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ABSTRACT
High Performance Computing (HPC) is an important method for
scientific discovery via large–scale simulation, data analysis, or ar-
tificial intelligence. Leadership-class supercomputers are expensive,
but essential to run large HPC applications. The Petascale era of
supercomputers began in 2008, with the first machines achieving
performance in excess of one petaflops, and with the advent of new
supercomputers in 2021 (e.g., Aurora, Frontier), the Exascale era
will soon begin. However, the high theoretical computing capa-
bility (i.e., peak FLOPS) of a machine is not the only meaningful
target when designing a supercomputer, as the resources demand
of applications varies. A deep understanding of the characterization
of applications that run on a leadership supercomputer is one of
the most important ways for planning its design, development and
operation.

In order to improve our understanding of HPC applications, user
demands and resource usage characteristics, we perform correlative
analysis of various logs for different subsystems of a leadership
supercomputer. This analysis reveals surprising, sometimes counter-
intuitive patterns, which, in some cases, conflicts with existing
assumptions, and have important implications for future system
designs as well as supercomputer operations. For example, our
analysis shows that while the applications spend significant time on
MPI, most applications spend very little time on file I/O. Combined
analysis of hardware event logs and task failure logs show that the
probability of a hardware FATAL event causing task failure is low.
Combined analysis of control system logs and file I/O logs reveals
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that pure POSIX I/O is used more widely than higher level parallel
I/O.

Based on holistic insights of the application gained through com-
bined and co-analysis of multiple logs from different perspectives
and general intuition, we engineer features to “fingerprint” HPC
applications. We use t-SNE (a machine learning technique for di-
mensionality reduction) to validate the explainability of our features
and finally train machine learning models to identify HPC appli-
cations or group those with similar characteristic. To the best of
our knowledge, this is the first work that combines logs on file I/O,
computing, and inter-node communication for insightful analysis
of HPC applications in production.
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1 INTRODUCTION
Advanced computing capabilities are used to tackle a rapidly grow-
ing range of challenging science and engineering problems, many
of which are compute-, communications-, and data-intensive as
well [41]. A similar term, leadership computing, is widely used in
the United States that refers to the advanced technical capabilities,
including supercomputers, software and expert staff, that support a
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wide range of science and engineering research. It is a large enough
scale and cost that is typically shared among multiple researchers,
institutions, and applications. Thus, teams of technicians, perfor-
mance engineers, domain scientists, and computational scientists
are needed to prepare these behemoths to effectively and efficiently
execute the massive computations and drive high-end modeling
and simulation science [17]. A large fraction of leadership-class
investments have been driven by the mission-critical requirements
of the U.S. Department of Energy (DOE) and the U.S. Department
of Defense (DOD) [41]. The pressure on Leadership Computing
Facilities (LCFs) to align leadership systems with the needs and
goals of breakthrough science projects means that priority is given
to jobs that require a large fraction of the entire machine, need to
run for long periods of time, or cannot be accomplished without
LCF resources [16]. As listed in the TOP 500 project [46], similar
systems are available in Europe, China, and Japan, although not
referred to as leadership computers.

To address the dearth of the characterization of applications
and workloads on leadership computers and similar systems, re-
searchers have resorted to the analysis of logs that have been col-
lected intentionally either for application characterization purposes
(e.g., by tools like Lustre Monitoring Tool (LMT) [42] and Dar-
shan [33]) or for operational purposes (e.g., file system metadata
snapshots [26]). That is to say, the characterization does not rely
on explicit benchmarks, but instead on logs of debugging, opera-
tion, or tracing. This has led to a prolific line of publications that
shed light on supercomputer scheduling [1, 20, 44], parallel file
systems [26, 33, 42], user behavior [2, 43], networking [31] and
data movement [28, 32].

Here we continue this line of research by combining, correlating,
and analyzing multi-dimensional logs of supercomputing resources
operated by the Argonne Leadership Computing Facility (ALCF),
and using data mining and machine learning techniques in order
to provide systematic insights into the applications and systems
without adding any extra instrumenting burden to the precious
supercomputer. This study distills insights by observing trends
and characteristics using statistical methods. In particular, we use
cumulative density function (CDF), probability density function
(PDF) and complementary cumulative distribution function(CCDF).
CDF, at 𝑥 , gives the probability that the random variable 𝑋 takes a
value less than or equal to 𝑥 ; PDF specifies the probability that the
random variable 𝑋 takes on a specific value 𝑥 ; and CCDF is used
to find the probability of a variable taking a value greater than 𝑥 .
The resulting insights may help the following entities, groups, and
efforts:

(1) Resource providers, e.g., LCFs, to optimize their resources
and operations;

(2) Researchers and tool developers to build new (or optimize
existing) HPC frameworks and runtime systems;

(3) End users to optimize their application and resource requests
to get better performance;

(4) Funding agencies to plan investments for upgrading existing
systems and building new supercomputers;

(5) To serve as a crucial first step towards hardware-software
co-design for the next generation machine.

The rest of this paper is organized as follows. We introduce the
Mira supercomputer studied in this work, and its storage system,
in §2. Next, we report job level analysis in §3; file I/O related ob-
servations in §4; computing demand and memory behavior of jobs
in §5; Finally, we explore the use of a model-based classifier to
group applications with similar behavior in terms of hardware re-
source demand and usage in §6. We review related work in §7, and
summarize our conclusions and discuss future work in §8.

2 SYSTEM ARCHITECTURE AND LOGS
We briefly introduce the Mira supercomputer and the datasets used
in this study, define some terms, and describe our analysis platform.

2.1 The Mira supercomputer
Mira is a 10 petaFLOPS (1016 floating point operations per second:
FLOPS) IBM Blue Gene/Q system at ALCF. It consists of 49 152 com-
puting nodes in 48 racks totaling 786 432 processors interconnected
using a proprietary 5D torus network, and 768 terabytes of total
memory. Mira debuted in June 2012 and was retired at the end of
2019.

Mira is equipped with two General Parallel File Systems (GPFS)
with 20 PB and 7 PB capacity, and a block size of 8MB, capable of 240
GB/s and 90 GB/s peak throughput respectively. The home folder
was mounted to a purpose-built 1 PB GPFS with a much smaller
block size (256 KiB). For data backups, ALCF has three 10,000-slot
libraries using Linear-Tape Open (LTO) 6 tape technology. The LTO
tape drives have built-in hardware compression for an effective
capacity of 36-60 PB.

2.2 Datasets
We combined and co-analyzed five datasets in this study. These
datasets are primarily collected for use by the facility operations
team and/or to assist users in troubleshooting, debugging, bottle-
neck detection, and optimization purposes.

Cobalt logs. Cobalt, denotes Component-Based Lightweight
Toolkit, is the queuing system used at ALCF. Users submit their
requests for resource and time allocations to Cobalt and Cobalt
treats each submission as a job. For each job, Cobalt records a
great deal of metadata information including: a unique job ID;
timestamp of the submission, execution and termination; number
of compute nodes requested and actually used; and the location
of the allocated nodes, among other data. This dataset contains
records for all 300 023 jobs run on Mira from 2015 to 2019.

Control system logs. A single ALCF resource request (i.e., a
single job) may run multiple applications, either in sequence or
in parallel; each such application execution is called a task. Tasks
are managed by the control system, which assigns each task a
unique control system ID, and records task-level information such
as executable ID, start time, and end time. This dataset contains
records for all 2 592 361 tasks executed on Mira from 2015 to 2019.

Darshan [5] is a lightweight I/O instrumentation library that can
be used to investigate the I/O behavior of production applications. It
records statistics such as the number of files opened, time spent on
performing read, write, and metadata operations separately, and the
amount of data accessed by an application. Darshan is enabled by
default at ALCF but can be disabled by users. This dataset contains
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records for 385 019 tasks executed on Mira from 2016 to 2019: that
is, for about 23% of all tasks executed on Mira during that period.

RAS Event [25]. The IBM BG/Q’s reliability, availability, and
serviceability (RAS) infrastructure enables the reporting of hard-
ware and software events. RAS messages contain basic information
related to the event, such as message ID, severity, location, and
text. The severity may be FATAL, designating a severe error event
that presumably leads the application to fail or abort; WARN, des-
ignating potentially harmful situations, such as exceeding a soft
error threshold or failure of a redundant component; and INFO,
for informational messages. This dataset contains 20M RAS-INFO
messages, 50M RAS-WARNmessages, and 774K RAS-FATALmessages
collected on Mira from 2015 to 2019.

Autoperf [7] is a library for automatically collecting hardware
performance counter and MPI information. It is enabled by default
on Mira, but can be disabled by the user. Autoperf transparently
collects performance data from running jobs and saves it into files
upon completion of a job. Specifically, for each MPI process, it
records the number of calls to each MPI routine, time spent in each
routine, and total bytes communicated by each routine. In order to
minimize overhead and save storage space, for each counter across
all MPI processes of a given execution, Autoperf records only the
maximum, minimum, and average values as well as the value from
MPI rank 0. Autoperf records are missing for applications that do
not use MPI or that failed to call MPI_Finalize, and for executables
that were built with other conflicting profiling libraries (e.g., BGPM,
TAU, HPCTW) or linked with a compiler other than IBM XL or
GCC. This dataset contains records for 377 968 tasks run on Mira
from 2016 to 2019, i.e., about 22% of all tasks run on Mira during
that period.

All datasets have been parsed and saved as data frames in CSV
files. The CSV files, with username and project name anonymized,
are publicly available at https://reports.alcf.anl.gov/data. We note
that none of these datasets were purposely collected for this study.
The logs analysis workflow code and algorithm implementations
are available at https://github.com/ramsesproject/alcf-logs.

2.3 Term definitions
For ease of reference, we define the following terms that are used
throughout this paper.

• Application: A program (i.e., executable) that runs at the
leadership computing facility.

• Job: The computation performed on the computing resources
allocated in response to a user request to the HPC system
scheduler. A job may comprise one or more tasks, depending
on how the resources allocated to the job are used.

• Task: An application execution within a job: on Mira, via
a mpirun, aprun, or jobrun command. A task will often
comprise more than one process.

• Process: An MPI process/rank.
• Communication: Inter-process communication via MPI,
whether inter-node or intra-node.

2.4 Analysis Platform
We first parsed all raw data on the Cooley cluster at ALCF, as it
had direct access to log files on Mira’s GPFS, and saved useful

counters to CSV files. We then performed our analysis on a 12-node
cluster with 128 GB of RAM per node, using the Python Pandas
library [39] to load and manage the parsed logs and the Apache
Spark [50] cluster-computing framework to efficiently process the
large (85 million records) collection of log files.

3 CHARACTERIZING JOBS RUN ON MIRA
Each job run on Mira comprises one or more tasks that execute
in parallel or sequentially. Different tasks of the same job may
belong to the same or different application/executable. The same
application may be run many times with different resource settings
(e.g., degree of parallelism) and arguments (e.g., simulation scale
and input data). Most of the application characterization-based
analyses presented in this paper are task based, because one task is a
particular execution/run (statistically, one sample) of an application.

3.1 Task run time breakdown
Here, we partition an application’s runtime into three major compo-
nents, file I/O, MPI communication (including idle time due to load
imbalances), and computing on CPU, and measure what portion of
a task’s total execution time is spent on each of these three major
components. The results of this analysis can guide future design or
upgrade decisions. We used three sets of logs for this purpose: (1)
for each given task, Darshan [45] logs capture file I/O behavior,
including the time taken and size for each file I/O operation (i.e.,
open, read, write, seek, close, etc.). (2) Autoperf [7] logs record
some hardware performance counters, as well as the time spent on
each MPI routine for each task. (3) The Cobalt scheduler logs have
job properties such as wall-time, run-time, job size in nodes, and
number of tasks per job.

MPI processes that belong to the same task may perform inter
process communication (IPC, both inter-node and intra-node) at
the same time, and their file operations will likely overlap as well.
Unfortunately, the logs collected do not have enough information
to figure out the wall-time spent on file I/O, communication, and
computation. Thus, for each file read/write by a given task, we use
the time spent on file operations and the number of cores used
(recorded in Darshan) to determine the “file I/O core seconds” (time
in seconds × number of cores used). We then add up the file I/O core
seconds of all files that belong to the given task to determine the
“cumulative file I/O core seconds” for the task: 𝑇𝑐𝑢𝑙

𝑓 𝑖𝑜
. Likewise, we

determine the “cumulative IPC core seconds” for the task: 𝑇𝑐𝑢𝑙
𝑐𝑜𝑚𝑚 ,

and the “cumulative overall core seconds” (by adding up the “run
time × number of cores” for each process): 𝑇𝑐𝑢𝑙

𝑟𝑡 . Then, for each
task, we compute the fractional core seconds on file I/O:

𝐹𝑓 𝑖𝑜 = 𝑇𝑐𝑢𝑙
𝑓 𝑖𝑜

/𝑇𝑐𝑢𝑙
𝑟𝑡 , (1)

and fractional core seconds on communication:

𝐹𝑐𝑜𝑚𝑚 = 𝑇𝑐𝑢𝑙
𝑐𝑜𝑚𝑚/𝑇𝑐𝑢𝑙

𝑟𝑡 , (2)

where both 𝐹𝑓 𝑖𝑜 and 𝐹𝑐𝑜𝑚𝑚 range from 0 to 1, with a value closer to
1 indicating more intensive use of the corresponding subsystem.We
consider that all remaining core seconds are spent on computation:

𝐹𝑐𝑜𝑚𝑝 = 1 −
(
𝐹𝑐𝑜𝑚𝑚 + 𝐹𝑓 𝑖𝑜

)
. (3)

https://reports.alcf.anl.gov/data
https://github.com/ramsesproject/alcf-logs
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Thus, 𝐹𝑐𝑜𝑚𝑝 , 𝐹𝑐𝑜𝑚𝑚 , and 𝐹𝑓 𝑖𝑜 can be used to classify an application
as computation-, communication- or file I/O-intensive. Figure 1
presents the complementary cumulative distribution function of
𝐹𝑓 𝑖𝑜 , 𝐹𝑐𝑜𝑚𝑚 and 𝐹𝑐𝑜𝑚𝑝 for all tasks from 2015 to 2019. The CCDF
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Figure 1: Complementary cumulative distribution functions
of time spent on file I/O, MPI communication, and computa-
tion, separately, expressed as a fraction of the total run time.
Any cumulative that exceeds 0.5 is considered “intensive-”
and appears in the red-colored portion.

in Figure 1 shows that most tasks are computation-intensive: about
60% spent more than half of their total machine time on compu-
tation. MPI communication also consumed significant amounts of
time, with MPI calls occupying more than half of total machine
time for about 40% of all tasks. Surprisingly, file I/O operations are
not very intensive; for nearly 95% of tasks, file I/O took less than
20% of total machine time.

Observation 1. Overall, nearly 40% of the total machine time
was spent within MPI communication. But, about 30% of the tasks
spent little time in MPI communication, and nearly half spent less
than 2% of their total machine time on file I/O. These findings
reveal that computation is still the most time consuming operation
of applications. Jobs spend a significant amount of time on MPI,
suggesting it is important to optimize MPI communication, either
through equipping better network hardware for future designs
or by optimizing frequently used MPI routines where bottlenecks
occur.

3.2 Tasks per Job
As noted in §2.3, a job can be comprised of one or more tasks. We
term a job that consists of a single task as a single-task job, and a
job that launches more than one task over the course of its run,
whether in sequence (one after the other) and/or concurrently (two
or more at once), as a multi-task job. These two job types could
also be referred to as traditional or SPMD (single program, multiple
data), and workflow or MPMD (multiple program, multiple data),
respectively. Figure 2 presents the statistics of single- andmulti-task
jobs from different perspectives for each of 2016–2019: Figure 2a
shows the average number of tasks per job; Figure 2b presents the
relative numbers of single-task versus multi-task jobs; and Figure 2c
compares the machine time consumption by job type.

We see that, on average, the total number of tasks is several
times (6x–10x) more than that of jobs. If we consider multi-task
and single-task jobs simply by their percentage share of the total
number of jobs, as shown in Figure 2b, single-task is consistently the
majority, with 76% in 2015, up to 89% in 2017 and falling back to 72%
in 2019. However, considering them based on their consumption of
machine time (e.g., core-hours), extracted by cross-referencing with
scheduler logs, single-task jobs steadily account for only slightly
more than 60% of total machine time every year. In both cases, no
clear year-over-year trend emerges.
Observation 2. Multi-task jobs are common and account for a
considerable share of machine time. This observation suggests that
better system-level support for such jobs (e.g., via support for MPI
task management features [49] and for workflow languages such as
Parsl [3] and Swift [48]) may be desirable. So, tool may be improved
to support for dependency-aware task level scheduling, with the
goal of increased backfilling.

3.3 Job size
A major motivation for building a leadership supercomputer is that
some applications (e.g., HACC [15], Quantum Monte Carlo method
such as QMCPACK [23]) require numbers of nodes that cannot be
obtained on smaller systems [18], i.e., leadership computers enable
new capabilities. Here we examine the job size in terms of the
number of nodes used, in order to determine how many nodes and
how much machine time was used by computations of different
sizes so as to observe the ubiquity of capability applications. We
note that Mira computing nodes are divided into partitions and that
the number of nodes allocated for a given job is a ceiling-rounding
of the number requested. For example, the minimum partition size
is 512 nodes, and thus 512 nodes are allocated to a job even if it
requests just a single node. Figure 3 plots the distribution of job size
by the percentage of total jobs (Figure 3a) and by the percentage of
total machine time (Figure 3b) that they consumed per year.

We see from Figure 3a that most jobs are small: just 1% of all
jobs used more than half of Mira’s nodes. Nearly half of all jobs
run with 512 nodes, which is just 1/96 of Mira’s capacity. As far
as machine time is concerned, most core-hours are consumed by
jobs with 8192 nodes (1/6 of Mira), a number that may have been
biased by Mira’s scheduling policy. Jobs that used half or more
of Mira’s nodes consumed less than 10% of the total core-hours
each year, except in 2017, in which they consumed 14% of total
core-hours. Jobs using the entire machine consumed less than 5%
of the total machine time, except in 2015, in which jobs using all of
Mira consumed 6.2% of total machine time.
Observation 3. Although LCF encourages users to run large jobs
by implementing queuing policies that prioritize jobs that use many
nodes, most jobs are surprisingly small in terms of the number of
nodes used. LCFs may need to devise strategies to increase the
number of large jobs that take advantage of the scale of leadership
resources.

3.4 Failure
The exponentially increasing transistor count on a single chip and
the large number of nodes (e.g., Mira has nearly 50 000 nodes)
present in a supercomputer creates challenges when providing
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Figure 2: Traditional single-task HPC jobs versus multi-task workflow jobs by year.
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Figure 3: Annual job size distribution. The sharp increase at 8192 in (b) is likely biased by the scheduling policy [10].

reliable hardware resources to run users’ applications. Hardware
failure is hard to avoid, for example, there are hundreds of thousands
of FATAL messages annually on Mira. A fault-tolerant design can
enable a system to continue its intended operation, possibly at a
reduced level, rather than failing completely, when some part of
the system fails. For example, much work [8, 21] has been done to
predict hardware errors so that appropriate actions (e.g., scheduling,
checkpointing) can be taken ahead to minimize their impact on
applications. However, there has been little study of how likely a
hardware failure is to cause application failure.

To investigate this issue, we used the Control System log and IBM
RAS message datasets to study the probability that an RAS-FATAL
event causes an execution failure. The Control System log provides
the exit code for each application run (task). If a job fails to start
or exits because of any signal (from the resource manager because
maximum execution time is exceeded, by user request, or due to
hardware failure: i.e., RAS-FATAL), this exit code will be between 1
and 255, inclusive. An RAS-FATAL message indicates a severe error
event that presumably leads the application to fail or abort. We
quantify here the likelihood of such amessage leading to application
failure or abort. If there is an application running on the node when
the RAS-FATAL occurs, the control system ID will be recorded in
the RAS message, otherwise N/A is shown. This mechanism allows
us to correlate RAS messages and task behaviors.

Let us define event 𝐴 as a failure of an application run, i.e., an
exit code between 1 and 255 inclusive, and event 𝐵 as an RAS-FATAL
on any node where an application is running. Thus, based on Bayes’
theorem we can calculate the conditional probability of an applica-
tion failure caused by an RAS-FATAL event by:

𝑃 (𝐴|𝐵) = 𝑃 (𝐵 |𝐴) 𝑃 (𝐴)
𝑃 (𝐵) , (4)

where 𝑃 (𝐴) and 𝑃 (𝐵) are the probabilities of observing 𝐴 and 𝐵 re-
spectively; they are known as the marginal probability. We calculate
𝑃 (𝐴) by dividing “total number of tasks failed” by “total number of
tasks”; and 𝑃 (𝐵) is the probability that an RAS-FATAL occurs during
task execution, which can be calculated by dividing “number of task
in all RAS-FATALmessage” by “total number of tasks”. We note that
multiple RAS-FATAL messages may be associated with the same
task, either at a different time or on different nodes, moreover, we
perform a unique operation on the task ID list and consider dupli-
cated IDs as one task. We also ignore RAS-FATAL messages where
there is no application running on the compute node, e.g., during
maintenance or when nodes sit idle. The conditional probability
𝑃 (𝐵 |𝐴) denotes the probability of an RAS-FATAL occurring when
we see a failure in task execution.

Let𝑋 denote the set of task IDs (duplicates removed) in RAS-FATAL
events. These tasks either exit normally or fail. A failure may or
may not be due to the RAS-FATAL. Let 𝑌 represent the set of failed
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task IDs. Then we can calculate 𝑃 (𝐵 |𝐴) by:
𝑃 (𝐵 |𝐴) = |𝑋 ∩ 𝑌 |/|𝑌 |, (5)

where |𝑌 | is the size of set 𝑌 , similarly |𝑋 ∩ 𝑌 | is the size of the
intersection set between 𝑋 and 𝑌 . Table 1 lists the results of these
calculations for the years 2015–2019.

Table 1: Quantitative results of the probability relationship
between RAS-FATAL events and job failure.

Year 𝑃 (𝐴) 𝑃 (𝐵) 𝑃 (𝐵 |𝐴) 𝑃 (𝐴|𝐵)
2015 0.213 1.49e-04 1.86e-04 0.265
2016 0.209 5.68e-04 7.19e-04 0.265
2017 0.183 3.43e-04 8.38e-04 0.447
2018 0.284 5.40e-04 4.94e-04 0.260
2019 0.214 2.17e-04 2.45e-04 0.242

Counter-intuitively, 𝑃 (𝐴|𝐵) is low, indicating that RAS-FATAL is
not the most likely cause of an application failure or abort. The
frequency of RAS-FATAL (i.e., 𝑃 (𝐵)) slightly increases with the age
of the machine.

Observation 4. Surprisingly, the likelihood of a hardware FATAL
event causing an application failure is not very high. Although
how the vendor classifies the events as FATAL plays a significant
role in this; it is quite possible that the applications that run on
leadership computers and their dependent libraries are designed to
have reasonably high fault tolerant capability.

4 CHARACTERIZING I/O BEHAVIOR
Applications use I/O to store output for further analysis, to check-
point application memory for guarding against system failure, to
exercise out-of-core techniques for data that do not fit in processor
memory, and so on. Parallel file systems stripe data over multi-
ple storage servers for high performance. Parallel I/O middleware
libraries, such as MPI-IO, HDF5 [11] and PnetCDF [19] enable appli-
cations to store their data efficiently on parallel file systems. Much
effort is invested in such I/O libraries to reduce or completely hide
I/O costs from applications. Here, we observe the actual usage and
behavior of parallel file I/O libraries.

4.1 Use of parallel I/O
As for how applications read/write data to/from parallel file sys-
tems in production, we studied the number of applications that
use basic POSIX vs. higher level MPI-IO middleware (directly or
indirectly via parallel file libraries such as HDF5). Since MPI-IO
uses POSIX and Darshan captures POSIX without distinguishing
raw POSIX from MPI-IO, we mark tasks that perform MPI-IO-based
I/O operations (reads and/or writes), for at least one file, as MPI-IO
aware. If no MPI-IO operations are used to read/write files, we mark
those tasks/applications as basic POSIX only.

Figure 4 presents the file I/O library usage in applications.We can
see that MPI-IO is less widely used than basic POSIX, accounting
for only about 30% of total tasks on average. Luu et al. [35] saw
similar behavior in 2015 in a study of the file I/O behavior of about
a million jobs at another LCF, finding that nearly three quarters of
applications only used POSIX. Mira data suggests that this result
remains true in 2019.
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Figure 4: Percentage (to the total number of tasks) of tasks
that used MPI-IO in its application.

Observation 5. In terms of file I/O library usage, basic POSIX is
much more widely used than the high-level parallel MPI-IO. Al-
though not all POSIX-using applications achieve poor I/O through-
put, this observation motivates investigations of why higher-level
parallel I/O libraries are not more widely used.

4.2 I/O sizes
Figure 5a compares the bytes read from, and written to, the GPFS
storage system over time. We see that from 2016 onwards the stor-
age system is dominated by write workloads. In 2018, more than
twice as many bytes were written than read. In contrast, a recent
study [42] of I/O patterns at the National Energy Research Scientific
Computing Center (NERSC) reported that 1.75×more data was read
than written in 2018. NERSC is not an LCF; further investigation
is required to determine if the pattern that we observe at ALCF is
also seen at other LCFs.

Figure 5b and Figure 5c present the cumulative distribution of file
sizes for files read and written on Mira from 2015 to 2018. File sizes
have increased steadily over the four years studied, but most files
are still smaller than one gigabyte. Indeed, we see from Figure 5b
that the median size for files read is only about 1 MB and from
Figure 5c that the median size for files written is only slightly larger.
Considering that the GPFS block size for Mira is 8 MB, files that
are smaller than 8 MB (more than half according to Figure 5b-c)
cannot benefit from parallel I/O.

Observation 6. The average size of files read and written on Mira
is small, hindering efficient parallel I/O. This observation suggests
more work is needed to educate users as to the benefits of larger
files and/or to adapt storage and I/O systems to perform better for
smaller files.

4.3 Metadata time
Considering that most files read/written on Mira were small in size,
we may expect metadata operations to occupy a significant fraction
of the time taken by file read/write operations. To investigate this
supposition, we quantitatively studied the overhead associated
with metadata operations for files read or written by applications.
Specifically, for each file read or written, we extracted the total
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Figure 5: Annual total read/write size and cumulative distribution of tasks’ file I/O size.

time as well as the time spent on operations related to metadata
from Darshan logs. We then computed the fraction of time (with
reference to the total file I/O time) spent on metadata operations
for each file and studied their distribution for files read/written
from/to the GPFS over four years. Figure 6 shows the distribution
of the fraction of time spent on metadata operations. Metadata
operations account for a surprisingly large fraction of total I/O
time. For example, the median in 2018 for both MPI-IO and POSIX
is about 0.38, which means that at least 38% of file I/O time was
spent on metadata operations for half of the files read or written.
Overall, the fraction of time consumed by metadata operation is less
when MPI-IO was used, perhaps because MPI-IO is mostly used for
large files.
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Figure 6: Per-file fraction of I/O time consumed bymetadata
operations.

Observation 7. Metadata operations account for a significant por-
tion of total I/O time, due to the fact that the majority of files are
small. Where feasible, system administrators should optimize their
system configuration for smaller files. For example, the Lustre file
system can be configured to store the data for small files on the
metadata server, thus avoiding the overhead of creating an object
storage target (OST) object, and initiating new remote procedure
calls to the OST [34]. It will be valuable to encourage the use of
parallel I/O, which is optimized for large files (at least a few MB in
size), to achieve better per-file throughput.

5 HARDWARE PERFORMANCE MONITORS
IBM hardware performance monitoring (HPM) [47] provides non-
intrusive, very accurate, and low overhead counters to instrument
the execution of an application at the process level (recorded in
our Autoperf logs), node level, and/or job level. HPM gathers fine-
grained performance metrics, revealing how many hardware re-
sources the code has used. Thus, it can be used to identify and
eliminate performance bottlenecks. In our analysis, we use HPM
counters of many different applications at scale to study the char-
acteristics of applications run on Mira. We mostly focus on the
arithmetic floating point operations and main memory access be-
havior of applications.

5.1 Computing
Autoperf aggregates and records the total number of floating point
operations (the PEVT_INST_QFPU_ALL field in its records) performed
by each MPI process during an application’s execution. Thus, given
the number of MPI processes per node and the application’s to-
tal runtime, we can compute, for each application, the achieved
average FLOPS per node. Autoperf also records the total number
of non-floating point operations (integer, load, store, and branch
operations) as PEVT_INST_XU_ALL, and thus we can also compute
the achieved average operations per seconds (OPS) per node by
adding the QFPU and XU counters.

Figure 7 shows the cumulative distribution of OPS and FLOPS for
all tasks for which Autoperf recorded data during our study period.
The peak floating point performance of the PowerPC A2 processor
is (1.66 GHz) × (16 cores) × (4 vector lanes) × (2 operations per
FMA) = 212.48 GFLOPS/node. However, as shown in Figure 7a, most
tasks for which data are recorded achieve only a small fraction of
this number. For example, the 80th percentile achieved less than 4
GFLOPS, or ∼2% of peak. Fortunately for Mira, but unfortunately
for system analysts, these numbers are unlikely to be representative
of total system behavior. As previously noted, Autoperf records are
available for only 22% of all tasks during the period 2016 to 2019.
There is anecdotal evidence that power users (e.g., HACC [14]which
consumed about 4% of Mira’s annual hours, achieved 7.02 PFlops
on Mira, i.e., 70% of peak FLOPS) disable Autoperf, due to concerns
about its overheads [7]. The 22% of tasks for which data are available
likely achieve poor FLOPS numbers either because they have a low
flop/byte ratio and are thus memory-bound, as presented in §5.2,
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Figure 7: Cumulative distribution of the achieved per-node
OPS, FLOPS, andOperations per FLOP for the 22% of allMira
tasks from 2016 to 2019 for which Autoperf data are avail-
able.

or because they do not perform many floating point operations, as
we discuss in the following section.

As introduced in §1, the primary goal of leadership computers
is to enable the execution of large applications that cannot be run
anywhere else. Both resource allocation and the scheduling policy
of Mira are biased to favor those large jobs [10]. Figure 7b shows
the relationship between jobs size and FLOPS achieved. The trend
in Figure 7b is counter intuitive, as one would expect large applica-
tions to achieve less FLOPS/node because of scaling problems. One
possible explanation is that users with large applications put more
effort into optimizing their code for Mira (and perhaps only for
Mira), so that they can run their application at scale. For example,
Lattice QCD, which consumes more than 10% of Mira’s core–hours
annually, achieved 1 PFLOPS using 32k nodes (about 30 GFLOPS
per node) by carefully tuning their assembly code for Mira [37].
Thus, the average GFLOPS/nodes shown in Figure 7b is not rep-
resentative of all tasks that run on Mira. It captures only 20% of
the machine time and is also likely skewed by tasks that are small
and/or not optimized for Mira.

As not all applications perform intensive floating point opera-
tions, we also characterize an application by the number of arith-
metic operations (including floating point operations) performed
per second: OPS. Figure 7c shows the cumulative distribution of
achieved OPS. We see that achieved OPS are much higher than
FLOPS. In order to further study the floating-point intensity of
different applications, we divide the total number of operations by
the total number of floating point operations (OPS/FLOPS), with
results shown in Figure 7d. If we assume that the core operation
of the application is calculation (e.g., solving partial differential
equations), i.e., all other operation are auxiliary, then for more than
60% of the tasks for which Autoperf data are available, at least 10
auxiliary operations are performed for each floating point oper-
ation. Therefore, although the TOP500 project [46] uses FLOPS
achieved by the LINPACK benchmark (which has a high percentage

of floating-point arithmetic operations [9]) as the metric to rank
supercomputers, the balance of OPS and FLOPS can better quantify
the capability of a supercomputer for many applications.

Observation 8. Most of the applications that utilize the resources
more efficiently and achieve high FLOPS/node (as high as 70% of
peak FLOPS) have Autoperf instrumentation turned off. The fact
that a significant percentage of the applications that achieved low
FLOPS did not turn off the Autoperf instrumentation provides an
opportunity for the operations team to proactively identify and
notify the users of inefficient utilization of system resources, and to
potentially provide appropriate training and support to the users
to optimize their code. LCFs need to work with their power users
and their applications to understand the impact of Autoperf- like
instrumentation on the performance of their code. It will help re-
duce the overhead of the instrumentation and pave the way for
increasing the coverage of instrumentation to more applications,
which will help us get a holistic view of resource utilization and
better understand the opportunities for optimization.

5.2 Memory
Each Mira compute node has 16 GB 1.333 GHz DDR3 memory with
a peak throughput of 42.6 GB/s. Counters PEVT_L2_FETCH_LINE
and PEVT_L2_STORE_LINE record the number of fetch and store
operations, respectively, each of which corresponds to 128 bytes
read or write. Much as we did for FLOPS, we calculated the av-
erage achieved RAM throughput. Figure 8 shows the cumulative
distribution by application runs from 2015 to 2019.

We see in Figure 8a that achieved main memory access through-
put is high compared to peak arithmetic throughput. For example,
about 40% of application runs achieved more than 32 GB/s, 75% of
peak memory throughput. Some application runs achieved better
than RAM peak throughput because of high cache hit ratio.

In order to investigate the balance between main memory load
and arithmetic logic unit throughput, Figure 8b shows the average
number of main memory accesses per arithmetic operation. The
more main memory traffic, the more likely that an application is
memory bound. We see that, on average, about 40% of all tasks
performed more than three FETCHs from memory per arithmetic
operation, and about 20% of tasks performed more than 2.5 STORs
to memory per arithmetic operation.

Observation 9. Hardware performance monitors provide a low-
level signature for each task. When compared with FLOPS achieved,
we find that main memory throughput is much closer to its peak.
This observation reveals how worrisome the “memory wall” [38]
(i.e., the growing disparity of speed between CPU and memory
outside the CPU chip) is for applications on HPC systems.

5.3 Bytes per floating point operation
Wenext use the bytes-per-FLOPmetric, which denotes the amount
of communication in bytes (either to local main memory or to re-
mote memory via MPI) for each floating point operation, to charac-
terize each application. We then characterize trends in this metric
over time and compare with the supercomputer hardware specifi-
cation in the Top500 list [46].
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Figure 8: Cumulative distribution of average per-node main
memory traffic on Mira for the period 2015–2019.

As bytes-per-FLOP ratios of supercomputers continue to de-
cline, communication is supposed to become a bottleneck for per-
formance scaling [40]. During the period 2010–2018, the TOP 500
supercomputer systems increased their computational through-
put by an average of 65×, but their inter-node communication
bandwidth by only 4.8× [4, 46]: a decrease by 93% in available
bytes-per-FLOP.

Figure 9a shows the inter-node communication bytes-per-FLOP
of applications run on Mira from 2016 to 2019. For communication-
intensive applications, i.e., those with bytes-per-FLOP greater
than the 80th percentile (red region) in annual statistics, there
is a clear slightly increasing trend. For example, the percentage of
applications with MPI bytes-per-FLOP greater than 0.6 decreased
from about 10% in 2016 to less than 1% in 2019. This observation
is consistent with that of §3.1 concerning trends in application
computing demands.

Figure 9b shows the local memory (i.e., RAM) bytes-per-FLOP.
While we do not see a clear trend year over year, the local mem-
ory bytes-per-FLOP of I/O-intensive applications have clearly de-
creased from 2017 through 2019. For example, the number of appli-
cations demanding 10 bytes or more per floating point operation
has decreased from about 10% in 2017 to only around 1% in 2019.

Comparing Figure 9a with Figure 9b, we see that applications
perform 40× more local than remote memory bytes-per-FLOP.
These numbers are informative to the design of supercomputer
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Figure 9: Cumulative distribution of bytes-per-FLOP, to (a)
remote and (b) local memory.

as the applications’ bytes-per-FLOP characterization reflects the
actual demand.

Observation 10. The bytes exchanged with other processes per
FLOP, and the bytes accessed from local memory per FLOP, decrease
year over year. This trend is in line with that of supercomputers’
hardware bytes-per-FLOP capability.

6 TASK REPRESENTATION
Based on our analysis and understanding, we next engineer and
extract features from logs to represent applications in order to study
the commonality of HPC applications. We use the following seven
features to represent a task; these capture file I/O, computation,
communication, and main memory access.

• Fraction of runtime used for inter-process communication (i.e.,
time spent on MPI routines);

• Fraction of runtime used for MPI-IO;
• Achieved operations per second;
• Achieved floating point operations per second;
• Number of processes per node;
• Average RAM fetch per CPU cycle; and
• Average RAM store per CPU cycle.

T-distributed stochastic neighbor embedding (t-SNE) [36] is a
technique developed for the visualization of high-dimensional data.
It converts similarities between data points to joint probabilities and
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tries to minimize the Kullback-Leibler divergence [24] between the
joint probabilities of the low-dimensional embedding and the high-
dimensional data [36]. Here, we start with using t-SNE, with a per-
plexity of 30 and 1000 iterations, to reduce our seven-dimensional
feature representation to two dimensions for visualization. Fig-
ure 10a plots the two-dimensional t-SNE embedding of the feature
representation. As one can see, there are multiple clear clusters.
Theoretically, we can always visually see clusters using t-SNE be-
cause it can embed with any given high dimensional data, even
random noise. Thus, we further label the plot in Figure 10a with a
known property (e.g., the executable name) of the task to explore if
the shown cluster is aligned with the task property. As an example,
we label points (i.e., tasks) in Figure 10b with the same color/marker
(zoom-in encouraged) if the executable names of the tasks are the
same. To simplify visualization and reading, we only labeled the 10
most common executable names, and colored the rest red. Similarly,
in Figure 10c, we label tasks by the name of the user who owns the
application execution.

As we can see, either the username or the executable align with
the t-SNE embeddings fairly accurately. This finding suggests that
those tasks in the same visual cluster share some similarity and that
the task representation features we use are capable of distinguishing
and grouping tasks. We note that the same executable name may
be run with different configurations (e.g., level of parallelization)
or parameters (e.g., problem size). Thus, the same user may also
run different applications. Thus, tasks with same executable names
can be broken into multiple clusters (e.g., green in Figure 10b) and
similarly, tasks in more than one clusters may belong to the same
user. This analysis, at least, shows that HPC tasks can be represented
by the presented features accurately. With this information, we
could, for example, detect anomalous tasks of a given project.

While t-SNE provides compelling images and clear evidence of
clustering, they are not easily used for the automatic assignment
of tasks to clusters. (Moreover, because t-SNE is based on non-
convex optimization, different runs with different initial states can
lead to quite different results.) We thus built a machine learning
model, based on the eXtreme Gradient Boosting (XGB) algorithm,
to classify the application using the proposed features. XGB [6]
is a high-performing gradient boosting optimized software frame-
work and implementation, which is used widely by data scientists
to achieve state-of-the-art results in machine learning challenges
such as Kaggle and KDDCup; XGB is similar to Gradient boost-
ing trees [12], but the former adopts a more regularized model
formalization than the latter which gives it better performance.
Researchers have used XGB to provide accurate performance pre-
dictions for computer systems and applications [29]. Moreover, XGB
uses both novel algorithmic optimizations (a novel approximate
tree learning algorithm, an efficient procedure to handle training
point weights in approximate tree learning) and system level opti-
mizations (out-of-core computation to process datasets that are too
large to fit in main memory, and cache-aware learning to improve
speed and scalability).

We build the classifier and train it as follows. We take the data
from 2018 (totaling 127 585 Autoperf sampled tasks) and assign
each item a label as follows: for the top 20 executables (covering
94.9% of all tasks), the executable name; for the remaining task,

“other”. Thus, it totals 21 labels for this classification (i.e., applica-
tion identification) problem. We then use 70% of the labeled data,
chosen at random, to train the classifier, and the remaining 30%
to evaluate the trained classifier. We did a 5-fold cross-validation
on the training dataset; once the model is trained, we used the
test dataset to evaluate the trained model. Our testing accuracy is
99.5% (the distribution of 21 labels are relatively balanced), suggest-
ing that our seven features can accurately distinguish applications,
and indeed even distinguish different runs of the same application
with different hardware resource settings or arguments. That is
to say, the seven features, taken as a whole, can serve as a digital
representation (called “fingerprint” in this study) of the application.

Regarding the applicability of the classifier (or task fingerprint),
we note three potential opportunities:

• Verify whether the users are using the system appropriately
(actual application runs closely resemble the proposed us-
age) i.e., to ensure leadership computers are being used for
intended scientific purpose;

• Since the fingerprint is built on performance counters, we
can use it to categorize applications, for example as I/O
intensive, communication intensive, computing intensive,
or memory bound. Such categories can be used to target
applications for optimization and other specialized services,
particularly if they are to be executed repeatedly.

• Adding energy consumption dimension to the representation
could help categorize applications/projects/users for better
energy-cap control.

In summary: Tasks can easily be grouped and identified using
our interpretable feature representation. Statistically, it means that
the proposed features can explain the various behaviors and charac-
teristics of different applications.

7 RELATEDWORK
The large scale supercomputer, high performance storage system,
high speed network, and dedicated data transfer nodes are four
major subsystem resources of a leadership computing facility. Much
log analysis work has been done to characterize both subsystem
performance and user behavior [7, 26, 27, 31–33, 42]. For example,
Patel et al. [42] analyzed the Lustre storage system monitoring log
of NERSC’s Cori supercomputer to investigate the I/O behavior
of large-scale applications. Chunduri et al. [7] characterized MPI
usage on Mira at Argonne, obtaining useful insights for MPI devel-
opers, network hardware developers, and supercomputing center
operators. Liu et al. analyzed production logs of file transfer to/from
LCFs [28, 32] and proposed methods [22, 30] to optimize the file
transfer performance based on the their observations.

Lockwood et al. [33] presented important considerations for HPC
storage practitioners from a combination of facility level storage
system logs and benchmark tests. Lim et al. [26] provide compre-
hensive insights on user behavior from multiple science domains
through metadata analysis of a Petascale file system at a leadership
computing facility. Gainaru et al. [13] analyze the effects of interfer-
ence on application file I/O bandwidth and found that a significant
percentage of the computing capacity of large-scale platforms is
wasted because of interference incurred by multiple applications
that access a shared parallel file system concurrently [13].
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(a) Unlabeled 2D t-SNE embedding. (b) Labeled by executable name. (c) Labeled by username.

Figure 10: Two-dimensional t-SNE embedding of task representation. Dots (tasks) with the same color share the same infor-
mation: executable name in (b) and username in (c).

Unfortunately, each of these studies only focused on analyzing
logs of a single subsystem. In contrast, we present a more global
view of HPC application characterization. To the best of our knowl-
edge, there is not any work that combined logs of multiple sub-
systems and co-analyzes to characterize the leadership computing
facility applications.

8 DISCUSSION AND CONCLUSION
In this study, we co-analyzed five different logs to gain insights into
job characteristics, categorization, and system usage. To the best of
our knowledge, this is the first study of its kind to systematically
characterize the leadership computing applications from real logs.
Our analyses provided useful insights concerning the file operation
behavior, communication patterns, computational demand, and run
time breakdown of applications. We believe that these insights can
benefit researchers, tool developers, resource providers, end users,
and funding agencies from different perspectives. They also have
the potential to yield new insights that can help the co-design of
hardware and system tools, optimize existing system tools, and
improve the performance and experience for end users.

Our analysis results and observations are shaped by the specifics
of the Mira supercomputer, the ALCF, and Mira’s application work-
loads. To the extent that the ALCF is a typical leadership computing
facility, they likely have broader applicability. We believe that this
characterization is useful for optimizing facility management, im-
proving energy efficiency, and optimizing scheduling policy. More-
over, log-based characterization does not introduce any extra in-
strumenting burden to the precious supercomputer and it also adds
value to the logs that are already being collected for debugging,
troubleshooting, and auditing purposes. We also hope that insights
gained from our analysis can suggest directions for further analysis
and encourage other HPC centers to undertake similar such efforts.
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