic
vacancy is situated on the stacking fault plane. In fact, the
stable and unstable SFEs progressively decrease by up to ~10%
when vacancy fraction is increased up to ~12.5% [Fig. 2(a)].
But more critically, Asadi et al. [72] show that single and di-
vacancies on the stacking fault plane induce highly localized
spatial variations in SFE as a function of displacement along
a crystallographic direction [Fig. 2(b)].

The concept of spatially varying local SFEs is especially
applicable for irradiated metals and alloys because of the
~nanometer length scale between defects that strongly influ-
ences mechanical behavior [75] as well as the propensity for
grain-boundary radiation-induced segregation (RIS) [76]. To
some extent, localization of SFE variations has also been
explored through first-principle calculations in concentrated
solid-solution alloys [77]. They propose a model to predict SFE
based on localized bond breaking/forming, and suggest that
local atomic configurations and electronic structure primarily
influence SFE. Electronic structure is well known to affect SFE
and phase stability: Hume-Rothery and coworkers’ seminal
1957 study [78] establishes that the fcc structure is stable when
d-electrons make only a small contribution to bonding, that is,
high SFE per Ref. 79. As the d-electron contribution to bonding
increases, phase stability favors first the hcp and then the bec
structure [78].

Hickel et al. [67] demonstrate the implications of extremely
localized spatial variations (~few nm) in SFE. Although their
SFE variations are composition-based, rather than being
associated with defects, they nevertheless show that stacking
faults in Fe-Mn-C steels will form exclusively in the lowest SFE
regions. Hence, it is plausible that a population of irradiation-

induced defects can similarly introduce localized spatial

© Materials Research Society 2020
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Figure 2: Change in SFE varies as a function of (a) vacancy fraction in the
material, and (b) spatial position from di-vacancy, normalized to lattice
constant; figures adapted from Ref. 72. (color online)

variations or fluctuations in SFE. In turn, these SFE variations
could subsequently enable the nucleation, growth/propagation,
and termination of martensite needles at various positions
around the irradiation-induced defect of interest.

To our knowledge, there have not been any direct studies
that have either measured or calculated the change in SFE with
irradiation. However, some experimental evidence of the de-
formation implications of SFE variations associated with
irradiation-induced defects can be extrapolated from the work
of Mao et al. [80], who conducted nanoindentation on AISI
304L SS hexagonal reflector blocks irradiated in EBR-II to ~23
dpa at 415 °C. The irradiated microstructure contained 19.3 =
7.6 nm voids at a number density of 1.33 = 0.33 x 10*' m~?,
having facets on {111} planes, as well as network dislocations
and dislocation lines at such a high number density that they
are indistinguishable from one another. Following nanoinden-
tation, characterization of the plastic zone beneath the indent
revealed that the Y — o transformation occurred. Mao and
coworkers [80] further investigated the deformation micro-
structure, specifically the o' martensite needle tips. They found
that the tips are either coincident with voids (Fig. 3) or
terminate in the 7y austenite matrix without a resolvable
association with any irradiation-induced defects. Given that
proximity to vacancies can effectively lower the SFE [72], it is

theorized that the voids can serve as sites of martensite
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nucleation, and that the martensite needles terminate in the
higher SFE matrix, that is, further away from irradiation-

induced vacancies.

Role of irradiation-induced cavities and surface
energy

Because irradiation-enhanced twinning is known to occur
through irradiation-induced Frank and prismatic loops [13,
14, 15, 16], the influence of these loops and other planar defects
has also been considered for the irradiation-enhanced de-
formation-induced martensitic transformation. But there is
considerable debate surrounding the nucleation of deforma-
tion-induced martensite in irradiated alloys, wherein inconsis-
tent experimental results have ascribed martensite nucleation
to virtually every possible microstructural feature. Specifically,
there is experimental evidence of deformation-induced mar-
tensites in irradiated austenitic SS nucleating on—or associated
with—twins [60], stacking faults [16, 60], dislocation channels
[8, 11, 16, 57, 65, 81], and/or grain boundaries [57, 82].
However, recent work on shape-memory alloys [17] has
suggested that porosity may be an influential factor controlling
the deformation-induced austenite-to-martensite phase trans-
formation. These findings thus suggest that irradiation-induced
cavities may play a critical role in governing the operative
deformation mechanisms of irradiated metals and alloys. It has
been argued that pores or cavities enable the martensitic
transformation either through surface energy contributions,
or by hindering partial dislocation motion through a hardening
process [46, 47, 80, 83].

In Ni-Mn-Ga shape-memory alloys, a magnetic field-
induced strain (MFIS) induces a reversible austenite to mar-
tensite phase transformation, which occurs through twin
boundary motion [17]. The transformation is inhibited in
fine-grained Ni-Mn-Ga because grain boundaries constrain
the twin boundary motion [17]. However, Chmielus et al. [17]
have recently shown that porosity—introduced through a me-
tallic foam nanoarchitecturing process—enhances the capacity
of Ni-Mn-Ga to accommodate MFIS by eliminating some of
the constraints hindering twin boundary motion. Similarly,
Han et al. [18] introduced porosity into a Nis;sFejq5Gayy
shape-memory alloy using He implantation. They found that
a 5- to 10-nm dispersion of He nanobubbles promoted the
nucleation of martensite embryos and aided in the reversible
austenite-martensite phase transformation. Han et al. [18]
explained the phenomenon by suggesting that the internal
surface area of the He bubbles compensates the surface energy
contribution to the total free energy of the martensitic phase
transformation due to the large surface-area-to-volume ratio of

the martensite in a microscale plastic region (e.g., created

© Materials Research Society 2020

through microcompression pillar testing and nanoindentation).
Additionally, Levin et al. [19] use phase-field simulations to
show the stress-induced martensitic phase transformation
occurs at nanovoids.

Recent deformation studies on austenitic SS reported by
Mao et al. [9, 83] corroborate that Chmielus’ [17] and Han’s
[18] ideas from shape-memory alloys can be extended to other
fcc alloy systems. Specifically, Mao [83] studies AISI 304L SS
reflector blocks irradiated in EBR-II to 0.4 dpa at 415 °C, which
contain <1 appm He. They observe 16.3 = 6.1 nm cavities (i.e.,
He bubbles and/or voids) at a number density of 1.01 = 0.78 x
10%° m™3, along with a 6.11 + 0.31 x 10" m™? density of
Frank loops [Figs. 4(a) and 4(b)]. Mao’s irradiated specimen
was subsequently laser welded, which had a partial annealing
effect—cavities were reduced in size to 11.4 = 3.9 nm and their
number density decrease by an order of magnitude to 4.99 *
2.38 x 10" m™ in the weld heat-affected zone (HAZ), but the
dislocation microstructure largely remained unaltered at a num-
ber density of 4.73 * 1.13 x 10" m™ [Figs. 4(f) and 4(g)].
Micropillars were created on {101} grains in both the irradiated
and HAZ specimens, and underwent in situ scanning electron
microscopic (SEM) compression, Figs. 4(c), 4(d), 4(h), and 4(i).
The HAZ deformed through incipient twinning, whereas the
irradiated specimen deformed via the y — & transformation,
Figs. 4(e) and 4(j). The critical stress on the martensitic
deformation plane exceeds the critical twinning stress by
>400 MPa. These results suggest that although the irradia-
tion-induced dislocation microstructure in the HAZ may
initiate twinning, the deformation-induced martensitic trans-
formation in the irradiated base metal is more likely associated
with the presence of cavities. It should be noted, however, that
changes in stress state [84] and local chemistry [85] typical of
laser welding were not considered in the aforementioned
changes in deformation mechanisms.

Cavities may promote the martensitic transformation by
increasing the Orowan hardness of the material, requiring
extreme stresses to move dislocations through or around
cavities [86, 87]. These stresses may be sufficiently higher than
the threshold stress for the martensitic transformation. Alter-
natively, surface energy could explain how cavities promote the
transformation [9, 18]. The transformation is favored if AG +
U = AGg, where AG is the Gibbs free energy, U is the strain
energy corresponding to the externally applied stress [51, 88],
and the critical free energy of the martensitic transformation is
AG. = 2100 J/mol [51]. Internal surfaces of irradiation cavities
can contribute to the total free energy change (AG) [18]. If the
cavity number density is sufficiently high, then their contribu-
tion to AG can ensure that the inequality (AG + U = AG() is
met at lower temperatures and/or applied loads than in

unirradiated materials.
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Figure 4: TEM micrographs of (a) voids and (b) dislocation loops, (c and d) still-frames from in situ SEM micropillar compression tests in [101] grains, and (e)
deformation-induced & martensite in irradiated 304 SS; (f) voids, (g) loops, (h and i) micropillar compression tests, and (j) deformation twins, in irradiated 304 SS

weld HAZ, from Ref. 83. (color online)

Relative influences of irradiation-induced vacancy-
and interstitial-type defects

In this section, we consider the microstructural requirements
for each stress-induced martensitic transform pathways, v —
o and y — & — o'. The y — ¢ — o transform has been
described by Bogers and Burgers [89] using their hard-sphere
model, and further explained by Olson and Cohen [90] using
a shearing-intersection model, Fig. 5. The Bogers-Burgers—
Olson-Cohen (BBOC) model suggests that the Y — € trans-
formation occurs initially, and the intersection of e-martensite
bands with stacking faults enables completion of the ¢ — o
transformation. Nucleation of metastable &€ martensite involves
dislocation motion: specifically, shear on y austenite {111}
planes produces an hcp-¢ plate by slip or twinning [91]. To
subsequently form o’ martensite from & martensite, the BBOC
model requires the shear of partial dislocations at the in-
tersection of the two preformed hcp-¢ plates [90], Fig. 5. The

implication, in the context of an irradiated microstructure, is

© Materials Research Society 2020

that if irradiation-induced cavities are sufficiently small,
Shockley partials can cut through them to form stacking faults
[92]. Continual partial dislocation slip will progressively reduce
cavity dimensions and increase their ellipticity [58], ultimately
leading to twin nucleation [92] and the production of &
martensite plates. Additionally, an irradiated microstructure
containing interstitial Frank and prismatic loops could also
induce twinning to nucleate £ martensite plates [60].

On the other hand, the direct y — o' transformation
requires an increase in cavity number density and size, which
will interact with dislocations to form jogs, over which
dislocations will climb [93]. If these cavities—and hence, jogs
—exist at a sufficiently high number density, the extent of
dislocation climb will inhibit twinning. Cavity size is also
a governing factor, because partial dislocation interactions with
larger voids can result in recombination into perfect disloca-
tions [93], suppressing twinning. These processes ultimately

inhibit dislocation glide into twinning shear, which eliminates
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Figure 5: Cartoon illustration of BBOC shearing-intersection model, from Ref.
90. (color online)

the intermediary steps necessary to nucleate metastable €
martensite. A high number density of stress concentrations at
large cavities ultimately result in the direct ¥ — o trans-
formation [26]. This is corroborated by experimental observa-
tions from Gusev et al. [56], who irradiated low-Ni steels in the
BN-350 fast reactor. Under tensile loading, they suggest that
the o' martensitic transformation occurs most readily at =20
dpa; one can imagine that at this dose range, irradiation-
induced voids are large and populous.

In another study, Mao et al. [80] conducted nanoindenta-
tion on {110} grains in AISI 304L SS neutron irradiated at
415 °C to 23 dpa containing ~3 appm He [9]. This specimen
was also laser welded, much like the welding outlined in
Section “Role of irradiation-induced cavities and surface
energy.” In this specimen, cavity sizes are relatively unchanged
with welding, ranging 16.2-20.9 nm across the HAZ and base
metal, but the cavity number density is reduced by two orders
of magnitude in the HAZ at 1.4 = 1.3 x 10"* m™> as compared
with 1.2 = 0.3 x 10*' m > in the base metal. TEM lamellae
were prepared from the nanoindentation plastic zone to
observe the deformation microstructure. The neutron irradi-
ated specimen has a high density of o martensite laths
[Figs. 6(a) and 6(b)]. Meanwhile, the weld HAZ has undergone
the y — € — o transformation [Figs. 6(c) and 6(d)]. Bright-
field TEM shows the formation of hcp-¢ shear bands beneath
the indent and indicates the two hcp-¢ plates intersect to form
o martensite, consistent with the BBOC model. The two ¢
plates have two arrays of a/6(112) partial dislocations on every
second and every third {111}, plane.

Differences in deformation mechanism in irradiated 304L
SS are attributed to differences in pre-deformation micro-
structures. The irradiated specimen contained a high number
density of large cavities (i.e., He bubbles and/or voids), as well
as a high density of Frank loops [Fig. 6(a)]. The HAZ
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microstructure was annealed compared with the irradiated
specimens: cavity number density was dramatically reduced,
but loops primarily remained present [Fig. 6(c)]. In irradiated
austenitic SSs, faulted Frank loops form on {111} habit planes
with Burgers vectors b = ay/3(111) [94]. These are interstitial-
type loops at irradiation temperatures >360 °C [94]. At
irradiation temperatures <300 °C, Frank loops are small in
diameter (i.e, <10 nm), making it difficult to discern their
nature, but they are typically assumed to represent the in-
terstitial-driven component of the irradiated microstructure
[94]. Prismatic dislocation loops, with Burgers vectors b = ay/
2(110) on {111} habit planes, can be of either interstitial or
vacancy type, and form directly from irradiation damage
cascade collapse or from Frank loop unfaulting [94]. Because
interstitial diffusion and the formation of interstitial-type
defects occur faster than vacancy diffusion [30], with increasing
irradiation dose, vacancy-type defects become a more domi-
nant contribution to the microstructure, and thus the trans-
formation shifts from the metastable y — ¢ — o’ pathway to
the direct y — o pathway.

The size and number density of vacancy-type defects,
relative to the size and number density of interstitial-type
defects, control whether an irradiated material will deform via
the y — o' transformation or through the y — & — o
mechanism [93]. The irradiation dose evolution of defects must
be considered for their influence on deformation mechanisms.
Chmielus et al. [17] also acknowledge the importance of
porosity size, noting that pore sizes smaller than grains can
more effectively accommodate the phase transformation. Like-
wise, considering all three of Mao and coworkers’ published
studies [9, 80, 83] on deformation in neutron irradiated 304L
SS, one can extract a deformation mechanism map based on
cavity morphology and He concentration (Fig. 7). This map
reveals that the direct y — o' transformation can occur when
vacancy-type defects dominate the irradiated microstructure,
whereas the Y — ¢ — o transformation (or the vy — ¢
transformation) occurs when interstitial-type defects dominate
the microstructure, and that deformation twinning tends to
occur when the microstructure is relatively free of irradiation-

induced defects.

We have reviewed the effect of irradiation on the deformation-
induced martensitic phase transformation. Irradiation reduces
the SFE through the introduction of a high density of defect
clusters as well as microchemical segregation, leading to
Shockley partial dissociation and thus activation of the y —
o martensitic transformation. Highly localized spatial modu-
lations in SFE associated with irradiation-induced defects can

also be sufficient to enable the nucleation, propagation, and
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termination of martensite needles through a nano-through
microscopic volume of material. Irradiation-induced cavities
are believed to play a central role in activating the martensitic
transformation, either through contributing surface energy

toward the total free energy of the material, and/or by

© Materials Research Society 2020

hindering partial dislocation glide. The relative size and
number density of cavities governs which stress-induced
martensitic transform pathway, y — o' or y — & — o, is
active. That is, cavities can inhibit twinning—and thus encour-
age the martensitic transformation—if their number density is
sufficiently high so as to enhance dislocation climb, or if their
size is sufficiently large to enable partial dislocation recombi-
nation. A deformation mechanism map, with axes of irradia-
tion-induced cavity morphology and He concentration, is
generated based on reports in the archival literature on
irradiated 304L SS, alluding to the relative roles of vacancy-
type and interstitial-type irradiation defects on modulating the
martensitic transformation pathway.

This article also highlights, however, that previous studies
of irradiation effects on deformation-induced phase trans-
formations are relatively inconclusive. There is a notable lack
of systematic, controlled experiments, which has limited our
understanding of the effect of irradiation fluence, temperature,
or particle type, on deformation mechanisms. Moreover, there
remains a knowledge gap on the role of individual irradiation
defects on the deformation-induced martensitic transformation
—such an understanding is partly hampered by the complexity
of irradiated microstructures. That is, irradiated metals and
alloys typically contain a confluence of a high number density
of features, including dislocation loops, voids, bubbles, precip-
itates, and local composition gradients. It is difficult to isolate
individual features—especially experimentally—to ascertain
their role on deformation mechanisms. Numerous other factors

are also known to generally influence deformation, including
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grain orientation, Taylor and Schmid factors, grain boundaries,
initial dislocation density (e.g., extent of cold work), and
austenite stability [95]; these factors must also be considered
in the context of irradiation. Additionally, this article has not
distinguished voids from bubbles, and has instead treated both
features under the more general term of “cavities.” However,
bubbles contain an internal gas pressure that can often exceed
the yield strength of the material [30]; the role of this internal
stress and its interaction with externally applied mechanical

load has not yet been studied.
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