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Abstract—Big data transfer in next-generation scientific ap-
plications is now commonly carried out in High-performance
Networks (HPNs) provisioning dedicated connections through
advance bandwidth reservation. To use HPN resources efficiently,
provisioning agents need to carefully schedule data transfer
requests and allocate appropriate bandwidths. Such reserved
bandwidths, if not fully utilized by the requesting user, are simply
wasted due to the exclusive access. This calls for the capability
of performance prediction to reserve bandwidth resources that
match actual needs. Towards this goal, we employ machine
learning algorithms to predict big data transfer performance
based on extensive performance measurements, which are col-
lected over a span of several years from a large number of
data transfer tests using different protocols and toolkits between
various end sites on several real-life physical or emulated HPN
testbeds. We first identify a comprehensive list of attributes
involved in a typical big data transfer process, including end
host system configurations, network connection properties, and
control parameters of transfer methods and underlying protocols.
We then conduct an in-depth exploratory analysis of their
impacts on application-level throughput, which provides insights
into big data transfer performance and motivates the use of
machine learning. We also investigate the applicability of machine
learning algorithms and derive their general performance bounds
for performance prediction of big data transfer in HPNs. Exper-
imental results show that, with appropriate data preprocessing,
the proposed machine learning-based approach achieves 95% or
higher prediction accuracy in up to 90% of the cases with very
noisy real-life performance measurements.

Index Terms—Performance prediction, experimental analysis,
machine learning, big data transfer.

I. INTRODUCTION

Dedicated connections provisioned in High-performance
Networks (HPNs) such as ESnet [1] are increasingly used for
big data transfer in various domains ranging from extreme-
scale scientific research to industrial big data analytics. Pro-
visioning agents in HPNs typically ask end users to request
bandwidths as needed and then establish corresponding end-
to-end paths with reserved bandwidth.

Predicting end-to-end data transfer performance (mainly
throughput) is critical to the utilization of bandwidth resources
in HPNs. A dedicated connection, once allocated and granted,
is used exclusively by the requesting user during the approved
time window. Due to the exclusive access, any granted band-
width, if not fully utilized, is simply wasted. Therefore, accu-
rate performance prediction is not only useful for end users to
understand and optimize big data transfer performance, e.g.,
determining what transfer methods to use and what control
parameter values to set [7], but also important for HPN

management to wisely schedule data transfer requests, e.g.,
rejecting requests with “over-claimed” bandwidth demands
or granting bandwidths in the amount that can be actually
utilized.

However, predicting end-to-end big data transfer perfor-
mance in HPNs is challenging. Although the exclusive use
of dedicated connections minimizes the impact of complex
dynamics caused by cross traffic on performance prediction,
many other factors involved in a typical big data transfer
process may still affect the end-to-end performance to a
great extent, including i) end host system configurations, ii)
network connection properties, and iii) data transfer methods
and their corresponding control parameters. In general, it is
very difficult to apply an analytical approach to big data
transfer performance prediction in HPNs, due to 1) the lack of
accurate throughput performance models for high-performance
data transfer protocols such as UDT [10], ii) the complex
composition of end-to-end dedicated connections, iii) the
complexities and varieties of end host configurations; and iv)
the time-varying concurrent workloads in end host systems.
Consequently, HPN technologies and services have not been
fully utilized for big data transfer regardless of the continuous
bandwidth upgrades in backbones.

In this paper, we employ a machine learning-based approach
to predict big data transfer performance in HPNs based on
extensive performance measurements, which are collected and
accumulated over a span of several years from a large number
of big data transfer tests using different protocols and toolkits
between various end sites on several real-life physical or
emulated HPN testbeds. Based on such performance mea-
surements, we first identify a comprehensive list of attributes
(parameters) involved in a typical big data transfer process,
including end host system configurations, network connection
properties, and control parameters of data transfer methods.
We then conduct an in-depth qualitative exploratory analysis
of their impacts on end-to-end performance as observed by
end users at the application level. We also investigate the
applicability of machine learning in performance prediction in
HPNs and conduct experiments for performance evaluation.

We summarize our contributions in this work as follows.

« Exploratory Analysis. We conduct an in-depth analysis
of a comprehensive list of transport-related attributes to
qualitatively explain their impacts on end-to-end big data
transfer performance in HPNs. Such analysis motivates
the use of machine learning and further provides insights


mailto:dyun@harrisburgu.edu
mailto:chase.wu@njit.edu
mailto:raons@ornl.gov
mailto:kettimut@anl.gov

into feature selection in later learning-based performance
prediction.

o Performance Prediction. We show that the performance
predictor built on the “critical” features selected from
the exploratory analysis is statistically meaningful by
deriving a general performance bound based on several
domain-specific conditions of HPNs, and then apply
Support Vector Regression (SVR) to demonstrate the
effectiveness of big data transfer performance prediction
using machine learning methods.

The rest of the paper is organized as follows. We conduct

a brief survey of related work in Sec. II. Sec. III describes
the problem of performance prediction of big data transfer
in HPNs. We introduce the performance measurement dataset
used in this work in Sec. IV. An exploratory analysis of big
data transfer performance is conducted in Sec. V. Theoreti-
cal performance bounds are derived and practical prediction
results using machine learning are presented in Sec. VI. We
conclude our work and sketch a research plan in Sec. VIL
II. RELATED WORK

The importance of provisioning dedicated connections to
support big data movement over long distances has been well
recognized in both science and network communities. We
conduct a brief survey of existing work in related areas.

A. Transport Profiling and Optimization

Many profiling-oriented toolkits have been used to conduct
data transfer tests to understand and optimize network per-
formance. For example, iperf2 is a handy tool available in
most Linux distributions to run TCP tests to estimate available
bandwidth. ESnet iperf3 [2], which is a rewrite of iperf2
from scratch, provides a rich set of functions and options for
tuning TCP, UDP, and SCTP. Similar to iperf2/3, TPG [5] is a
toolkit for conducting UDT [3] data transfer tests. In addition
to the common tunable parameters in iperf2/3, TPG enables
tuning of UDP socket options for UDT and other UDT-specific
parameters, and also supports profiling tests based on multiple
physical NIC-to-NIC connections.

Some of these toolkits have been integrated into transport
profiling optimization (e.g., FastProf [6]) as functional units
to carry out data transfer tests guided by stochastic approx-
imation [7] and time series analysis [11]. Performance mea-
surements are collected by measuring throughput in response
to various attributes including end host system configurations,
network connection properties, and control parameter values,
and can be utilized to train performance models for prediction.
B. Throughput Performance Modeling and Prediction

There are numerous efforts devoted to understanding the
behaviors of transport protocols and modeling their throughput
performance. For example, Padhye et al. in [13] develop a
throughput model of TCP bulk data transfer on the Internet
corresponding to loss rate and connection delay. TCP through-
put in response to delay and number of streams is presented in
a more recent study [17]. Gu et al. present in [23] a throughput
model of another representative protocol, UDT [10], and use
experimental results over 1 Gbps connections to show that
UDT recovers much faster than TCP from a loss event and

achieves stable asymptotic performance across different RTTs.
Another experimental study [18], however, shows that UDT
has certain instability and variety over 10 Gbps connections.

These modeling and experimental studies mainly focus
on analytically understanding the behaviors of data transfer
protocols in the Internet environments in response to the
factors that represent time-varying conditions (e.g., available
bandwidth, etc.) without considering the stability of dedicated
HPN connections and a comprehensive list of other attributes
(e.g., control parameters) that also have non-negligible im-
pacts. Therefore, they have limited capability and accuracy in
predicting the performance of big data transfer in HPNs.

Machine learning has great potential for performance
prediction of big data transfer in HPNs. For example,
Mirza et al. in [15] use a support vector regression method
to predict TCP file transfer performance in publicly shared
Internet environments, using path properties and file transfer
size as the features. Liu et al. in [25] use regression analysis
to explain the observed performance patterns based on the log
files of GridFTP-powered disk-to-disk wide-area file transfers
and empirically build a wide-area file transfer performance
predictor in [26]. Our work differs from the aforementioned
efforts in that we identify a comprehensive list of attributes
involved in a typical big data transfer process over dedicated
connections, including not only the properties and conditions
of network connections, but also the configurations of end
host systems as well as various control parameters of data
transfer methods and their underlying transport protocols. We
conduct an exploratory analysis of their impacts on big data
transfer performance in HPNs, and then use machine learning
algorithms for performance prediction.

III. PROBLEM STATEMENT

End-to-end big data transfer in HPNs is a complex process
that involves both network and end-host components, any
of which could become the bottleneck and hence limit the
performance. Among these components, some can be accessed
and controlled by the applications, including packet size, block
size, buffer size, and number of parallel streams; while the
others are mainly determined by the hardware and system
configurations as well as network infrastructures, including
CPU frequency, memory size and bandwidth, bus speed, disk
I/0 speed, path MTU size, RTT, link bandwidth, and loss rate.

Although network connections in HPNs are reserved in
advance (typically with high bandwidth) and some of their
properties such as RTT and connection loss rate are relatively
stable, end-to-end throughput performance is still largely af-
fected and limited by many other issues such as a mismatch of
end host capabilities and configurations (e.g., a faster sender
host to a slower receiver host), the use of an unsuitable data
transfer protocol [7], incorrect settings of CPU affinity [16]
and IRQ balance/conflict [14], and suboptimal control param-
eter values [6]. Due to the quantity and complexity of these
factors, it is dauntingly difficult to develop an analytical ap-
proach to directly predict transport performance, especially in
the presence of unpredictable factors such as system dynamics
and competing workloads on end hosts.



Informally, we attempt to answer the following question.
Given two end hosts (a sender and a receiver) and a dedicated
connection between them with a reserved bandwidth, using a
specific data transfer tool and its underlying transport protocol
together with their corresponding control parameter values,
what end-to-end throughput performance could be achieved?

The throughput performance y of a data transfer could be
expressed as a function of multiple variables including: i) end
host system configurations H, ii) network connection proper-
ties P, and iii) control parameters C of the data transfer method
and its underlying protocol, which collectively form a feature
vector x = [H,P,C], i.e., y = y(x). The analytical form of
function y is essentially unknown (or too complicated to be
accurately modeled). Let y; be the throughput performance in
response to x; as observed by end users at the application
level. We have y; = y(x;) + &, where y; is the “noise-
corrupted” throughput observation, and &; is an i.i.d. random
variable that represents the noise including the dynamics
in end host systems and the randomness in performance
measurements. The expected throughput performance ¥, of

a big data transfer during time interval [0, AT] is given by

AT )
Y, = W, where y(x;,t) is the throughput at time

point ¢ with feature x;. In practice, for a specific data transfer,
we obtain y; by its approximation §,; ~ ¥; = %, where Fj is
the total size of transferred user payload and AT is the time
taken to complete the transfer. We take real-life measurements
y; as ground truth (i.e., let y; = ¢;) and measure y; in unit of
Mbps unless specifically indicated otherwise.

The variables that may affect end-to-end throughput per-
formance of big data transfer, i.e., x, have a large range of
possible values in a multidimensional space, and the perfor-
mance measurement dataset 7 can be viewed as samples in
this space. These samples are used to generalize to the whole
feature set and performance space for prediction purposes,
and we explore machine learning to predict big data transfer
performance based on historically collected performance mea-
surements. More specifically, given a training dataset 7 of n
performance measurements of data transfer tests, i.e., T =
{(x1,91), (x2,Y2), - -+, (Xn,yn)}, where x; (i = 1,2,...,n)
is an instance of the feature vector that collectively determines
the corresponding performance y;. We propose to employ
machine learning methods to estimate y; based on 7 such
that the predicted (estimated) value g; is close enough to the
true value y; for all training samples (x;,v:), ¢ =1,2,...,n
and can be applied to arbitrary future cases with high accuracy.

IV. THROUGHPUT PERFORMANCE MEASUREMENTS

We briefly describe the acquisition of our performance
dataset in this section.
A. Testbeds

Our performance measurements are accumulated and
archived in the past several years based on numerous data
transfer tests conducted on several HPN testbeds managed by
different institutions, as briefly introduced below.

1) Local Testbed at University of Memphis

This testbed, denoted as “UM-Local”, is established by

back-to-back connecting two workstations (dual-core, 2.9 GB

RAM) via a 10Gigé NIC. Both ends (um.dragon and
um.rabbit) are installed with FC 17 Linux OS of 3.9.10 kernel.
2) Local Testbed at New Jersey Institute of Technology

This testbed, denoted as “NJIT-Local”, is established be-
tween two back-to-back connected high-end servers (njit.tiger
and njit.rabbit), each with 12 cores, 16 GB RAM, CentOS 3.10
kernel, and a 10 GigE NIC.
3) Physical Testbed between Argonne National Laboratory

and University of Chicago

This testbed, denoted as “ANL-UC”, consists of several
physical network connections of 2ms, 100ms, and 380 ms
RTTs established between three end hosts at Argonne Na-
tional Laboratory (ANL), i.e., jlse (64 cores, 64 GB RAM,
CentOS 3.10 kernel, and 10 GigE NIC), tubes (16 cores, 48 GB
RAM, CentOS 2.6 kernel, and bound 4x10GigE NIC), and
tubes2 (64 cores, 128 GB RAM, CentOS 3.10 kernel, and
bound 2x40 GigE NIC), and two identical virtual end hosts at
University of Chicago (UC) (g1903 and g1904 with domain
name midway) that are dynamically allocated (64 cores, 32 GB
RAM, CentOS 2.6 kernel, and 40 GigE NIC). The delay of the
2ms connection is mainly due to physical distance, while the
100 ms and 380 ms connections are engineered using a layer-2
circuit within ESnet [1] that starts from ANL, extends to the
west coast of the US, and then loops back to UC. Note that on
this testbed, only one of the bound NICs is utilized (thus the
bandwidth is 10 Gbps) in a single-stream data transfer test.
4) Local Testbed at University of Chicago

This testbed, denoted as “UC-Local”, is a 40 Gbps local con-
nection established between those two dynamically allocated
virtual end hosts (g1903 and g1904) located at UC.
5) Emulated Testbed at Oak Ridge National Laboratory

This emulated testbed at Oak Ridge National Laboratory
(ORNL), denoted as “ORNL-E”, consists of various con-
nections with different emulated RTTs between several pairs
of high-end workstations, each pair with identical hardware
configurations and 10 GigE NICs. Two 48-core workstations
(bohr04 and bohr05, or b4 and b5, with Linux 3.10 kernel) are
back-to-back connected with 10 GigE NICs directly connected
to two IXIA emulator ports. Another two 32-core Linux
workstations (feynmanl and feynman2, or fl and {2, with
Linux 2.6 kernel and CentOS 6.8 release) are connected via
a back-to-back fiber connection with two SONET OC192
ANUE emulator ports, where E300 switches are used to
convert between 10GigE LAN-PHY and WAN-PHY frames
that are inter-operable with OC192 frames. The peak capacity
of this OC192 connection is 9.6 Gbps, less than 10 Gbps of
the 10GigE connection. We use these emulators to collect
performance measurements for network connections with vari-
ous RTTs of {0,11.8,22.6,45.6,91.6, 183,366} ms. The RTTs
in the mid range represent US cross-country connections and
higher RTTs represent transcontinental connections.
B. Data Transfer Protocols and Toolkits

The data transfer tests are performed using two main data
transfer protocols, TCP and UDT. TCP is the de facto standard
protocol on the Internet and has a number of variants; and
UDT [10] is a UDP-based data transfer protocol designated



TABLE I
LIST OF ATTRIBUTES IN THE DATA TRANSFER PERFORMANCE DATASET.

Categories Attributes Remarks
Identifier record ID integer, unique
Testbed testbed name string, nominal
CPU frequency double, hertz
number of processors integer
End host number of cores per processor | integer
memory size integer, MB
kernel buffer size integer, byte
bandwidth double, Gbps
Connection RTT double, ms
loss rate double, emulated
Toolkits & data transfer protocol string, nominal
Protocols data transfer toolkit string, nominal
frame size integer, byte
packet size integer, byte
payload size integer, byte
block size integer, byte
TCP send buffer size double, MB
Control TCP recv buffer size double, MB
parameters UDP send buffer size double, MB
UDP recv buffer size double, MB
UDT send buffer size double, MB
UDT recv buffer size double, MB
number of parallel streams integer
data size double, MB
time duration integer, seconds
Performance | throughput/goodput double, Mbps

for Long Fat Networks (LFNs) and is widely adopted in HPN
community. Part of the tests are conducted specifically for data
collection purpose and powered by profiling-oriented toolkits
including iperf2, ESnet iperf3 [2], and TPG [5]; the rest are
mainly the byproducts of the experimental studies for transport
profiling optimization [6] and data transfer advising [7]. All
of these tests enable the tuning of various control parameters
of TCP and UDT.
C. Data Acquisition and Introduction

We use the toolkits in Sec. IV-B to run big data transfer
tests over dedicated connections on various HPN testbeds. The
tests typically take time on the order of minutes to complete,
and in each test, a number of attributes and the corresponding
throughput performance are measured and recorded. A large
number of measurements have been collected and archived
in the past several years. The entire dataset consists of total
109,683 tabular data records, 30,433 of which are performance
measurements of TCP tests and the rest (79,250 records) are
performance measurements of UDT tests. Each data record
contains a list of attributes, where the last one is the target
attribute (i.e., performance) and the rest are roughly classified
into three categories: i) end host configurations; ii) network
connection properties; and iii) data transfer protocols/toolkits
and their control parameters, as listed in Tab. I.

V. EXPLORATORY ANALYSIS

We conduct an exploratory analysis to identify the patterns
of big data transfer performance with respect to the attributes
as listed in Tab. L.
A. Effects of Application-Accessible Parameters

We focus on the set C of control parameters that are accessi-
ble and tunable at the application level, including packet size,
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Fig. 1. UDT performance vs. packet size. Performance results are collected
from different testbeds with single-stream data transfer tests.
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Fig. 2. TCP performance vs. packet size. Performance results are collected
from different testbeds with single-stream data transfer tests.

block size, buffer size, and number of parallel streams. We
analyze their impacts on throughput performance using both
UDT and TCP measurements. To better illustrate the impacts
of the parameter being examined, we set other parameters with
values that do not cause significant interference.
1) Packet Sizes

The throughput performance of big data transfer is affected
by the packet size used in the underlying transport protocol. A
larger packet size typically increases the performance since it
carries more per-packet user payload and reduces per-packet
processing overhead [ 12]. Fig. 1(a) plots the UDT performance
corresponds to different packet sizes in network connections
with various RTTs and shows that large packet sizes do
help improve the UDT performance. When other parameters
such as buffer size are fixed, the performance almost linearly
increases with packet size (Figs. 1(a) and 1(b)). If the buffer
size is fixed at a value that limits performance, e.g., 256 MB,
for a 10 Gbps connection of 200+ ms RTT, as illustrated by the
366 ms curve in Fig. 1(a), the performance curve also increases
linearly with packet size, but at a slower speed for a given
packet size in comparison with other cases where buffer size
is sufficiently large. The increasing pattern of performance
in response to packet size is observed with different RTTs
on different testbeds between different hosts using different
protocols, as shown in Figs. 1(b), 2(a), and 2(b), and is
consistent with the analysis of buffer size in Sec. V-A2.
2) Buffer Sizes

It has been well recognized that a buffer size no less than
the Bandwidth-Delay Product (BDP) is required to saturate
the connection capacity. For example, ESnet [1] recommends
a TCP buffer size of twice of BDP to fill the pipe. While
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the specific behaviors and peak achievable performances of
different protocols with respect to buffer size may be different,
the shape of the performance curve is consistent and shows
a “piecewise” pattern. Fig. 3 shows UDT performance with
respect to buffer size, where the results are collected on
different testbeds using different toolkits between different end
hosts. Given a dedicated connection, the piecewise pattern is
summarized as the following three regions:

In the region where buffer size is relatively small (e.g., less
than BDP), TCP and UDT behave similarly and the perfor-
mance almost linearly increases as buffer size increases. The
peak achievable performance is mainly limited by buffer size
and is lower than the overall peak achievable performance; the
slope of the linear increase depends on end host configurations
and network properties, which can be interpreted by comparing
Fig. 3 and Fig. 4.

As buffer size increases up to around the BDP, both TCP
and UDT reach the overall peak performance, and at this
stage, other factors start to impose further limitation on the
performance, as shown in Fig. 3. Although the specific buffer
size for maximal achievable performance is “agnostic” as other
factors such as RTTs play a more important role in such cases,
the peak performance is usually achieved around the BDP, as
illustrated in Figs. 3 and 4.

In the region where buffer size is larger than the BDP,
TCP and UDT significantly diverge and the performance may
not stay at the overall peak as buffer size keeps increasing
beyond the BDP. In general, single-stream TCP can easily
achieve near-capacity performance over a connection with a
short delay (e.g., see Fig. 4(b)) and is not significantly affected
by buffer size as long as it is not deliberately small. As
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shown in Fig. 4(a), single-stream TCP appears to be ineffective
for long-haul connections, where other parameters such as
number of streams and network properties such as RTT play a
more dominating role (see Sec. V-A4 and Sec. V-B for more
discussions). The case of UDT when buffer size is around or
larger than BDP is more complicated as a larger buffer may
degrade the achievable performance in certain environments,
as shown in Fig. 3(a), which, compared with the case of TCP,
is counter-intuitive.
3) Block Sizes

In general, with a sufficiently large buffer, the UDT per-
formance increases as block size increases. The performance
curve first shows a certain “concave” shape, indicating that



the improvement brought by enlarging data block becomes
marginal, and then stabilizes at the peak performance after
block size reaches a certain point. The optimal block size
is also prone to many other factors, but the performance
pattern corresponding to block size appears to be consistent
across different testbeds with different end hosts and network
properties using different toolkits, as shown in Fig. 5. The
performance suffers from a relatively limited buffer due to an
overly large block size, e.g., when block size approaches buffer
size, which, although not illustrated in Fig. 5, could happen in
practice. In such cases, the performance decreases if the block
size keeps increasing.

The performance of TCP is not significantly affected by
block size, as shown in Fig. 6, and the stabilized performance
is mainly determined by other factors such as buffer size
(Sec. V-A2), RTT (Sec. V-B), and stream count (Sec. V-A4).

4) Number of Parallel Streams

In our data transfer tests, we observe that UDT performance
is not significantly affected by the number of parallel streams
used in data transfer applications. This observation matches
our expectation because UDT is not designed for environments
with high concurrency [24]. This is also verified in some other
work, e.g., [23].

The incapability of standard TCP to achieve a steady-state
high throughput over LFN connections is well recognized in
networking community [9], and many TCP-based solutions
using multiple streams such as GridFTP [22] have been
developed and achieved remarkable success in practice. In
our experiments, single-stream TCP achieves near-capacity
throughput performance over short dedicated connections, as
shown in Fig. 7(d), but suffers from long-haul connections,
where using multiple streams can help achieve higher perfor-
mance, as shown in Fig. 7(a).

Despite introducing inter-stream competition and extra pro-
cessing overhead to the end hosts that may lead to complex
transfer dynamics, multi-stream TCP solutions (e.g., GridFTP)
are widely used in practice (e.g., for moving big datasets gen-
erated by large-scale scientific applications) as they can signif-
icantly increase end-to-end throughput performance especially
over long-haul connections and between end hosts equipped
with multiple bound 10GigE NICs. As shown in Fig. 7(a),
single-stream TCP only utilizes 20% of the bandwidth over
longer connections (e.g., RTT >100ms), while multi-stream
TCP is able to reach up to 100%. It is difficult to directly derive
the optimal number of streams for a data transfer over a given
connection in a given network environment. Existing solutions
adjust the value of stream number based on runtime infor-
mation and system load approximation [19]. The performance
increase pattern as the stream number increases is conceptually
consistent among different pairs of end hosts in different
network environments as long as the stream number is not
excessively large to overwhelm end hosts. Figs. 7(b) and 7(c)
also collectively show that increasing stream number may
decrease performance (due to extra overhead incurred by
multiple streams) after achieving the peak performance.

10000 - 10000
TCP, ProbData, 2ms, 10Gbps,
8000 8000 ANL-UC (jlse-midway)
o~ ——0ms  —A—9Ims =
- 11.8ms —P— 183ms &
£ 6000 S nim | £ 6000
s i s
<4000 £ 4000
o o
a ~
2000 2000
TCP, Iperf2, 0-366ms, 10Gbps,
0 ORNL-E (bohr(4-bohr05) 0
1 23456728910 1 5 10 15 20 25
Stream Number Stream Number
(a) ORNL-E, 0-366 ms, 10 Gbps (b) ANL-UC, 2ms, 10 Gbps
4
4210 10000
33 8000
- 3 2
= o
525 £ 6000
2 2 )
"5 15 T 4000
& A
TCP, ProbData/FastProf, Oms, 2000 TCP, ProbData, Oms, 10Gbps,
0.5 [40Gbps, UC-Local (g1903-g1904) ANL-UC (njit.tiger-njit.rabbit)
0 0
1 5 10 15 20 25 1 5 10 15 20 25

Stream Number Stream Number
(c) UC-Local, 0 ms, 40 Gbps (d) NJIT-Local, Oms, 10 Gbps
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B. Effects of Network Connection Properties

A dedicated connection has two important properties: i)
the reserved bandwidth, which is typically on the order of
tens of Gbps currently and Tbps in the forthcoming future;
and ii) the connection delay, which is usually measured by
the RTT ranging from less than one millisecond for back-
to-back connections up to several hundred milliseconds for
inter-continental connections. Unlike the control parameters in
Sec. V-A, such properties are not tunable for a given dedicated
connection, and they affect the performance in a different
way from the control parameters: the connection bandwidth
gives a theoretical upper performance bound for a given big
data transfer, and the connection delay significantly affects
the application-level maximal achievable performance, i.e., the
upper bound for performance tuning.

The connection delay has a critical impact on TCP-based
data transfer as it not only affects the choice of parameter
values (e.g., buffer sizes), but also the maximal achievable
performance between the same pair of end hosts. As shown
in Figs. 4(a) and 4(b), from tubes2 to midway, even if buffer
size is sufficiently larger than BDP, single-stream TCP only



obtains a throughput of <5% available bandwidth when RTT
is 380ms; if the connection between the same two hosts
is of shorter delay, e.g., 2ms, single-stream TCP achieves
a performance of around 90% available bandwidth. Other
interesting effects of connection delay can also be derived
from the performance comparison between the same pair of
end hosts on the same testbed with different RTTs, as shown
in Figs. 1(a), 5(a), and 7(a).

Fig. 8 plots the maximal achievable performance corre-
sponding to different RTTs based on TPG UDT tests and
iperf2 TCP tests over a 10 Gbps dedicated connection estab-
lished between end hosts bohr04 and bohr05 with various
emulated RTTs on ORNL-E. Firstly, the throughput of both
UDT and TCP varies and generally decreases (especially for
the single stream case) as RTT increases, and both TCP-
and UDT-based data transfer requires certain tuning efforts
to achieve good performance since the default settings typi-
cally do not achieve satisfactory performance especially over
connections with long RTTs (e.g., > 90 ms); secondly, single-
stream TCP works well with short RTTs (e.g., <20ms) and
suffers from long RTTs (e.g., >50ms), and using multiple
TCP streams helps achieve near-connection capacity perfor-
mance over mid-range connections with RTTs up to 90 ms,
as shown in Fig. 8(b); thirdly, UDT is not as sensitive to
RTTs as TCP due to its Decreasing Additive Increase and
Multiplicative Decrease (DAIMD) rate control algorithm [23],
the maximal achievable performance of UDT-based data trans-
fer is more stable than TCP across different RTTs, and using
multiple UDT streams only slightly helps for longer RTTs
(e.g., > 180ms), as shown in Fig. 8(a); lastly, comparing
Fig. 8(a) and Fig. 8(b), we observe that: i) single-stream TCP
outperforms UDT for short RTTs but fails to keep up with
UDT for both mid-range and long RTTs; ii) using multiple
streams helps TCP outperform UDT for mid-range RTTs; and
iii) UDT outperforms TCP in both single- and multi-stream
cases for longer RTTs.

C. Effects of End Hosts Configurations

The effects of end host configurations are arguably intuitive.
For high-speed data transfer in HPNs, it is important to
ensure that both ends are capable of keeping up with the
speed of incoming/outgoing traffics. In addition, the systems
must be also appropriately configured to operate at 10 Gbps,
40 Gbps, or higher speed, including CPU governing, kernel
buffer sizes, core affinities, packet pacing, etc. Furthermore,
different environments and different transport methods may
require different hardware capacities and software configu-
rations to achieve optimal performance. For example, CPU
frequency is critical for a single data flow to reach peak
performance; careful packet pacing should be used for data
transfer from a faster sender to a slower receiver over a long-
haul dedicated connection (e.g., RTT >50ms) when using
tools augmented by parallel data streams such as GridFTP;
TCP buffer size should be configured to be the maximum
in Linux to maximize the transport performance over high-
speed long-haul connections between end hosts equipped with
10/40/100 Gbps Ethernet NICs.
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Fig. 9. Maximal achievable performance of UDT over four back-to-back
connections (RTT ~ 0ms) between different pairs of end hosts on different
testbeds.
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with various RTTs of {11.8,22.6,45.6,91.6, 183,366} ms between different
pairs of end hosts on ORNL-E.

Such complexities exist in host hardware/software config-
urations, and time-varying system workloads and dynamics
collectively make it non-trivial to tune and predict big data
transfer performance in HPNs. They, together with network
properties, impose an upper bound on the achievable through-
put using different transport methods. Fig. 9 compares the
maximal achievable performance of UDT over four different
connections of 10 Gbps with a close-to-zero RTT, established
via back-to-back connecting four different pairs of hosts on
different testbeds (um.dragon to um.rabbit on UM-Local,
njit.tiger to njit.rabbit on NJIT-Local, and feynmanl to feyn-
man2 and bohr04 to bohr05 on ORNL-E). Fig. 10 shows the
performance difference over connections with different RTTs
emulated between the same two pairs of end hosts (feynmanl
to feynman2 and bohr04 to bohr05) on ORNL-E. They both
show that similar or identical connections between different
end hosts may result in very different maximal performance
achievable by “near-exhaustive” performance tuning.

VI. PERFORMANCE PREDICTION USING MACHINE
LEARNING

We first show that §j(x) is indeed a good estimate of big data
transfer performance over dedicated connections in a statistical
sense with a high probability, and then present prediction re-
sults of Support Vector Regression (SVR), a popular machine
learning algorithm for multivariate regression.

A. Confidence Estimates

The throughput performance y(x) is a response variable
with a complex distribution P, as it depends on many fac-
tors including: i) end host system configurations and dynamics,
ii) network connection properties and randomness, and iii) data
transfer applications and their underlying protocols (control
parameter values, congestion control mechanisms, etc.). We
define the performance regression as the following expectation

76 = E[y(x)] = [ 4 dPy.
which can be estimated based on experimental performance
measurements y(xy,t¥) at x; (k = 1,2,...,n) and time



th (i = 1,2,...,n,). We have 0 < y(x4,t¥) < B due
to the reserved bandwidth B of a dedicated connection. The
performance estimate §(xy), given by its empirical mean, is
computed using measurements as

Zy X, 1 z

at xz’s in the space of attrlbute vector x = [H,P,C]. Note
that §j(xy ) is computed completely based on performance mea-
surements, and is indicative of the actual performance at xy,
whose unknown expected value is 7(xy,) and is to be estimated.
We show that §j(xy) is indeed a good estimate of F(xy), in
terms of the estimation of expected error, and furthermore,
the prediction accuracy is improved with more performance

measurements, regardless of the underlying distribution P y).

Consider an estimate g(-) of 7(-) based on performance
measurements from a class F of unimodal functions bounded
in [0, B], i.e., 0 < g < B, g € F. The expected quadratic loss
I(g) of the estimator g is

2
I(g) = [ o) = y(x,8)] APy
and the best estimator g* is given by I(g*) = mln I(g). The

empirical error of g based on performance measurements is
given by

N I -] 1 & 2
Btg) = =379 =" [g6xa) = ylxe, t)] ¢
M= Ui
and the best empirical estimator g* € F that minimizes the
empirical error, i.e., A
I(g*) = min I(g).
(97) = min I(g)
Since §(xy) is the response mean at each attribute vector xy,
it achieves the minimal empirical error.

Since both y(-) and g(-) are bounded in [0, B], I(g) is also
bounded in [0, K| with some K. Let Z = {I(g)|g € F} be
the set of loss functions subject to F. Based on the uniform
convergence results of Vapnik-Chervonenkis theory [21] and
its generalization [4] and applications (e.g., [20]), we know
that, for some ¢ > 0,

P{I(9) = I(g") > 2¢}
<P {sup }I(h) - f(h)‘ > e} :
hEF
and furthermore, according to [21], we have

P {sup }I(h) - f(h)‘ > e}
i)

,Z,n) is the e-cover of Z under d; norm.

< 18]\/1( ,I,n)-n-exp (—
where Nl( °

Since 7 satlsﬁes Lipschitz condition, suppose that its Lips-
chitz constant is L z 0, we then have
<
Nl(K Z,n) Nl(KL F,n).
Also, for any class M of real-valued functions, any 6 > 0
and any j € N, we have N1 (6, M, j) < No (6, M, j) [4]. Tt

follows that
PiI(y) —1(g *) > 2¢}
ne
4K2 )’

<18/\/( fn) n-exp(—

where N (e, F) is the e-cover of F under do, norm. Due
to the unimodality of functions in F, their fotal variation is
upper-bounded by 2B, which provides us the following upper
bound [4],

N, Fomy < o (L (1+225E) log, ()
n e e— .
KL €2
By using this bound, we obtain
P{I(9) —1(g") > €}
16K2L*n (148252 ) loga (<) ne
<36 —a - exp |~ e

The exponential term on the right-hand side decays faster
in n than other terms, and hence for sufficiently large n, it
would be smaller than a given probability. In sum, the expected
error I(y) of the response mean is within € of the optimal
error I(g*) with a probability that increases with the number
of performance measurements. This performance guarantee is
independent of the complexity of P (4. Thus, §(x) is a good
estimate of the actual throughput performance achievable at
feature x independent of the underlying distribution.

B. Performance Prediction using SVR
1) Experimental Settings and Results

We implement an SVR-based predictor based on the Scikit-
learn library [8], where the radial basis function (RBF) kernel
and an error-tolerated tube of a 0.005 radius are used during
training. Grid search (with 10-fold cross validation) is per-
formed to find the best hyperparameters with kernel coefficient
set {0.0001,0.001,0.01,0.1,0.2,0.5,0.6,0.9} and regulariza-
tion parameter set {1,10, 100, 1000, 10000}. We measure the
performance of the predictor by calculating its prediction
accuraey in terms of Absolute Percentage Error (APE) defined

s izl y1| x100%, where y; is the actual performance, i.e., true
Value, y; is the predicted value.
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Fig. 11. Performance prediction results of SVR without data preprocessing.

The Empirical Cumulative Distribution Function (ECDF)
of performance prediction accuracy corresponding to both
UDT and TCP on different HPN testbeds are plotted in
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Fig. 12. Performance prediction results of SVR with data preprocessing using
the same dataset as in Fig. 11(c).

Fig. 11. Figs 11(a), 11(b), and 11(d) show that the SVR-
based predictor achieves 10% APE roughly among 70% to
80% of all test cases for both TCP and UDT on ORNL-E
and NJIT-Local testbeds. These results are obtained based on
the “raw” datasets without any noise reduction or other data
preprocessing, they confirm that the selected features based on
our exploratory analysis in Sec. V are indeed of high predictive
power. The worst results are with the UDT measurements over
the 380 ms connection on ANL-UC (Fig. 11(c)), where a 10%
APE is achieved around 50% of the time among all test cases.
2) Eliminating Negative Effects of Unknowns

While the end host configurations do have certain impact on
performance, other unpredictable factors such as system dy-
namics and competing workloads may also affect performance.
These factors, however, are not conveniently measurable at
the application level during experiments. In other words, there
exist latent attributes that are independent of H, P, and C, but
are not easily observable. Such factors may cause large vari-
ations among multiple performance observations for a given
x; and eventually lead to inaccurate performance prediction
as in Fig. 11(c), where the end hosts (tubes and midway) are
simultaneously used by other scientists running their scientific
computing jobs during our data transfer experiments.

Since our ultimate goal is to avoid any excessive bandwidth
reservation beyond actual needs. To meet the bandwidth re-
quirement of a data transfer request, we need to ensure the
reserved (i.e., predicted) bandwidth is around the maximal
achievable performance for a given x;. We employ a simple
threshold-based method to eliminate the negative effects of
latent attributes in performance prediction by excluding the
“abnormal” data points whose performances are below a
threshold 7 of the corresponding achievable maximum. In
particular, if there are multiple measurements for a given x;,
those with a performance ¢; below 7 - max; {§;} (0 < 7 < 1)
are discarded. Incorporating this into data preprocessing, we
conduct performance prediction using the same dataset as
in Fig. 11(c) and present results in Fig. 12, which shows
that the prediction accuracy is significantly improved across
different values of 7 € {0.80,0.85,0.90,0.95}, e.g., the 5%
error percentile is increased from 30% to 90% with 7 = 0.95.

VII. CONCLUSION AND FUTURE WORK

We conducted an in-depth exploratory analysis of the im-
pacts of a comprehensive set of factors on the end-to-end
performance of big data transfer based on extensive perfor-
mance measurements collected on several real-life physical or

emulated HPN testbeds. Based on such analysis, we selected
features and built a performance predictor using machine
learning. We verified the feasibility and effectiveness of the
machine learning-based performance predictor through theo-
retical performance bound analysis. The experimental results
show that, with appropriate data preprocessing, the predictor
is able to achieve satisfactory prediction accuracy based on
very noisy datasets.

We plan to use “advanced” bagging- and boosting-based
machine learning algorithms to perform such prediction and
compare their performance. It is also of our interest to study
and derive tighter performance bounds on the estimation loss
and sample size by incorporating other HPN domain insights.
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