
Performance Prediction of Big Data Transfer Through

Experimental Analysis and Machine Learning

Daqing Yun∗, Wuji Liu†, Chase Q. Wu†, Nageswara S.V. Rao‡, and Rajkumar Kettimuthu§

∗Harrisburg University †New Jersey Institute of Technology ‡Oak Ridge National Lab §Argonne National Lab

Email: dyun@harrisburgu.edu, {wl87, chase.wu}@njit.edu, raons@ornl.gov, and kettimut@anl.gov

Abstract—Big data transfer in next-generation scientific ap-
plications is now commonly carried out in High-performance
Networks (HPNs) provisioning dedicated connections through
advance bandwidth reservation. To use HPN resources efficiently,
provisioning agents need to carefully schedule data transfer
requests and allocate appropriate bandwidths. Such reserved
bandwidths, if not fully utilized by the requesting user, are simply
wasted due to the exclusive access. This calls for the capability
of performance prediction to reserve bandwidth resources that
match actual needs. Towards this goal, we employ machine
learning algorithms to predict big data transfer performance
based on extensive performance measurements, which are col-
lected over a span of several years from a large number of
data transfer tests using different protocols and toolkits between
various end sites on several real-life physical or emulated HPN
testbeds. We first identify a comprehensive list of attributes
involved in a typical big data transfer process, including end
host system configurations, network connection properties, and
control parameters of transfer methods and underlying protocols.
We then conduct an in-depth exploratory analysis of their
impacts on application-level throughput, which provides insights
into big data transfer performance and motivates the use of
machine learning. We also investigate the applicability of machine
learning algorithms and derive their general performance bounds
for performance prediction of big data transfer in HPNs. Exper-
imental results show that, with appropriate data preprocessing,
the proposed machine learning-based approach achieves 95% or
higher prediction accuracy in up to 90% of the cases with very
noisy real-life performance measurements.

Index Terms—Performance prediction, experimental analysis,
machine learning, big data transfer.

I. INTRODUCTION

Dedicated connections provisioned in High-performance

Networks (HPNs) such as ESnet [1] are increasingly used for

big data transfer in various domains ranging from extreme-

scale scientific research to industrial big data analytics. Pro-

visioning agents in HPNs typically ask end users to request

bandwidths as needed and then establish corresponding end-

to-end paths with reserved bandwidth.

Predicting end-to-end data transfer performance (mainly

throughput) is critical to the utilization of bandwidth resources

in HPNs. A dedicated connection, once allocated and granted,

is used exclusively by the requesting user during the approved

time window. Due to the exclusive access, any granted band-

width, if not fully utilized, is simply wasted. Therefore, accu-

rate performance prediction is not only useful for end users to

understand and optimize big data transfer performance, e.g.,

determining what transfer methods to use and what control

parameter values to set [7], but also important for HPN

management to wisely schedule data transfer requests, e.g.,

rejecting requests with “over-claimed” bandwidth demands

or granting bandwidths in the amount that can be actually

utilized.

However, predicting end-to-end big data transfer perfor-

mance in HPNs is challenging. Although the exclusive use

of dedicated connections minimizes the impact of complex

dynamics caused by cross traffic on performance prediction,

many other factors involved in a typical big data transfer

process may still affect the end-to-end performance to a

great extent, including i) end host system configurations, ii)

network connection properties, and iii) data transfer methods

and their corresponding control parameters. In general, it is

very difficult to apply an analytical approach to big data

transfer performance prediction in HPNs, due to i) the lack of

accurate throughput performance models for high-performance

data transfer protocols such as UDT [10], ii) the complex

composition of end-to-end dedicated connections, iii) the

complexities and varieties of end host configurations; and iv)

the time-varying concurrent workloads in end host systems.

Consequently, HPN technologies and services have not been

fully utilized for big data transfer regardless of the continuous

bandwidth upgrades in backbones.

In this paper, we employ a machine learning-based approach

to predict big data transfer performance in HPNs based on

extensive performance measurements, which are collected and

accumulated over a span of several years from a large number

of big data transfer tests using different protocols and toolkits

between various end sites on several real-life physical or

emulated HPN testbeds. Based on such performance mea-

surements, we first identify a comprehensive list of attributes

(parameters) involved in a typical big data transfer process,

including end host system configurations, network connection

properties, and control parameters of data transfer methods.

We then conduct an in-depth qualitative exploratory analysis

of their impacts on end-to-end performance as observed by

end users at the application level. We also investigate the

applicability of machine learning in performance prediction in

HPNs and conduct experiments for performance evaluation.

We summarize our contributions in this work as follows.

• Exploratory Analysis. We conduct an in-depth analysis

of a comprehensive list of transport-related attributes to

qualitatively explain their impacts on end-to-end big data

transfer performance in HPNs. Such analysis motivates

the use of machine learning and further provides insights

mailto:dyun@harrisburgu.edu
mailto:chase.wu@njit.edu
mailto:raons@ornl.gov
mailto:kettimut@anl.gov

into feature selection in later learning-based performance

prediction.

• Performance Prediction. We show that the performance

predictor built on the “critical” features selected from

the exploratory analysis is statistically meaningful by

deriving a general performance bound based on several

domain-specific conditions of HPNs, and then apply

Support Vector Regression (SVR) to demonstrate the

effectiveness of big data transfer performance prediction

using machine learning methods.

The rest of the paper is organized as follows. We conduct

a brief survey of related work in Sec. II. Sec. III describes

the problem of performance prediction of big data transfer

in HPNs. We introduce the performance measurement dataset

used in this work in Sec. IV. An exploratory analysis of big

data transfer performance is conducted in Sec. V. Theoreti-

cal performance bounds are derived and practical prediction

results using machine learning are presented in Sec. VI. We

conclude our work and sketch a research plan in Sec. VII.

II. RELATED WORK

The importance of provisioning dedicated connections to

support big data movement over long distances has been well

recognized in both science and network communities. We

conduct a brief survey of existing work in related areas.

A. Transport Profiling and Optimization

Many profiling-oriented toolkits have been used to conduct

data transfer tests to understand and optimize network per-

formance. For example, iperf2 is a handy tool available in

most Linux distributions to run TCP tests to estimate available

bandwidth. ESnet iperf3 [2], which is a rewrite of iperf2

from scratch, provides a rich set of functions and options for

tuning TCP, UDP, and SCTP. Similar to iperf2/3, TPG [5] is a

toolkit for conducting UDT [3] data transfer tests. In addition

to the common tunable parameters in iperf2/3, TPG enables

tuning of UDP socket options for UDT and other UDT-specific

parameters, and also supports profiling tests based on multiple

physical NIC-to-NIC connections.

Some of these toolkits have been integrated into transport

profiling optimization (e.g., FastProf [6]) as functional units

to carry out data transfer tests guided by stochastic approx-

imation [7] and time series analysis [11]. Performance mea-

surements are collected by measuring throughput in response

to various attributes including end host system configurations,

network connection properties, and control parameter values,

and can be utilized to train performance models for prediction.

B. Throughput Performance Modeling and Prediction

There are numerous efforts devoted to understanding the

behaviors of transport protocols and modeling their throughput

performance. For example, Padhye et al. in [13] develop a

throughput model of TCP bulk data transfer on the Internet

corresponding to loss rate and connection delay. TCP through-

put in response to delay and number of streams is presented in

a more recent study [17]. Gu et al. present in [23] a throughput

model of another representative protocol, UDT [10], and use

experimental results over 1 Gbps connections to show that

UDT recovers much faster than TCP from a loss event and

achieves stable asymptotic performance across different RTTs.

Another experimental study [18], however, shows that UDT

has certain instability and variety over 10 Gbps connections.

These modeling and experimental studies mainly focus

on analytically understanding the behaviors of data transfer

protocols in the Internet environments in response to the

factors that represent time-varying conditions (e.g., available

bandwidth, etc.) without considering the stability of dedicated

HPN connections and a comprehensive list of other attributes

(e.g., control parameters) that also have non-negligible im-

pacts. Therefore, they have limited capability and accuracy in

predicting the performance of big data transfer in HPNs.

Machine learning has great potential for performance

prediction of big data transfer in HPNs. For example,

Mirza et al. in [15] use a support vector regression method

to predict TCP file transfer performance in publicly shared

Internet environments, using path properties and file transfer

size as the features. Liu et al. in [25] use regression analysis

to explain the observed performance patterns based on the log

files of GridFTP-powered disk-to-disk wide-area file transfers

and empirically build a wide-area file transfer performance

predictor in [26]. Our work differs from the aforementioned

efforts in that we identify a comprehensive list of attributes

involved in a typical big data transfer process over dedicated

connections, including not only the properties and conditions

of network connections, but also the configurations of end

host systems as well as various control parameters of data

transfer methods and their underlying transport protocols. We

conduct an exploratory analysis of their impacts on big data

transfer performance in HPNs, and then use machine learning

algorithms for performance prediction.

III. PROBLEM STATEMENT

End-to-end big data transfer in HPNs is a complex process

that involves both network and end-host components, any

of which could become the bottleneck and hence limit the

performance. Among these components, some can be accessed

and controlled by the applications, including packet size, block

size, buffer size, and number of parallel streams; while the

others are mainly determined by the hardware and system

configurations as well as network infrastructures, including

CPU frequency, memory size and bandwidth, bus speed, disk

I/O speed, path MTU size, RTT, link bandwidth, and loss rate.

Although network connections in HPNs are reserved in

advance (typically with high bandwidth) and some of their

properties such as RTT and connection loss rate are relatively

stable, end-to-end throughput performance is still largely af-

fected and limited by many other issues such as a mismatch of

end host capabilities and configurations (e.g., a faster sender

host to a slower receiver host), the use of an unsuitable data

transfer protocol [7], incorrect settings of CPU affinity [16]

and IRQ balance/conflict [14], and suboptimal control param-

eter values [6]. Due to the quantity and complexity of these

factors, it is dauntingly difficult to develop an analytical ap-

proach to directly predict transport performance, especially in

the presence of unpredictable factors such as system dynamics

and competing workloads on end hosts.

Informally, we attempt to answer the following question.

Given two end hosts (a sender and a receiver) and a dedicated

connection between them with a reserved bandwidth, using a

specific data transfer tool and its underlying transport protocol

together with their corresponding control parameter values,

what end-to-end throughput performance could be achieved?

The throughput performance y of a data transfer could be

expressed as a function of multiple variables including: i) end

host system configurations H, ii) network connection proper-

ties P , and iii) control parameters C of the data transfer method

and its underlying protocol, which collectively form a feature

vector x = [H,P , C], i.e., y = y(x). The analytical form of

function y is essentially unknown (or too complicated to be

accurately modeled). Let yi be the throughput performance in

response to xi as observed by end users at the application

level. We have yi = y(xi) + ξi, where yi is the “noise-

corrupted” throughput observation, and ξi is an i.i.d. random

variable that represents the noise including the dynamics

in end host systems and the randomness in performance

measurements. The expected throughput performance yi of

a big data transfer during time interval [0,∆T] is given by

yi =
∫

∆T

0
y(xi,t) dt

∆T
, where y(xi, t) is the throughput at time

point t with feature xi. In practice, for a specific data transfer,

we obtain yi by its approximation yi ≈ ỹi =
Fi

∆T
, where Fi is

the total size of transferred user payload and ∆T is the time

taken to complete the transfer. We take real-life measurements

ỹi as ground truth (i.e., let yi = ỹi) and measure yi in unit of

Mbps unless specifically indicated otherwise.

The variables that may affect end-to-end throughput per-

formance of big data transfer, i.e., x, have a large range of

possible values in a multidimensional space, and the perfor-

mance measurement dataset T can be viewed as samples in

this space. These samples are used to generalize to the whole

feature set and performance space for prediction purposes,

and we explore machine learning to predict big data transfer

performance based on historically collected performance mea-

surements. More specifically, given a training dataset T of n

performance measurements of data transfer tests, i.e., T =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi (i = 1, 2, . . . , n)
is an instance of the feature vector that collectively determines

the corresponding performance yi. We propose to employ

machine learning methods to estimate yi based on T such

that the predicted (estimated) value ŷi is close enough to the

true value yi for all training samples (xi, yi), i = 1, 2, . . . , n
and can be applied to arbitrary future cases with high accuracy.

IV. THROUGHPUT PERFORMANCE MEASUREMENTS

We briefly describe the acquisition of our performance

dataset in this section.

A. Testbeds

Our performance measurements are accumulated and

archived in the past several years based on numerous data

transfer tests conducted on several HPN testbeds managed by

different institutions, as briefly introduced below.

1) Local Testbed at University of Memphis

This testbed, denoted as “UM-Local”, is established by

back-to-back connecting two workstations (dual-core, 2.9 GB

RAM) via a 10 GigE NIC. Both ends (um.dragon and

um.rabbit) are installed with FC 17 Linux OS of 3.9.10 kernel.

2) Local Testbed at New Jersey Institute of Technology

This testbed, denoted as “NJIT-Local”, is established be-

tween two back-to-back connected high-end servers (njit.tiger

and njit.rabbit), each with 12 cores, 16 GB RAM, CentOS 3.10

kernel, and a 10 GigE NIC.

3) Physical Testbed between Argonne National Laboratory

and University of Chicago

This testbed, denoted as “ANL-UC”, consists of several

physical network connections of 2 ms, 100 ms, and 380 ms

RTTs established between three end hosts at Argonne Na-

tional Laboratory (ANL), i.e., jlse (64 cores, 64 GB RAM,

CentOS 3.10 kernel, and 10 GigE NIC), tubes (16 cores, 48 GB

RAM, CentOS 2.6 kernel, and bound 4x10 GigE NIC), and

tubes2 (64 cores, 128 GB RAM, CentOS 3.10 kernel, and

bound 2x40 GigE NIC), and two identical virtual end hosts at

University of Chicago (UC) (g1903 and g1904 with domain

name midway) that are dynamically allocated (64 cores, 32 GB

RAM, CentOS 2.6 kernel, and 40 GigE NIC). The delay of the

2 ms connection is mainly due to physical distance, while the

100 ms and 380 ms connections are engineered using a layer-2

circuit within ESnet [1] that starts from ANL, extends to the

west coast of the US, and then loops back to UC. Note that on

this testbed, only one of the bound NICs is utilized (thus the

bandwidth is 10 Gbps) in a single-stream data transfer test.

4) Local Testbed at University of Chicago

This testbed, denoted as “UC-Local”, is a 40 Gbps local con-

nection established between those two dynamically allocated

virtual end hosts (g1903 and g1904) located at UC.

5) Emulated Testbed at Oak Ridge National Laboratory

This emulated testbed at Oak Ridge National Laboratory

(ORNL), denoted as “ORNL-E”, consists of various con-

nections with different emulated RTTs between several pairs

of high-end workstations, each pair with identical hardware

configurations and 10 GigE NICs. Two 48-core workstations

(bohr04 and bohr05, or b4 and b5, with Linux 3.10 kernel) are

back-to-back connected with 10 GigE NICs directly connected

to two IXIA emulator ports. Another two 32-core Linux

workstations (feynman1 and feynman2, or f1 and f2, with

Linux 2.6 kernel and CentOS 6.8 release) are connected via

a back-to-back fiber connection with two SONET OC192

ANUE emulator ports, where E300 switches are used to

convert between 10 GigE LAN-PHY and WAN-PHY frames

that are inter-operable with OC192 frames. The peak capacity

of this OC192 connection is 9.6 Gbps, less than 10 Gbps of

the 10 GigE connection. We use these emulators to collect

performance measurements for network connections with vari-

ous RTTs of {0, 11.8, 22.6, 45.6, 91.6, 183, 366}ms. The RTTs

in the mid range represent US cross-country connections and

higher RTTs represent transcontinental connections.

B. Data Transfer Protocols and Toolkits

The data transfer tests are performed using two main data

transfer protocols, TCP and UDT. TCP is the de facto standard

protocol on the Internet and has a number of variants; and

UDT [10] is a UDP-based data transfer protocol designated

TABLE I
LIST OF ATTRIBUTES IN THE DATA TRANSFER PERFORMANCE DATASET.

Categories Attributes Remarks

Identifier record ID integer, unique

Testbed testbed name string, nominal

End host

CPU frequency double, hertz
number of processors integer
number of cores per processor integer
memory size integer, MB
kernel buffer size integer, byte

Connection
bandwidth double, Gbps
RTT double, ms
loss rate double, emulated

Toolkits & data transfer protocol string, nominal
Protocols data transfer toolkit string, nominal

Control

frame size integer, byte
packet size integer, byte
payload size integer, byte
block size integer, byte
TCP send buffer size double, MB
TCP recv buffer size double, MB

parameters UDP send buffer size double, MB
UDP recv buffer size double, MB
UDT send buffer size double, MB
UDT recv buffer size double, MB
number of parallel streams integer
data size double, MB
time duration integer, seconds

Performance throughput / goodput double, Mbps

for Long Fat Networks (LFNs) and is widely adopted in HPN

community. Part of the tests are conducted specifically for data

collection purpose and powered by profiling-oriented toolkits

including iperf2, ESnet iperf3 [2], and TPG [5]; the rest are

mainly the byproducts of the experimental studies for transport

profiling optimization [6] and data transfer advising [7]. All

of these tests enable the tuning of various control parameters

of TCP and UDT.

C. Data Acquisition and Introduction

We use the toolkits in Sec. IV-B to run big data transfer

tests over dedicated connections on various HPN testbeds. The

tests typically take time on the order of minutes to complete,

and in each test, a number of attributes and the corresponding

throughput performance are measured and recorded. A large

number of measurements have been collected and archived

in the past several years. The entire dataset consists of total

109,683 tabular data records, 30,433 of which are performance

measurements of TCP tests and the rest (79,250 records) are

performance measurements of UDT tests. Each data record

contains a list of attributes, where the last one is the target

attribute (i.e., performance) and the rest are roughly classified

into three categories: i) end host configurations; ii) network

connection properties; and iii) data transfer protocols/toolkits

and their control parameters, as listed in Tab. I.

V. EXPLORATORY ANALYSIS

We conduct an exploratory analysis to identify the patterns

of big data transfer performance with respect to the attributes

as listed in Tab. I.

A. Effects of Application-Accessible Parameters

We focus on the set C of control parameters that are accessi-

ble and tunable at the application level, including packet size,

1472 2972 4472 5972 7472 8972

Packet Size (Byte)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

0ms 11.8ms

22.6ms 45.6ms

91.6ms 183ms

366ms

UDT, TPG, 0-366ms,

10Gbps, single stream,

ORNL-E (f1-f2)

(a) ORNL-E, 0–366ms, 10 Gbps

1472 2972 4472 5972 7472 8972

Packet Size (Byte)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

UDT, TPG, 100ms,

10Gbps, single stream,

ANL-UC (tubes-midway)

(b) ANL-UC, 100ms, 10 Gbps

Fig. 1. UDT performance vs. packet size. Performance results are collected
from different testbeds with single-stream data transfer tests.

1480 2980 4480 5980 7480 8980

Packet Size (Byte)

0

100

200

300

400

500

P
er

f.
 (

M
b

p
s)

TCP, Iperf3/TPG, 380ms,

10Gbps, single stream,

ANL-UC (tubes2-midway)

(a) ANL-UC, 380ms, 10 Gbps

1480 2980 4480 5980 7480 8980

Packet Size (Byte)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

TCP, Iperf3, 2ms,

10Gbps, single stream,

ANL-UC (midway-tubes)

(b) ANL-UC, 2ms, 10 Gbps

Fig. 2. TCP performance vs. packet size. Performance results are collected
from different testbeds with single-stream data transfer tests.

block size, buffer size, and number of parallel streams. We

analyze their impacts on throughput performance using both

UDT and TCP measurements. To better illustrate the impacts

of the parameter being examined, we set other parameters with

values that do not cause significant interference.

1) Packet Sizes

The throughput performance of big data transfer is affected

by the packet size used in the underlying transport protocol. A

larger packet size typically increases the performance since it

carries more per-packet user payload and reduces per-packet

processing overhead [12]. Fig. 1(a) plots the UDT performance

corresponds to different packet sizes in network connections

with various RTTs and shows that large packet sizes do

help improve the UDT performance. When other parameters

such as buffer size are fixed, the performance almost linearly

increases with packet size (Figs. 1(a) and 1(b)). If the buffer

size is fixed at a value that limits performance, e.g., 256 MB,

for a 10 Gbps connection of 200+ms RTT, as illustrated by the

366 ms curve in Fig. 1(a), the performance curve also increases

linearly with packet size, but at a slower speed for a given

packet size in comparison with other cases where buffer size

is sufficiently large. The increasing pattern of performance

in response to packet size is observed with different RTTs

on different testbeds between different hosts using different

protocols, as shown in Figs. 1(b), 2(a), and 2(b), and is

consistent with the analysis of buffer size in Sec. V-A2.

2) Buffer Sizes

It has been well recognized that a buffer size no less than

the Bandwidth-Delay Product (BDP) is required to saturate

the connection capacity. For example, ESnet [1] recommends

a TCP buffer size of twice of BDP to fill the pipe. While

0 250 500 750 1000

Buffer Size (MB)

0

2000

4000

6000

8000

10000
P

er
f.

 (
M

b
p
s)

UDT, FastProf, 366ms,

9.6Gbps, single stream,

ORNL-E (feynman1-feynman2)

(a) ORNL-E, 366 ms, 9.6 Gbps

0 1 2 3 4 5 6

Buffer Size (MB)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

UDT, TPG, 2ms,

10Gbps, single stream,

ANL-UC (tubes-midway)

(b) ANL-UC, 2 ms, 10 Gbps

Fig. 3. UDT performance vs. buffer size. Performance results are collected
from different testbeds with single-stream data transfer tests.

0 1 2 3 4 5 6 7 8 9 10 11

Buffer Size (MB, log2 scale)

0

100

200

300

400

500

P
er

f.
 (

M
b

p
s)

TCP, Iperf3/TPG, 380ms,

10Gbps, single stream,

ANL-UC (tubes2-midway)

(a) ANL-UC, 380 ms, 10 Gbps

1 2.5 5 7.5 10 12.5 15

Buffer Size (MB)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

TCP, ProbData, 2ms,

10Gbps, single stream,

ANL-UC (tubes2-midway)

(b) ANL-UC, 2 ms, 10 Gbps

Fig. 4. TCP performance vs. buffer size. Performance results are collected
from different testbeds with single-stream data transfer tests.

the specific behaviors and peak achievable performances of

different protocols with respect to buffer size may be different,

the shape of the performance curve is consistent and shows

a “piecewise” pattern. Fig. 3 shows UDT performance with

respect to buffer size, where the results are collected on

different testbeds using different toolkits between different end

hosts. Given a dedicated connection, the piecewise pattern is

summarized as the following three regions:

In the region where buffer size is relatively small (e.g., less

than BDP), TCP and UDT behave similarly and the perfor-

mance almost linearly increases as buffer size increases. The

peak achievable performance is mainly limited by buffer size

and is lower than the overall peak achievable performance; the

slope of the linear increase depends on end host configurations

and network properties, which can be interpreted by comparing

Fig. 3 and Fig. 4.

As buffer size increases up to around the BDP, both TCP

and UDT reach the overall peak performance, and at this

stage, other factors start to impose further limitation on the

performance, as shown in Fig. 3. Although the specific buffer

size for maximal achievable performance is “agnostic” as other

factors such as RTTs play a more important role in such cases,

the peak performance is usually achieved around the BDP, as

illustrated in Figs. 3 and 4.

In the region where buffer size is larger than the BDP,

TCP and UDT significantly diverge and the performance may

not stay at the overall peak as buffer size keeps increasing

beyond the BDP. In general, single-stream TCP can easily

achieve near-capacity performance over a connection with a

short delay (e.g., see Fig. 4(b)) and is not significantly affected

by buffer size as long as it is not deliberately small. As

1 5 10 15 20

Block Size (Number of Payloads)

0

1000

2000

3000

4000

5000

6000

P
er

f.
 (

M
b
p
s)

0ms 11.8ms 22.6ms

45.6ms 91.6ms 183ms

366ms

UDT, TPG, 0-366ms,

10Gbps, single stream,

ORNL-E (bohr04-bohr05)

(a) ORNL-E, 0–366 ms, 10 Gbps

1 5 10 15 20 25

Block Size (Number of Payloads)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b
p
s)

UDT, TPG, 380ms,

10Gbps, single stream,

ANL-UC (tubes-midway)

(b) ANL-UC, 380 ms, 10Gbps

1 5 10 15 20 25

Block Size (Number of Payloads)

0
500

1500

2500

3500

4500

5500

P
er

f.
 (

M
b
p
s)

UDT, ProbData, 2ms,

10Gbps, single stream,

ANL-UC (tubes2-midway)

(c) ANL-UC, 2 ms, 10 Gbps

1 4 8 12 16 20 24 28 32

Block Size (Number of Payloads)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b
p
s)

UDT, TPG, 0ms,

10Gbps, single stream,

UM-Local (um.dragon-um.rabbit)

(d) UM-Local, 0 ms, 10 Gbps

Fig. 5. UDT performance vs. block sizes. Performance results are collected
from different testbeds with single-stream data transfer tests.

1 4 8 12 16 20

Block Size (Number of Payloads)

0

1000

2000

3000

4000

5000

P
er

f.
 (

M
b

p
s)

TCP, Iperf3, 380ms,

10Gbps, single stream,

ANL-UC (tubes2-midway)

(a) ANL-UC, 380 ms, 10 Gbps

1 4 8 12 16 20 24

Block Size (Number of Payloads)

0

1000

2000

3000

4000

5000

P
er

f.
 (

M
b

p
s)

TCP, Iperf3, 100ms,

10Gbps, single stream,

ANL-UC (midway-tubes)

(b) ANL-UC, 100 ms, 10 Gbps

1 4 8 12 16 20 24

Block Size (Number of Payloads)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

TCP, Iperf3, 2ms,

10Gbps, single stream,

ANL-UC (midway-tubes)

(c) ANL-UC, 2 ms, 10 Gbps

1 5 10 15 20 25

Block Size (Number of Payloads)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

TCP, Iperf2, 0ms,

10Gbps, single stream,

NJIT-Local (njit.tiger-njit.rabbit)

(d) NJIT-Local, 0 ms, 10 Gbps

Fig. 6. TCP performance vs. block sizes. Performance results are collected
from different testbeds with single-stream data transfer tests.

shown in Fig. 4(a), single-stream TCP appears to be ineffective

for long-haul connections, where other parameters such as

number of streams and network properties such as RTT play a

more dominating role (see Sec. V-A4 and Sec. V-B for more

discussions). The case of UDT when buffer size is around or

larger than BDP is more complicated as a larger buffer may

degrade the achievable performance in certain environments,

as shown in Fig. 3(a), which, compared with the case of TCP,

is counter-intuitive.

3) Block Sizes

In general, with a sufficiently large buffer, the UDT per-

formance increases as block size increases. The performance

curve first shows a certain “concave” shape, indicating that

the improvement brought by enlarging data block becomes

marginal, and then stabilizes at the peak performance after

block size reaches a certain point. The optimal block size

is also prone to many other factors, but the performance

pattern corresponding to block size appears to be consistent

across different testbeds with different end hosts and network

properties using different toolkits, as shown in Fig. 5. The

performance suffers from a relatively limited buffer due to an

overly large block size, e.g., when block size approaches buffer

size, which, although not illustrated in Fig. 5, could happen in

practice. In such cases, the performance decreases if the block

size keeps increasing.

The performance of TCP is not significantly affected by

block size, as shown in Fig. 6, and the stabilized performance

is mainly determined by other factors such as buffer size

(Sec. V-A2), RTT (Sec. V-B), and stream count (Sec. V-A4).

4) Number of Parallel Streams

In our data transfer tests, we observe that UDT performance

is not significantly affected by the number of parallel streams

used in data transfer applications. This observation matches

our expectation because UDT is not designed for environments

with high concurrency [24]. This is also verified in some other

work, e.g., [23].

The incapability of standard TCP to achieve a steady-state

high throughput over LFN connections is well recognized in

networking community [9], and many TCP-based solutions

using multiple streams such as GridFTP [22] have been

developed and achieved remarkable success in practice. In

our experiments, single-stream TCP achieves near-capacity

throughput performance over short dedicated connections, as

shown in Fig. 7(d), but suffers from long-haul connections,

where using multiple streams can help achieve higher perfor-

mance, as shown in Fig. 7(a).

Despite introducing inter-stream competition and extra pro-

cessing overhead to the end hosts that may lead to complex

transfer dynamics, multi-stream TCP solutions (e.g., GridFTP)

are widely used in practice (e.g., for moving big datasets gen-

erated by large-scale scientific applications) as they can signif-

icantly increase end-to-end throughput performance especially

over long-haul connections and between end hosts equipped

with multiple bound 10 GigE NICs. As shown in Fig. 7(a),

single-stream TCP only utilizes 20% of the bandwidth over

longer connections (e.g., RTT>100 ms), while multi-stream

TCP is able to reach up to 100%. It is difficult to directly derive

the optimal number of streams for a data transfer over a given

connection in a given network environment. Existing solutions

adjust the value of stream number based on runtime infor-

mation and system load approximation [19]. The performance

increase pattern as the stream number increases is conceptually

consistent among different pairs of end hosts in different

network environments as long as the stream number is not

excessively large to overwhelm end hosts. Figs. 7(b) and 7(c)

also collectively show that increasing stream number may

decrease performance (due to extra overhead incurred by

multiple streams) after achieving the peak performance.

1 2 3 4 5 6 7 8 9 10

Stream Number

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s) 0ms

11.8ms

22.6ms

45ms

91ms

183ms

366ms

TCP, Iperf2, 0-366ms, 10Gbps,

ORNL-E (bohr04-bohr05)

(a) ORNL-E, 0–366 ms, 10 Gbps

1 5 10 15 20 25

Stream Number

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

TCP, ProbData, 2ms, 10Gbps,

ANL-UC (jlse-midway)

(b) ANL-UC, 2 ms, 10 Gbps

1 5 10 15 20 25

Stream Number

0

0.5

1

1.5

2

2.5

3

3.5

4

P
er

f.
 (

M
b

p
s)

10
4

TCP, ProbData/FastProf, 0ms,

40Gbps, UC-Local (g1903-g1904)

(c) UC-Local, 0 ms, 40 Gbps

1 5 10 15 20 25

Stream Number

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

TCP, ProbData, 0ms, 10Gbps,

ANL-UC (njit.tiger-njit.rabbit)

(d) NJIT-Local, 0 ms, 10 Gbps

Fig. 7. TCP performance vs. number of streams. Performance results are
collected from different testbeds with fixed-buffer data transfer tests.

0 11.8 22.6 45 91 183 366

RTTs (ms)

0

2000

4000

6000

8000

10000
P

er
f.

 (
M

b
p

s)
Single

Multiple

UDT, TPG, 0-366ms, 10Gbps,

ORNL-E (bohr04-bohr05)

(a) UDT

0 11.8 22.6 45 91 183 366

RTTs (ms)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

Single

Multiple

TCP, Iperf2,

0-366ms, 10Gbps,

ORNL-E (bohr04-bohr05)

(b) TCP

Fig. 8. Maximal achievable performance of UDT and TCP vs. RTTs.
Performance results are collected from ORNL-E between hosts bohr04 and
bohr05 using (a) TPG UDT tests; and (b) iperf2 TCP tests.

B. Effects of Network Connection Properties

A dedicated connection has two important properties: i)

the reserved bandwidth, which is typically on the order of

tens of Gbps currently and Tbps in the forthcoming future;

and ii) the connection delay, which is usually measured by

the RTT ranging from less than one millisecond for back-

to-back connections up to several hundred milliseconds for

inter-continental connections. Unlike the control parameters in

Sec. V-A, such properties are not tunable for a given dedicated

connection, and they affect the performance in a different

way from the control parameters: the connection bandwidth

gives a theoretical upper performance bound for a given big

data transfer, and the connection delay significantly affects

the application-level maximal achievable performance, i.e., the

upper bound for performance tuning.

The connection delay has a critical impact on TCP-based

data transfer as it not only affects the choice of parameter

values (e.g., buffer sizes), but also the maximal achievable

performance between the same pair of end hosts. As shown

in Figs. 4(a) and 4(b), from tubes2 to midway, even if buffer

size is sufficiently larger than BDP, single-stream TCP only

obtains a throughput of <5% available bandwidth when RTT

is 380 ms; if the connection between the same two hosts

is of shorter delay, e.g., 2 ms, single-stream TCP achieves

a performance of around 90% available bandwidth. Other

interesting effects of connection delay can also be derived

from the performance comparison between the same pair of

end hosts on the same testbed with different RTTs, as shown

in Figs. 1(a), 5(a), and 7(a).

Fig. 8 plots the maximal achievable performance corre-

sponding to different RTTs based on TPG UDT tests and

iperf2 TCP tests over a 10 Gbps dedicated connection estab-

lished between end hosts bohr04 and bohr05 with various

emulated RTTs on ORNL-E. Firstly, the throughput of both

UDT and TCP varies and generally decreases (especially for

the single stream case) as RTT increases, and both TCP-

and UDT-based data transfer requires certain tuning efforts

to achieve good performance since the default settings typi-

cally do not achieve satisfactory performance especially over

connections with long RTTs (e.g., > 90 ms); secondly, single-

stream TCP works well with short RTTs (e.g., < 20 ms) and

suffers from long RTTs (e.g., > 50 ms), and using multiple

TCP streams helps achieve near-connection capacity perfor-

mance over mid-range connections with RTTs up to 90 ms,

as shown in Fig. 8(b); thirdly, UDT is not as sensitive to

RTTs as TCP due to its Decreasing Additive Increase and

Multiplicative Decrease (DAIMD) rate control algorithm [23],

the maximal achievable performance of UDT-based data trans-

fer is more stable than TCP across different RTTs, and using

multiple UDT streams only slightly helps for longer RTTs

(e.g., > 180 ms), as shown in Fig. 8(a); lastly, comparing

Fig. 8(a) and Fig. 8(b), we observe that: i) single-stream TCP

outperforms UDT for short RTTs but fails to keep up with

UDT for both mid-range and long RTTs; ii) using multiple

streams helps TCP outperform UDT for mid-range RTTs; and

iii) UDT outperforms TCP in both single- and multi-stream

cases for longer RTTs.

C. Effects of End Hosts Configurations

The effects of end host configurations are arguably intuitive.

For high-speed data transfer in HPNs, it is important to

ensure that both ends are capable of keeping up with the

speed of incoming/outgoing traffics. In addition, the systems

must be also appropriately configured to operate at 10 Gbps,

40 Gbps, or higher speed, including CPU governing, kernel

buffer sizes, core affinities, packet pacing, etc. Furthermore,

different environments and different transport methods may

require different hardware capacities and software configu-

rations to achieve optimal performance. For example, CPU

frequency is critical for a single data flow to reach peak

performance; careful packet pacing should be used for data

transfer from a faster sender to a slower receiver over a long-

haul dedicated connection (e.g., RTT> 50 ms) when using

tools augmented by parallel data streams such as GridFTP;

TCP buffer size should be configured to be the maximum

in Linux to maximize the transport performance over high-

speed long-haul connections between end hosts equipped with

10/40/100 Gbps Ethernet NICs.

0ms connections in different testbeds
0

2500

5000

7500

10000

P
er

f.
 (

M
b

p
s)

ORNL-E,

feynman1-feynman2

ORNL-E,

bohr04-bohr05NJIT-Local,

njit.tiger-njit.rabbit

UM-Local,

um.dragon-um.rabbit

Fig. 9. Maximal achievable performance of UDT over four back-to-back
connections (RTT≈ 0 ms) between different pairs of end hosts on different
testbeds.

11.8 22.6 45.6 91.6 183 366

RTT (ms)

0

2500

5000

7500

10000

P
er

f.
 (

M
b
p
s)

feynman1-feynman2

bohr04-bohr05

Fig. 10. Maximal achievable performance of UDT over emulated connections
with various RTTs of {11.8, 22.6, 45.6, 91.6, 183, 366}ms between different
pairs of end hosts on ORNL-E.

Such complexities exist in host hardware/software config-

urations, and time-varying system workloads and dynamics

collectively make it non-trivial to tune and predict big data

transfer performance in HPNs. They, together with network

properties, impose an upper bound on the achievable through-

put using different transport methods. Fig. 9 compares the

maximal achievable performance of UDT over four different

connections of 10 Gbps with a close-to-zero RTT, established

via back-to-back connecting four different pairs of hosts on

different testbeds (um.dragon to um.rabbit on UM-Local,

njit.tiger to njit.rabbit on NJIT-Local, and feynman1 to feyn-

man2 and bohr04 to bohr05 on ORNL-E). Fig. 10 shows the

performance difference over connections with different RTTs

emulated between the same two pairs of end hosts (feynman1

to feynman2 and bohr04 to bohr05) on ORNL-E. They both

show that similar or identical connections between different

end hosts may result in very different maximal performance

achievable by “near-exhaustive” performance tuning.

VI. PERFORMANCE PREDICTION USING MACHINE

LEARNING

We first show that ŷ(x) is indeed a good estimate of big data

transfer performance over dedicated connections in a statistical

sense with a high probability, and then present prediction re-

sults of Support Vector Regression (SVR), a popular machine

learning algorithm for multivariate regression.

A. Confidence Estimates

The throughput performance y(x) is a response variable

with a complex distribution Py(x) as it depends on many fac-

tors including: i) end host system configurations and dynamics,

ii) network connection properties and randomness, and iii) data

transfer applications and their underlying protocols (control

parameter values, congestion control mechanisms, etc.). We

define the performance regression as the following expectation

y(x) = E [y(x)] =

∫

y(x) dPy(x),

which can be estimated based on experimental performance

measurements y(xk, t
k
i) at xk (k = 1, 2, . . . , n) and time

tki (i = 1, 2, . . . , nk). We have 0 ≤ y(xk, t
k
i) ≤ B due

to the reserved bandwidth B of a dedicated connection. The

performance estimate ŷ(xk), given by its empirical mean, is

computed using measurements as

ŷ(xk) =
1

nk

nk
∑

i=1

y(xk, t
k
i),

at xk’s in the space of attribute vector x = [H,P , C]. Note

that ŷ(xk) is computed completely based on performance mea-

surements, and is indicative of the actual performance at xk,

whose unknown expected value is y(xk) and is to be estimated.

We show that ŷ(xk) is indeed a good estimate of y(xk), in

terms of the estimation of expected error, and furthermore,

the prediction accuracy is improved with more performance

measurements, regardless of the underlying distribution Py(x).

Consider an estimate g(·) of y(·) based on performance

measurements from a class F of unimodal functions bounded

in [0, B], i.e., 0 ≤ g ≤ B, g ∈ F . The expected quadratic loss

I(g) of the estimator g is

I(g) =

∫

[

g(x)− y(x, t)
]2

dPy(x,t),

and the best estimator g∗ is given by I(g∗) = min
g∈F

I(g). The

empirical error of g based on performance measurements is

given by

Î(g) =
1

n

n
∑

k=1

{

1

nk

nk
∑

i=1

[

g(xk)− y(xk, t
k
i)
]2
}

,

and the best empirical estimator ĝ∗ ∈ F that minimizes the

empirical error, i.e.,

Î(ĝ∗) = min
g∈F

Î(g).

Since ŷ(xk) is the response mean at each attribute vector xk,

it achieves the minimal empirical error.

Since both y(·) and g(·) are bounded in [0, B], I(g) is also

bounded in [0,K] with some K . Let I = {I(g) | g ∈ F} be

the set of loss functions subject to F . Based on the uniform

convergence results of Vapnik-Chervonenkis theory [21] and

its generalization [4] and applications (e.g., [20]), we know

that, for some ǫ > 0,
P {I(ŷ)− I(g∗) > 2ǫ}

≤ P

{

sup
h∈F

∣

∣

∣
I(h)− Î(h)

∣

∣

∣
> ǫ

}

,

and furthermore, according to [21], we have

P

{

sup
h∈F

∣

∣

∣
I(h)− Î(h)

∣

∣

∣
> ǫ

}

≤ 18N1(
ǫ

K
, I, n) · n · exp

(

−
nǫ2

4K2

)

,

where N1(
ǫ

K
, I, n) is the ǫ-cover of I under d1 norm.

Since I satisfies Lipschitz condition, suppose that its Lips-

chitz constant is L > 0, we then have

N1(
ǫ

K
, I, n) ≤ N1(

ǫ

KL
,F , n).

Also, for any class M of real-valued functions, any δ > 0
and any j ∈ N, we have N1(δ,M, j) ≤ N∞(δ,M, j) [4]. It

follows that
P {I(ŷ)− I(g∗) > 2ǫ}

≤ 18N∞(
ǫ

KL
,F , n) · n · exp

(

−
nǫ2

4K2

)

,

where N∞(ǫ,F) is the ǫ-cover of F under d∞ norm. Due

to the unimodality of functions in F , their total variation is

upper-bounded by 2B, which provides us the following upper

bound [4],

N∞(
ǫ

KL
,F , n) < 2

(

4K2L2n

ǫ2

)(1+ 4BKL

ǫ) log2(en

B)
.

By using this bound, we obtain
P {I(ŷ)− I(g∗) > ǫ}

≤ 36

(

16K2L2n

ǫ2

)(1+ 8BKL

ǫ) log2(en

B)
· n · exp

(

−
nǫ2

16K2

)

.

The exponential term on the right-hand side decays faster

in n than other terms, and hence for sufficiently large n, it

would be smaller than a given probability. In sum, the expected

error I(ŷ) of the response mean is within ǫ of the optimal

error I(g∗) with a probability that increases with the number

of performance measurements. This performance guarantee is

independent of the complexity of Py(x). Thus, ŷ(x) is a good

estimate of the actual throughput performance achievable at

feature x independent of the underlying distribution.

B. Performance Prediction using SVR

1) Experimental Settings and Results

We implement an SVR-based predictor based on the Scikit-

learn library [8], where the radial basis function (RBF) kernel

and an error-tolerated tube of a 0.005 radius are used during

training. Grid search (with 10-fold cross validation) is per-

formed to find the best hyperparameters with kernel coefficient

set {0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 0.6, 0.9} and regulariza-

tion parameter set {1, 10, 100, 1000, 10000}. We measure the

performance of the predictor by calculating its prediction

accuracy in terms of Absolute Percentage Error (APE) defined

as
|ŷi−yi|

yi

×100%, where yi is the actual performance, i.e., true

value, ŷi is the predicted value.

0 5 10 15 20 25 30

APE (%)

0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

UDT, FastProf, 366ms, 9.6Gbps,

ORNL-E (feynman1-feynman2)

(a) ORNL-E, UDT

0 5 10 15 20 25 30

APE (%)

0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

TCP, Iperf3, 0-366ms, 10Gbps,

ORNL-E (bohr04-bohr05)

(b) ORNL-E, TCP

0 5 10 15 20 25 30

APE (%)

0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

UDT, TPG, 380ms, 10Gbps,

ANL-UC (tubes-midway)

(c) ANL-UC, UDT

0 5 10 15 20 25 30

APE (%)

0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

TCP, ProbData, 0ms, 10Gbps,

NJIT-Local (njit.tiger-njit.rabbit)

(d) NJIT-Local, TCP

Fig. 11. Performance prediction results of SVR without data preprocessing.

The Empirical Cumulative Distribution Function (ECDF)

of performance prediction accuracy corresponding to both

UDT and TCP on different HPN testbeds are plotted in

0 5 10 15 20 25 30

APE (%)

0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

UDT, TPG, 380ms, 10Gbps,

ANL-UC (tubes-midway)

Fig. 12. Performance prediction results of SVR with data preprocessing using
the same dataset as in Fig. 11(c).

Fig. 11. Figs 11(a), 11(b), and 11(d) show that the SVR-

based predictor achieves 10% APE roughly among 70% to

80% of all test cases for both TCP and UDT on ORNL-E

and NJIT-Local testbeds. These results are obtained based on

the “raw” datasets without any noise reduction or other data

preprocessing, they confirm that the selected features based on

our exploratory analysis in Sec. V are indeed of high predictive

power. The worst results are with the UDT measurements over

the 380 ms connection on ANL-UC (Fig. 11(c)), where a 10%

APE is achieved around 50% of the time among all test cases.

2) Eliminating Negative Effects of Unknowns

While the end host configurations do have certain impact on

performance, other unpredictable factors such as system dy-

namics and competing workloads may also affect performance.

These factors, however, are not conveniently measurable at

the application level during experiments. In other words, there

exist latent attributes that are independent of H, P , and C, but

are not easily observable. Such factors may cause large vari-

ations among multiple performance observations for a given

xi and eventually lead to inaccurate performance prediction

as in Fig. 11(c), where the end hosts (tubes and midway) are

simultaneously used by other scientists running their scientific

computing jobs during our data transfer experiments.

Since our ultimate goal is to avoid any excessive bandwidth

reservation beyond actual needs. To meet the bandwidth re-

quirement of a data transfer request, we need to ensure the

reserved (i.e., predicted) bandwidth is around the maximal

achievable performance for a given xi. We employ a simple

threshold-based method to eliminate the negative effects of

latent attributes in performance prediction by excluding the

“abnormal” data points whose performances are below a

threshold τ of the corresponding achievable maximum. In

particular, if there are multiple measurements for a given xi,

those with a performance ŷi below τ ·maxi {ŷi} (0 < τ < 1)

are discarded. Incorporating this into data preprocessing, we

conduct performance prediction using the same dataset as

in Fig. 11(c) and present results in Fig. 12, which shows

that the prediction accuracy is significantly improved across

different values of τ ∈ {0.80, 0.85, 0.90, 0.95}, e.g., the 5%

error percentile is increased from 30% to 90% with τ = 0.95.

VII. CONCLUSION AND FUTURE WORK

We conducted an in-depth exploratory analysis of the im-

pacts of a comprehensive set of factors on the end-to-end

performance of big data transfer based on extensive perfor-

mance measurements collected on several real-life physical or

emulated HPN testbeds. Based on such analysis, we selected

features and built a performance predictor using machine

learning. We verified the feasibility and effectiveness of the

machine learning-based performance predictor through theo-

retical performance bound analysis. The experimental results

show that, with appropriate data preprocessing, the predictor

is able to achieve satisfactory prediction accuracy based on

very noisy datasets.

We plan to use “advanced” bagging- and boosting-based

machine learning algorithms to perform such prediction and

compare their performance. It is also of our interest to study

and derive tighter performance bounds on the estimation loss

and sample size by incorporating other HPN domain insights.

ACKNOWLEDGMENT

This research is sponsored by Harrisburg University under Grant
No. PRG-2020-15 and by the U.S. National Science Foundation under
Grant No. CNS-1828123 with New Jersey Institute of Technology.

REFERENCES

[1] ESnet. http://www.es.net.
[2] Iperf3. https://bit.ly/2rpe6SW.
[3] UDT. http://udt.sourceforge.net/.
[4] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical

Foundations. Cambridge University Press, New York, 2009.
[5] D. Yun et al. Profiling transport performance for big data transfer over

dedicated channels. In Proc. of ICNC, pages 858–862, 2015.
[6] D. Yun et al. Profiling optimization for big data transfer over dedicated

channels. In Proc. of ICCCN, 2016.
[7] D. Yun et al. Advising big data transfer over dedicated connections

based on profiling optimization. IEEE/ACM Trans. Netw., 2019.
[8] F. Pedregosa et al. Scikit-learn: Machine Learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.
[9] S. Floyd. Highspeed TCP for large congestion windows. RFC 3649.

[10] Y. Gu and R. Grossman. UDT: UDP-based data transfer for high-speed
wide area networks. Comput. Netw., 51(7):1777–1799, 2007.

[11] H. Sapkota et al. Time series analysis for efficient sample transfers. In
Proc. of the ACM SNTA Workshop, pages 11–18, 2019.

[12] J. Chase et al. End system optimizations for high-speed TCP. IEEE

Commun. Mag., 39(4):68–74, 2001.
[13] J. Padhye et al. Modeling TCP Reno performance: A simple model and

its empirical validation. IEEE/ACM Trans. Netw., 8(2):133–145, 2000.
[14] B. Leitao. Tuning 10Gb network cards on Linux. In Proc. of Linux

Symp., pages 169–184, 2009.
[15] M. Mirza et al. A machine learning approach to TCP throughput

prediction. IEEE/ACM Trans. Netw., 18(4):1026–1039, 2010.
[16] N. Hanford et al. Improving network performance on multicore systems:

Impact of core affinities on high throughput flows. Future Generation

Computer Systems, 56:277–283, 2016.
[17] N. Rao et al. TCP throughput profiles using measurements over

dedicated connections. In Proc. of HPDC, pages 193–204, 2017.
[18] Q. Liu et al. Measurement-based performance profiles and dynamics of

UDT over dedicated connections. In Proc. of ICNP, 2016.
[19] R. Kettimuthu et al. An elegant sufficiency: Load-aware differentiated

scheduling of data transfers. In Proc. of SC, Article 46, 2005.
[20] N. Rao. Simple sample bound for feedforward sigmoid networks with

bounded weights. Neurocomputing, 29(1):115–122, 1999.
[21] V. Vapnik. Estimation of Dependences Based on Empirical Data.

Springer-Verlag, New York, 1982.
[22] W. Allcock et al. The Globus striped GridFTP framework and server.

In Proc. of SC, pages 54–65, 2005.
[23] Y. Gu et al. An analysis of AIMD algorithm with decreasing increases.

In Proc. of the 1st Int’l Workshop on Netw. for Grid Appl., 2004.
[24] Y. Gu et al. Experiences in design and implementation of a high

performance transport protocol. In Proc. of SC, pages 22–35, 2004.
[25] Z. Liu et al. Explaining wide area data transfer performance. In Proc.

of HPDC, pages 167–178, 2017.
[26] Z. Liu et al. Building a wide-area data transfer performance predictor:

An empirical study. In Proc. of the 1st Int’l Conf. on Machine Learning

for Netw., 2018.

http://www.es.net
https://bit.ly/2rpe6SW
http://udt.sourceforge.net/

